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Abstract

Background: It is hypothesized that Affordable Care Act (ACA) Medicaid expansions could substantially improve
access to health insurance and healthcare services for patients at risk for diabetes mellitus (DM), with pre-DM, or
already diagnosed with DM. The ACA called for every state to expand Medicaid coverage by 2014. In a 2012 legal
challenge, the US Supreme Court ruled that states were not required to implement Medicaid expansions. This
'natural experiment' presents a unique opportunity to learn whether and to what extent Medicaid expansion can
affect healthcare access and services for patients with DM risk, pre-DM, or DM.

Methods/design: Data from electronic health records (EHRs) from the Accelerating Data Value Across a National
Community Health Center Network (ADVANCE) clinical data research network, which has data from >700 community
health centers (CHCs), was included in the study. EHR data will be linked to Oregon Medicaid claims data. Data collection
will include information on changes in health insurance, service receipt, and health outcomes, spanning 9 years (pre- and
post-expansion), comparing states that expanded Medicaid, and those that did not. Patients included in this study will be
diagnosed with DM, be at risk for DM, or have pre-DM, between the ages of 19 and 64, with ≥1 ambulatory visit. Sample
size is estimated to be roughly 275,000 patients. Biostatistical analyses will include the difference-in-differences (DID)
methodology and a generalized linear mixed model. Econometric analyses will include a DID two-part method to
calculate the difference in Medicaid expenditures in Oregon among newly insured CHC patients.

Discussion: Findings will have national relevance on DM health services and outcomes and will be shared through
national conferences and publications. The findings will provide information needed to impact the policy as it is related
to access to health insurance and receipt of healthcare among a vulnerable population.

Trial registration: This project is registered with ClinicalTrials.gov (NCT02685384). Registered 18 May 2016.
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Background
Diabetes mellitus (DM) is one of the nation’s leading causes
of morbidity and mortality [1, 2]. In 2012, >29 million
people in the USA had DM, of which 1.7 million were newly
diagnosed [3]. Uninsured patients are more likely to have
undiagnosed DM, and the longer they lack insurance, the
higher this likelihood [4]. Uninsured patients with DM are
also less likely to receive recommended DM care and have
poorer DM control than insured patients [5–8]; lack of
health insurance can greatly exacerbate the challenges of
successful DM care and management [9–13]. Previous
research showed uninsured patients had lower odds of
receiving DM-related services, even when they came in for a
clinic visit, compared to insured patients at a similar visit
[5]. Thus, health insurance and continued access to health-
care services are essential for optimal DM detection, care,
and management.
It is hypothesized that Affordable Care Act (ACA)

Medicaid expansions could substantially improve access to
health insurance and healthcare services for patients at risk
for DM, with pre-DM, or DM. The ACA is the largest
healthcare-related legislation in the USA since Medicare’s
establishment in 1966. With the goal of covering all low-
income citizens and legal residents [14], the ACA called for
Medicaid expansions to all individuals earning ≤138% of
the federal poverty level (FPL). However, in 2012, the US
Supreme Court ruled that states were not legally required
to implement the Medicaid expansions [15]. As of April
2016, 32 states and the District of Columbia implemented
expansions while 18 states did not [16]; current estimates
show that Medicaid enrollment grew by 18% in expansion
states and by 5% in non-expansion states [17]. This ‘natural
experiment’ presents a unique opportunity to learn whether
and to what extent Medicaid expansion can affect health-
care access and services for patients at risk for DM, with
pre-DM, or DM. Here, we present the project aims,
methods, and planned analyses for the project.

Methods
Study aims
To assess this natural policy experiment, we will use elec-
tronic health record (EHR) data from community health
centers (CHCs) in states that expanded and did not ex-
pand Medicaid. The study has the following specific aims.

Aim 1
Compare pre-post ACA insurance status, overall visits,
and chronic disease management visits among patients
with DM risk, pre-DM, or DM, among CHC patients in
expansion versus non-expansion states.

Aim 2
Compare pre-post ACA receipt of primary and secondary
DM preventive services [e.g., screening for obesity, lipid

levels, glycosylated hemoglobin (HbA1c)] among patients
with DM risk, pre-DM, or DM, among CHC patients in
expansion versus non-expansion states.

Aim 3
Compare pre-post ACA changes in DM-related biomarkers
(e.g., body mass index, blood pressure, lipid levels) in CHC
patients with DM risk, pre-DM, or DM among newly in-
sured (gained Medicaid in post-period), already insured
(had Medicaid coverage in pre- and post-periods), and
continuously uninsured (pre- and post-periods) patients in
states that expanded Medicaid.

Aim 4
Measure pre-post ACA changes in Oregon Medicaid
expenditures among newly insured compared to already
insured CHC patients with DM risk, pre-DM, or DM.

