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Abstract

we also focus on damage in these tissues.

Inflammation, Senescence

Most cancer patients are treated with radiotherapy, but the treatment can also damage the surrounding normal
tissue. Radiotherapy side-effects diminish patients quality of life, yet effective biological interventions for normal
tissue damage are lacking. Protecting microvascular endothelial cells from the effects of irradiation is emerging as

a targeted damage-reduction strategy. We illustrate the concept of the microvasculature as a mediator of overall
normal tissue radiation toxicity through cell death, vascular inflammation (hemodynamic and molecular changes)
and a change in functional capacity. Endothelial cell targeted therapies that protect against such endothelial cell
perturbations and the development of acute normal tissue damage are mostly under preclinical development.
Since acute radiation toxicity is @ common clinical problem in cutaneous, gastrointestinal and mucosal tissues,

Keywords: Radiotherapy, Acute radiation toxicity, Endothelial cell, Microvasculature, Radioprotection, Cell death,

Introduction
Despite technology-driven improvements
radiotherapy (RT), normal tissue radiation toxicities re-
main a significant clinical concern [1]. They can influence
treatment outcomes, patient quality of life and survivor-
ship. For example, early skin toxicities which develop
within the first few weeks of RT commencement tend to
be transient. Nonetheless, approximately 30% of breast
cancer patients and 60% of head and neck cancer patients
treated with RT develop painful, infection-prone severe
epithelial barrier breakdown (desquamation) [2,3]. This
can complicate tissue reconstruction efforts [4] or necessi-
tate treatment interruptions, which have been found to
compromise tumour control or cure [5]. Furthermore, late
radiation toxicity occurs months to years following RT,
and can result in permanently debilitating organ dys-
function such as cardiovascular diseases (CVDs) [6].

The three categories of radiation protectors include
radioprotectants, radiomitigators and therapeutics. These
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are administered either before radiation exposure, after ra-
diation exposure but before damage manifestation, or after
damage manifestation, respectively. In the clinic, acute tox-
icities such as desquamation are managed non-specifically
with mitigative or therapeutic strategies. Medicated oint-
ments and dressings are in use with conflicting or minimal
evidence and they do not prevent the manifestation of the
problematic damage that impedes patient wellbeing [7].
On the other hand, directly minimizing the biological
determinants of the damage is an approach to preventing
these impediments. Amifostine is the only targeted radio-
protectant with enough clinical evidence to support its
use. However, it has practical limitations and a significant
toxicity profile [8]. Several biological mechanisms of
normal tissue radiation protection are well explored at the
preclinical level, but the endothelial cell (EC) compart-
ment is now also emerging as an attractive target for
radiation protection.

We argue that protecting microvascular endothelial
cells from radiation-induced perturbations, or disruptions
to the normal homeostatic or angiogenic state, ultimately
protects the normal tissue from radiation damage. These
perturbations include EC death, vascular inflammation
(hemodynamic and molecular changes) and loss of func-
tional capacity.
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Review

General mechanisms of radiation protection

General mechanisms of radiation protection include
the use of antioxidants, modulation of cell death, in-
flammation suppression and promotion of wound healing.
These have recently been thoroughly reviewed [9]. Never-
theless, notable examples of targeted agents under pre-
clinical and clinical investigation are discussed while
outlining the general process of ionizing radiation (IR)-
induced damage.

A direct radioprotectant reduces the amount of cellular
DNA damage so that a cell can remain healthy and func-
tional. The most well-studied radioprotectant, amifos-
tine, contains a free radical-scavenging sulthydryl group
[10], competes with oxygen to reduce permanent DNA
damage fixation and increases expression of an en-
dogenous detoxifying enzyme manganese superoxide dis-
mutase [11], thereby reducing double stranded break
accumulation [12,13] and genomic instability [14]. Ini-
tially, amifostine was particularly promising for im-
proving the therapeutic ratio of cancer RT due to its
preferential accumulation in normal tissue rather than
cancerous tissue. Even still, concerns with toxic side-
effects and potential cancer recurrence discourage the
implementation of this class of radioprotectants during
cancer RT [15].

If the IR-induced DNA damage cannot be repaired, the
cell will proceed with clonogenic or reproductive death
that can include programmed cell death (apoptosis), mi-
totic catastrophe or senescence, leading to cellular hypo-
plasia and the observed symptoms of clinical radiotoxicity.
Pifithrin-a, an inhibitor of the p53-mediated apoptotic
pathway that is activated by DNA damage and geno-
toxic stress, reduces mortality of mice after total body
irradiation (TBI) [16]. There is concern that preventing
normal cells that harbor relevant DNA damage from
dying will increase the likelihood of their malignant
transformation.

After radiation exposure, the master regulator of inflam-
mation known as nuclear factor kappa-light-chain-enhancer
of activated B cells (the NF-xB complex) is released and
translocates to the nucleus to initiate the transcrip-
tional program of pro-survival factors and cytokines. The
mounting inflammatory damage may provoke unneces-
sary tissue injury severity above and beyond the initial
insult consisting of DNA damage and subsequent hypo-
plasia. Although the activity of NF-xB is generally de-
scribed as detrimental, surprisingly, there is support to the
contrary. For example, the bacterial flagellin protein de-
rivative CBLB502 that activates NF-xB signaling (by acti-
vating Toll-like receptor 5) can suppress IR-induced
apoptosis in the gastrointestinal (GI) tract [17]. More
recently, CBLB502 also prevented murine mucositis [18].
Strategies that permit inflammation but modulate a
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certain aspect of the process may be a more promising av-
enue for this class of radiation protectants.

With enough IR-induced epithelial progenitor cell apop-
tosis, tissue barrier function fails resulting in desquam-
ation/ulceration and exacerbation of inflammation. Tissue
repopulation by the stimulation of progenitor cell prolifer-
ation or bone marrow (BM) cell recruitment are ap-
proaches to reduce barrier function disruption and to
promote wound healing. Palifermin, a human recombinant
keratinocyte growth factor that stimulates salivary gland
stem cell proliferation, reduced the number of treatment
interruptions overall and the duration and incidence of
mucositis among hyperfractionated patients [19]. Granulo-
cyte colony stimulating factor (G-CSE, which stimulates
neutrophil-trafficking from the BM) is already commer-
cially used to treat neutropenia during chemotherapy.
G-CSF treatment reduced skin radiation damage severity
in mice [20] and hastened moist desquamation healing
in cancer patients treated with RT [21]. Additionally,
the profibrogenic cytokine transforming growth factor-
(TGEF-P) [22] is generally considered to be detrimental to
radiation wound healing speed, subsequent tissue remod-
eling and late toxicity risk. Indeed, knockdown of its
downstream mediator Smad3 accelerated healing of radi-
ation wounds [23]. Additionally, haploinsufficiency of the
TGE-pB co-receptor endoglin was protective against late
kidney fibrosis after radiation challenge [24] but not for
myocardial fitness [25].

Microvasculature as a mediator of radiation damage

The vasculature consists of large, medium and small-
diameter vessels, the latter of which is the microvascula-
ture. The microvascular arterioles, capillaries and venules
all serve to deliver nutrients and oxygen and remove
metabolic wastes from the parenchymal cells they supply.
These are lined by a single inner layer of ECs supported
by pericytes or smooth muscle cells. EC dysfunction is
already believed to be a critical contributor of late radi-
ation tissue damage in certain tissues. For example, radi-
ation damage to the skin or mucosal vasculature can lead
to telangiectasia, which is a pruned vascular network of
fragile, enlarged vessels prone to bleeding and with limited
functional capacity (reviewed in reference [26]). Radiation
damage to large vessels also predisposes patients to CVDs,
a subject which was recently reviewed (see reference [27]),
but also briefly addressed within this work. Yet there is in-
creasing evidence that microvascular events also contrib-
ute to acute damage development. In fact, more recent
studies suggest that protecting ECs against such perturba-
tions using genetic or pharmacologic strategies protects
GI, mucosal, cardiac and skin tissues from radiation dam-
age. Unfortunately, many informative EC radiation protec-
tion studies have utilized TBI, which limits their clinical
relevance.
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EC loss following irradiation

Mechanisms of EC loss [n vivo, capillaries begin to dis-
sipate as early as 1 day after low or high-dose irradiation,
may rupture and are lost more readily than the larger ar-
terioles and venules [28,29]. A wave of microvascular EC
apoptosis has been reported to begin 1 to 24 hours follow-
ing IR exposure in vitro [30] and in vivo in the lung [31],
central nervous system [32], GI tract [33], parotid glands
[34] and myocardium [35]. Starting around 30 days, small
vessel density decreases [26].