Data sources
We will use EHR data from the Accelerating Data Value
Across a National Community Health Center Network
(ADVANCE) clinical data research network (CDRN) of
PCORNnet (National Patient-Centered Clinical Research
Network) [18]. The ADVANCE CDRN is a unique ‘com-
munity laboratory’ for research with underrepresented
populations receiving care in CHCs—our nation’s safety net
[18]. Led by the OCHIN (not an acronym) community
health information network, the ADVANCE CDRN’s
research-ready data warehouse integrates longitudinal out-
patient EHR data from OCHIN, Health Choice Network
(HCN), and Fenway Health. These three CHC networks
primarily serve vulnerable populations and, as of June 2016,
include 2,195 CHCs with >3.1 million active patients in 23
states (1194 CHCs in 12 states that implemented Medicaid
expansion in January 2014, and 1001 CHCs in 11 states that
did not). Of note, the project will use a more restricted
database due to eligibility criteria as described below.
OCHIN is a collaborative that includes >450 CHCs and

other community-based clinics [19]. OCHIN is the
nation’s largest CHC network utilizing a single instance of
one EHR system (and the only one using Epic©). Pioneer-
ing the implementation of a single, hosted instance of
Epic© Systems EHR across hundreds of clinics, OCHIN
maintains one enterprise-wide master patient index. Thus,
OCHIN patients have a single medical record across all
clinics in the network, and all data are managed centrally.
HCN has a history and organizational structure similar

to OCHIN’s. In 1994, HCN was founded in Florida by a
group of CHCs collaborating to recover from the impact of
Hurricane Andrew; membership now spans 9 states. HCN
members are hosted on a centralized EHR platform
(Intergy™ by Vitera™) and supported by network-wide
clinical informatics and analytic tools. In 2011, HCN
partnered with OCHIN to develop the ADVANCE data
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and aggregation system. In addition to the ADVANCE
research-ready data warehouse, this partnership has helped
CHCs aggregate data for quality reporting, EHR “meaning-
ful use,” and patient-centered medical home recognition.
Fenway Health, a free-standing CHC, was founded in

1971. In its early response to the AIDS epidemic, Fenway
Health developed the capacity to support clinical research
and has received significant federal funding [20]. Fenway has
been a partner with OCHIN since 2010 [21]. Fenway has
received national recognition for reducing healthcare dispar-
ities for sexual and gender minority populations, and is the
home of the National Center for Lesbian, Gay, Bisexual and
Transgender Health Education [22]. Fenway Health has had
an EHR for >15 years and has participated in several na-
tional research consortia using EHR-based data.
We will also link OCHIN EHR data to Oregon Medic-

aid claims data in order to measure changes in Medicaid
expenditures. Oregon’s Medicaid recipients are assigned
unique individual identification (ID) numbers, facilitat-
ing data linkages across multiple databases, including
the ADVANCE data warehouse. As we have done previ-
ously [23–25], we will use claims data from Oregon’s
Medicaid Management Information System, recognized
for exemplary data validation protocols by Centers for
Medicare and Medicaid Services.

Eligibility criteria
We will include patients with DM risk, pre-DM, or
diagnosed DM, between the ages of 19 and 64, with one or
more ambulatory visit. Data will derive from >700 CHCs in
20 states for which their EHR were ‘live’ as of 1/1/2013. We
set these age criteria because the Medicaid expansion was
aimed at adults aged 19 and older, many states’ Medicaid
programs cover children through age 18, and nationally, in-
dividuals aged 65 and older are eligible for Medicare. We
will exclude pregnant women to eliminate the possibility of
having patients with gestational DM in the dataset.

Definitions of patients with pre-DM, at-risk for DM, and DM
Patients at-risk for DM:
Patients aged 45 and older and with a BMI ≥ 25, fol-

lowing criteria from the Centers for Disease Control and
Prevention [26].
Patients with pre-DM:
Patients with a single HbA1c between 5.7 and 6.4% and/

or a fasting glucose between 100 and125 mg/deciliter.
Patients with DM:
The ADVANCE CDRN has developed a computable

phenotype with criteria for identifying potential DM co-
hort members. This phenotype includes relevant informa-
tion for identifying type 1 and type 2 DM. Both types of
DM will be included in the study, although most patients
have type 2 DM. Previous studies have validated the use of
a similar method [27–29]. Patients with DM are identified

as those with any combination of two “events” from
outpatient diagnoses, diagnostic level laboratory results,
or order of anti-hyperglycemic agents no more than
730 days apart. Examples:

(1)At least two visits with a DM-related International
Classification of Disease (ICD)-9 or 10 code,

(2)One ICD-9/10-coded visit and one HbA1c or
glucose test positive for DM, according to American
Diabetes Association thresholds [30],

(3)One ICD-9/10 coded visit and a diabetes-related
medication order, or

(4)A diabetes-related medication order and a positive
HbA1c or glucose test.