It is known that ECs are vulnerable to acid sphingo-
myelinase (ASMase)-mediated cell death [36]. Stress can
induce an early pro-apoptotic signal through ASMase-
mediated ceramide platform formation on their outer
membranes [37]. This signal may influence tissue progeni-
tor cell death, as demonstrated by Lu and colleagues [38].
They found that normal neural progenitor cells trans-
planted into ASMase-deficient mice did not undergo their
expected apoptosis when irradiated in their new environ-
ment. Irradiated ECs are also susceptible to mitochondrial
Bak/Bax-mediated cell death, which are activated by p53
activity [39].

Protecting ECs from apoptosis protects normal
irradiated tissue Strategies to protect ECs from apop-
tosis have been associated with improvements in preclin-
ical radiation toxicity model outcomes. For example, early
radiation-induced apoptosis of ECs is inhibited by basic
fibroblast growth factor (bFGF) in vitro [40] and in vivo
[41]. The effect has been associated with improved sur-
vival of mice with radiation pneumonitis [31]. In a land-
mark study of radiation-induced GI toxicity, Paris et al.
demonstrated that bFGF treatment and ASMase defi-
ciency both decreased EC apoptosis and improved survival
from GI syndrome following TBI [33]. This effect was also
observed with an EC-protecting Angiopoietin-1-based
construct, which promotes EC viability and stability [42].
Schuller and colleagues challenged the view that the early
EC apoptosis initiates radiation-induced GI syndrome
with the finding that selective in vivo irradiation of ECs
did not evoke an apoptotic response in ECs that could ini-
tiate GI failure, but did in epithelial cells [43]. More re-
cently, a ceramide platform formation-blocking antibody
and EC plasminogen activator I-1 deficiency (a p53 target
gene product that normally prevents insoluble fibrin
breakdown) both prevented EC death and delayed lethality
due to radioenterogastritis in mice [44,45], again support-
ing the idea that EC death is a critical aspect of radiation
injury. Lastly, although dominated by GI models of radio-
toxicity, this radioprotection strategy extends to other sys-
tems. Mice lacking Bak and Bax only in ECs experienced
faster hematopoietic stem cell recovery after 3 Gy TBI
[46]. Additionally, mice treated with an EC-protecting
anti-CD47 (a thrombospondin-1 receptor that normally
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promotes vascular perturbations) morpholino experienced
less skin damage from a 25 Gy dose of IR [47].

Although genetic knockout of p53 downstream com-
ponents decreases EC apoptosis and protects the tissue,
direct p53 knockouts have yielded surprising findings. After
12 Gy irradiation of the heart, mice that lacked p53 in ECs
displayed increased EC death and decreased microvascular
density 4 weeks post IR, succumbing to heart failure
around 8 weeks unlike their p53-wild-type counterparts
[35]. Additionally, these mice die off rapidly a month after
TBI from late GI syndrome [48]. This suggests that an EC
p53 deficit is detrimental to irradiated EC survival and
exacerbates late reactions. However, the difference in ra-
dioprotective effects between p53 and downstream target
knockouts remains to be explained.

Vascular inflammatory responses induced by irradiation
Hemodynamic changes The inflammatory response of
the vasculature to IR has been described over the past
50 years largely by focusing on parameters such as vessel
diameter and blood flow. Within hours after radiation ex-
posure, the vasculature becomes leaky [49], although the
degree to which ECs of various vessel types become perme-
able varies in vitro [50]. Investigation of early time points
following rodent skin radiation exposure have yielded a
bi-phasic response in vascular perfusion parameters as
measured by hyperspectral imaging [51] and isotopic la-
beling of red blood cells and microspheres [52]. This mir-
rors the early transient erythema and a secondary delayed
erythema observed in the clinic [53,54]. The opposite has
also been reported: blood flow measured by laser Doppler
in irradiated hamster parotid gland and mouse skin de-
creased from baseline up to 2 or 3 weeks [34,55]. Irradi-
ation of hamster cheek pouch muscle also caused
microvascular red blood cell velocity to decrease as deter-
mined by intravital microscopy [56]. These incongruent
findings may arise from the different tissues, IR doses and
imaging time points under study. Furthermore, different
imaging techniques are amenable to assessing diverse sub-
sets of blood vessels owing to subjective definitions or dis-
parate technique sensitivities. Although these findings
highlight the notion that the vasculature changes func-
tionally in response to IR, measuring perfusion or blood
flow alone may not be a robust measure of IR-induced
hemodynamic changes. In fact, a thorough investigation
of numerous parameters may be required to understand
the overall changing microvascular landscape, as argued
by Archambeau et al. [26]. Observing functional vascular
hemodynamic changes using imaging modalities following
irradiation could be useful to detect differences between
control and EC-protecting agents.