Because some patients may not have the opportunity to
have two events in the post-period (or pre-period), we risk
an underestimation of patients with DM. Thus, we will
conduct sensitivity analyses using one event to define DM
patients and ensure robust findings. Table 1 shows a break-
down of ADVANCE patients with DM risk, pre-DM, or
diagnosed with DM.

Measures
This project has two main independent variables: Medicaid
expansion status (states that expanded versus not) or insur-
ance status.

Medicaid expansion status
We will define the pre- and post-Medicaid expansion
periods based on if and when a state expanded Medicaid.
As illustrated in Fig. 1, each row below the time arrow rep-
resents the pre-post periods depending on when ACA-
sponsored Medicaid expansion was/will be implemented in
states. Our study period will range from January 1, 2012 to
December 31, 2020. We will have data spanning 9 years,
which will allow us to examine the short-term (1–2 years)
and medium term (4–5 years) impact of the Medicaid
expansion on reducing disparities in access to and receipt
of DM screening, treatment, and health outcomes as well

Table 1 ADVANCE patients (aged 19–64) with DM risk, pre-DM,
or DM during the pre-period (01/01/2012-12/31/2013) by expansion
status

Total
(N = 260,306)

Expansiona

(N = 141,353)
Non-expansionb

(N = 118,953)

DM categoriesc N (%) N (%) N (%)

DM risk 169,045 (64.9) 91,607 (64.8) 77,438 (65.1)

Pre-DM 12,012 (4.6) 6991 (4.9) 5021 (4.2)

DM 79,249 (30.4) 42,755 (30.2) 36,494 (30.7)
aStates who expanded Medicaid as of January 1, 2014 (CA, HI, MA, MD, MN,
NM, NV, OH, OR, RI, and WA)
bStates who had not expanded Medicaid as of January 1, 2014 (AK, IN, FL, KS,
MO, MT, NC, TX, WI)
cDM categories defined prior to January 1, 2014
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as changes in expenditures. When the ACA-Medicaid
expansion took effect on January 1, 2014, 14 states in the
ADVANCE CDRN adopted Medicaid expansion. Their
pre-period (first row) is thus 24 months prior to 2014 (i.e.,
2012 through 2014) and their post-period is 2014 through
2020 (see first row in Fig. 1). Other states adopted the
expansion later, such as Indiana and Alaska (pre/post
period in row 2), Montana (pre/post period in row 3), and
others (i.e., Oklahoma) may change their policies during
the remainder of the study period.

Insurance status
Since EHR health insurance data is primarily based on
information collected at each visit [31], we propose to
define newly insured, already insured, and continuously
uninsured patients as follows:

(1)Newly insured patients will have been uninsured at
all visits in the pre-period and had all visits in the
post-period paid by Medicaid;

(2)Already insured patients will have all visits paid by
Medicaid in both the pre- and post-periods;

(3)Uninsured patients will have no coverage for all
visits in both the pre- and post-periods.

Covariates will include sociodemographic variables (age,
gender, race, ethnicity, poverty level, language preference,
and urbanicity) and the frequency of healthcare visits.

Outcome measures
Healthcare coverage refers to patient’s health insurance sta-
tus including coverage status, type of health insurance (e.g.,
Medicaid, private, Medicare) and percent of insured visits.
Healthcare delivery includes rates of all billed encoun-

ters (all, primary care visits, and mental and behavioral
health encounters) and receipt of recommended preventive
services [32, 33] (e.g., tobacco assessment, vaccinations,

cholesterol screening, diabetic preventive care, blood pres-
sure measurement, obesity screening, foot and retina
exams, appropriate prescriptions).
We will also evaluate change in DM-related biomarkers,

by identifying patients with elevated HbA1c (HbA1c >7%
[34]), low-density lipoprotein (LDL≥ 100 mg/dl [32–34]),
blood pressure (last measure >140/90 mmHg), body mass
index (BMI ≥ 30) and diabetes complications (e.g., retinop-
athy, nephropathy, neuropathy). We will examine absolute
changes in these biomarker values, as well as the propor-
tion achieving control and rates of change.
Medicaid expenditures for services internal and exter-

nal (Medicaid recipients only) to the patients’ clinic will be
determined. Evaluating expenditures requires two steps.

(1)For the subset of our cohort residing in Oregon, link
patients with DM risk, pre-DM, or DM to Oregon’s
Medicaid claims data.

(2)Attach expenditures to uninsured individuals for
services. Although these individuals do not have paid
Oregon Medicaid claims, they do have encounter data
that are captured by the ADVANCE data. These
encounter data include the Current Procedural
Terminology (CPT) codes that identify the services
rendered to those patients. We will attach an
expenditure for each service based on its average
Medicaid fee-for-service reimbursement in the first
year of the sample. In other words, a standardized
price will be defined for each service provided by the
clinic. In order to be consistent, we will attach these
prices to all patients, including those with insurance.
These repriced claims reflect differences in utilization
only (and not payment or capitation rates). The
investigators have used this approach previously [35].