Unlike the variability in reports on the effect of radiation
on perfusion and blood flow, reports monitoring oxygen-
ated hemoglobin (oxyHb) through diffuse reflectance
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spectroscopy, although fewer, are in better agreement.
OxyHb is a measure of inflammation and correlates with
topical irritant dose [57] and erythema severity [58]. Chin
et al. [51] and others [59,60] have found that oxyHb in-
creases in irradiated rodent skin. Similar measurements
have been reported as useful indicators of radiodermatitis
in clinical studies [61,62]. We reported that Vasculotide
reduced the severity of IR-induced radiodermatitis in
mice, and this was accompanied by lower oxyHb measure-
ments than in irradiated controls [63]. The agreement in
the literature on the irradiation-induced rise in oxyHb
may result from quantification from all vessel sizes in
the area (rather than a subset). Additionally, it indicates
inflammation, which is a pronounced effect of IR, and
might not be influenced as strongly by variable degrees of
vessel loss. Therefore, oxyHb quantification may be a reli-
able method of measuring inflammation as a measure of
hemodynamic changes.

EC inflammatory activation Although inflammation is
orchestrated by several cell types, the vascular EC lining is
a key modulator of the response (reviewed in reference
[64]). Classical inflammation begins with the secretion of
tumour necrosis factor a (TNF-a) and IL-1 by damaged
cells or immune cells. These cytokines cause NF-xB to be
released and initiate a pro-inflammatory transcriptional
program in ECs, which then secrete chemoattractants and
express adhesion molecules. Neutrophils bind the adhesion
molecules and undergo transendothelial diapedesis into
injured tissue, where they can undergo respiratory burst
and contribute to the progression of the inflammatory re-
sponse in complex ways, as also recently reviewed [65]. Nu-
merous studies have been conducted detailing EC cytokine
production and cytokine effects on EC responses. Recently,
Halle and colleagues showed for the first time that NF-xB
is up-regulated in irradiated arteries of patients treated
with RT months or years before [66]. The prolongation
of inflammation may create a milieu conducive to the
development of chronic IR-induced pathologies such as
fibrosis and atherosclerosis.

Dampening EC inflammatory activation protects normal
irradiated tissue Reduced pro-inflammatory cytokine,
chemokine, and EC adhesion molecule levels are usually
associated with better radiotoxicity outcomes. Genetic
knockout studies have revealed the importance of a few
key players in radiation damage presentation.

i) Cytokine players

IL-1 is produced immediately following tissue irradiation
[67]. It is made in two forms, IL-1a and [, mainly by kerati-
nocytes in irradiated skin, but also by ECs (among other
cells). They stimulate EC adhesion molecule presentation.
Combinational IL-la and IL-1B knockout mice demon-
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strated subdued radiodermatitis compared to either single
cytokine knockout alone [68].

IL-6 is a pleiotropic cytokine with both pro- and anti-
inflammatory effects [69]. It is an important acute in-
flammatory phase mediator (e.g. causing fever) but un-
controlled overproduction may also contribute to
inflammatory diseases [70]. ECs (among other cells) se-
crete IL-6 through NF-xB activation following irradi-
ation [71] and following IL-1 and TNF-a stimulation.
One of its direct effects on ECs is the induction of inter-
cellular adhesion molecule 1 (ICAM-1) expression
[72]. IL-6 may also enhance hematopoietic cell recovery
following TBI [73] especially in combination with G-CSF
[74]. The potent anti-inflammatory effects of pravastatin
were also observed on ECs in vitro through reduced IL-6
and IL-8/CXCLS levels [75].

Human IL-8/CXCLS8 is a chemoattractant for neutrophil
chemotaxis. Its murine homologues are KC/CXCL1, MIP-2/
CXCL2 and LIX/CXCL5, which vary temporally, spatially
and in intensity when released in response to insults [76].
Human umbilical vein ECs (HUVECS) irradiated in vitro se-
crete IL-8/CXCL8 [77]. As expected, antagonizing MIP-2/
CXCL2 cognate receptors CXCR1/CXCR2 improved sur-
vival in a mouse model of radiation-induced alveolitis
[78].

TNEF-a is a potent pro-inflammatory cytokine that in-
duces EC permeability [79]. It is expressed immediately
and cyclically after IR. TNF-a knockout mice experi-
enced less severe radiation pneumonitis than wild-type
mice [80].

Among the most commonly studied targets in radio-
pathology is TGF- due to its involvement in chronic in-
flammation, fibrosis and late toxicities. Indeed, a small
molecule TGF-f inhibitor mitigated 20 Gy-induced mouse
lung fibrosis [81] and knockout of its canonical down-
stream mediator Smad3 attenuated capsular contracture of
a prosthetic breast implant mouse model [82]. Secreted by
various cells including fibroblasts and ECs, TGE-f is also a
chemoattractant for a list of immune cells, and Smad3
knockdown reduced IR-induced skin inflammation [83].
Antagonizing the canonical TGF-p signaling pathway with
Smad? overexpression conferred striking early radiation
protection of mouse oral mucosa [84].

ii) Adhesion molecule presentation

Many of these aforementioned cytokines induce EC expres-
sion of adhesion molecules such as ICAM-1, vascular cell ad-
hesion molecule-1 (VCAM-1), E-selectin and P-selectin.
Hallahan and Virudachalam demonstrated the importance of
IR-induced microvascular EC ICAM-1 expression by showing
that an ICAM-1 antibody treatment and ICAM-1 knockout
rendered mice resistant to radiation pneumonitis [85]. Simi-
larly, Holler et al. reported that pravastatin treatment miti-
gated 40 Gy acute skin radiation damage severity through
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diminished EC activation (ICAM-1 expression, etc.) and
less neutrophil recruitment [86]. These results dem-
onstrate that suppressing aspects of the inflammatory
response to radiation, especially in regard to EC
activation, can attenuate damage to normal tissues.

ili) Neutrophil presence

ECs are central to controlling inflammatory reactions at least
partially through their gatekeeper function for neutrophil re-
cruitment [65]. Activated ECs enable neutrophils to attach
and undergo transendothelial migration into the tissue. The
neutrophil respiratory burst releases myeloperoxidase, which
produces ROS, and is normally important for pathogen
clearance. The role of neutrophils in health and disease is
growing in complexity [87], yet, neutrophil recruitment is
generally considered to be detrimental in diseased tissue not
under microbial attack. The association between decreased
neutrophil counts (weeks after IR exposure) and better tissue
outcomes is also the prevailing observation in skin radiation
studies [23,68,83,84,86,88]. Mast cell presence, which is usu-
ally important in allergic reactions, is also lower in tissues
with less severe radiation damage [89,90]. Interestingly,
there are also reports associating extremely height-
ened but short-lived neutrophil recruitment with better
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tissue outcomes, but even these show reduced neutrophil
counts at later time points [20,90].

Deterioration of EC function after irradiation

Induction of senescence Various reports demonstrate that
irradiation induces premature endothelial cell cycle arrest, or
senescence [91,92]. The EC senescent phenotype consists of
inflammatory activation, loss of proliferative capacity and
other dysfunctional characteristics [93]. IR-induced senes-
cence has also been associated with diminished pro-survival
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) path-
way signaling in HUVECs [92] and in ECs harvested from a
range of human organs [94]. This IR-induced EC senescence
and loss of function may contribute to the development of
complications in populations treated with RT.

Preventing EC dysfunction protects normal irradiated
tissue Despite the requirement for slow EC turnover
rates in normal tissue, irradiated ECs may fail to main-
tain an adequate EC population number by prolifera-
tion. For example, 25 Gy rat cranial irradiation lead to a
gradual loss in EC density, followed by a proliferative burst
after six months, but EC numbers fell drastically soon
after giving way to necrosis [95].
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Figure 1 Microvasculature as a mediator of (acute) IR damage and as a target for radiation protection. Tissues that are exposed to a high
enough dose of IR develop damage and undergo alterations. In the acute setting, IR induces EC loss through apoptosis and other mechanisms.
It also affects vascular inflammatory responses in several ways. ECs become activated, expressing cell surface adhesion molecules and enabling
neutrophil transendothelial migration. The timing of heightened neutrophil presence may be important for their effect on tissue damage.
Additionally, cytokines are secreted and orchestrate further inflammatory responses. There is no clear consensus in the literature on the kind of
hemodynamic changes that ensue, although it is known that vascular tone is lost over time. IR exposure also induces senescence which reduces EC
proliferative and angiogenic capacity and causes a chronic pro-inflammatory phenotype. However, treating the tissue with a radioprotectant,
radiomitigator or therapeutic that counters the microvascular-mediated damage development can result in reduced normal tissue damage.




Korpela and Liu Radiation Oncology 2014, 9:266
http://www.ro-journal.com/content/9/1/266

Wounds in irradiated tissues take longer to heal than in
non-irradiated tissues [96]. During the proliferative phase
of acute wound healing, the damaged tissue is replaced by
granulation tissue (rich in microvasculature and fibro-
blasts) and supplies all the cells involved in wound repair
with oxygen and nutrients [97]. This suggests that irradi-
ated vasculature may respond inadequately as it generates
granulation tissue for wound healing. Evidence for this
arises from in vitro experiments where irradiated HUVECs
form fewer tubules in angiogenic assays [98,99] and have
diminished proliferation and migration rates compared
to non-irradiated controls [99]. Furthermore, the vascular
beds of mouse skin exhibited reduced VEGF-induced
angiogenesis after exposure to 25 Gy IR [99]. This
dysfunction in angiogenesis could be rescued by treating
with a small molecule inhibitor of the TGF- receptor.

Patients treated with RT for breast cancer, Hodgkins
lymphoma or childhood cancers are at increased risk to
develop CVDs [100]. Aleman and colleagues observed a
three to five-fold higher incidence of CVDs in patients
treated previously for Hodgkin s lymphoma and followed
for a median of 18 years [6]. The IR-induced senescent
state of ECs lining large vessels in irradiated fields may
be one of the underlying conditions promoting CVD
development. Indeed, the link between EC senescence
and atherosclerosis has been established [101]. More-
over, preclinically, cardiac irradiation in the context of
high cholesterol levels causes EC dysfunction and acceler-
ates coronary atherosclerosis [102] which may lead to a
myocardial infarct. Mouse models of radiation-induced
cardiotoxicity show that although much of EC function is
disrupted by IR, cardiac function is only modestly affected,
suggesting a compensatory mechanism [25,102,103]. Lastly,
irradiation (and senescence) reduces the endothelial
response to vasodilating stimuli [104]. Interestingly, blood
vessels in irradiated mouse hind limbs treated with an anti-
CD47 morpholino retain this important function [47].

Conclusions

The microvasculature is emerging as a biologically target-
able compartment in the field of normal tissue radiation
protection during RT. On the whole, preclinical radiation
damage models support the notion that EC perturbations
following irradiation contribute to the developing acute
injury. The concept of the microvasculature as a mediator
of acute radiation damage is illustrated in Figure 1. Con-
flicting findings may be attributed to the unique limitations
of experimental methodologies or differing contexts of
microvascular ECs in distinct organs. Indeed, it is known
that ECs are diverse in their molecular responses and char-
acteristics [105,106]. Additionally, it is conceivable that the
tumor microenvironment could influence the response of
normal tissue vasculature to irradiation [9,107], and thus
future studies should account for this possibility.
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Preclinically, some of these IR-induced perturbations
can be countered; such therapeutics may translate into
clinically beneficial treatments. EC-protecting agents may
be most relevant for patients with pre-existing micro-
vascular dysfunction (e.g. diabetes, obesity) and increased
risk of radiotoxicity [108,109]. As all radiation protection
strategies may not be suitable for all cancer RT regimens,
the EC compartment may serve as an additional or
alternative radiotherapeutic target to reduce the burden of
acute normal tissue toxicity in cancer patients.
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