Additional outcome variables may be added if more
data become available.

Fig. 1 Medicaid expansion status timeline
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Analytic procedures
Biostatistical analyses
Our primary methodological approach to address study
aims will utilize difference-in-differences (DID) method-
ology [36–38]. To address aims 1–3, we will use a general-
ized linear mixed model (GLMM) approach to adjust for
serial correlation and other potential confounders. An
interaction term for Medicaid expansion (or insurance
status) and a post-expansion indicator variable will be in-
cluded in the model to determine the DID in the out-
comes. Additionally, this model is flexible enough to
construct models stratified by patients with DM risk, pre-
DM, or DM. Further, we will stratify the models by types
of insurance (i.e., Medicaid vs. private/employer-spon-
sored) because healthcare delivery may vary by type.
Moreover, we will test three-way interaction terms of

demographic indicators (i.e., race/ethnicity, gender, age),
time, and Medicaid expansion indicator. We will compare
the potential effect of gaining insurance on DM, pre-DM,
or DM risk patients’ care, outcomes, and expenditures by
demographic characteristics because of the differential
prevalence of DM between these sociodemographic groups.
We will use propensity score weighting methods to reduce

the observed bias, help minimize external threats to the val-
idity of the results, and adjust for imbalances between ex-
pansion and non-expansion groups [39]. Clinic and patient
panel characteristics that remain unbalanced between the
intervention and control groups after propensity score ad-
justment will be included as covariates in the GLMM
models to control for residual confounding. Longitudinal
GLMM models will account for correlation within matched
clinic site pairs and within CHCs through random effects.

Econometric analyses
To address study aim 4, using DID methods, we will calcu-
late the average pre-post difference in Medicaid expenditures
at the CHC attributable to the subpopulation of Oregon
newly insured DM risk, pre-DM, or DM patients in AD-
VANCE data, subtracted by the average difference among
the already insured patients. We will use a well-validated ap-
proach for modeling this phenomenon: the 2-part model
[40]. Part 1 will use logistic regression to estimate the prob-
ability of any expenditure. Part 2 will focus on individuals
with non-zero expenditures. We will use recent literature to
guide the appropriate estimation approach, taking into ac-
count the potentially skewed distribution of the dependent
variable [41, 42].
This study was reviewed and approved by the Oregon

Health & Science University Institutional Review Board. It
is registered with ClinicalTrials.gov (NCT02685384).

Discussion
By making the Medicaid expansion optional for states, the
US Supreme Court created a natural policy experiment to

analyze the impact of a large-scale, national expansion of
Medicaid on DM prevention and treatment. Our study
capitalizes on this natural experiment by including data
from 20 states; analyses will uniquely inform national and
state policy decisions as states grapple with how to equit-
ably distribute healthcare resources after the passage of
federal health reform. To be useful, health policy reform
evaluation must be timely, yet data from most currently
available national sources have several years’ delay be-
tween data collection and analysis. EHR data overcome
these limitations as they are current and can provide in-
formation about the immediate, real-time impacts of the
ACA’s policies on clinic populations.
Fortunately, the rapid growth of EHR use in CHCs serv-

ing vulnerable populations yields unprecedented oppor-
tunities for real-time evaluation of how health policy
changes impact access to care, and utilization and delivery
of CHC services. Further, because CHC patients are pri-
marily low-income, racial/ethnic minorities, and/or from
rural populations, this study will monitor and evaluate
whether the ACA Medicaid expansion mitigated health
disparities, especially among patients with DM.
This study has some limitations. First, EHR data are not

originally developed for research; however, we have con-
ducted multiple data validation studies, built many EHR re-
search datasets, and successfully conducted policy-relevant
research using EHR datasets in the past [24, 43, 44]. Second,
we anticipate missing data, either from services documented
inaccessibly in the EHR (likely random) or from patients
who went outside the ADVANCE CDRN to receive services
(perhaps not random). Our analyses can accommodate miss-
ing data resulting from patient attrition. We will model miss-
ingness by including related variables in the analysis as
covariates [45] or using a method such as multiple imput-
ation to include these patients in analyses [46]. Third, as with
any ‘real-world’ study, unobserved changes may occur over
time, making it difficult to isolate the effect of the ACA.
In conclusion, this project assesses the natural policy ex-

periment created by ACA Medicaid expansions when some
US states expanded Medicaid while others did not. Findings
will have national relevance on DM prevention, diagnosis,
treatment, expenditures, and health outcomes. It investigates
how Medicaid expansions impact access to and changes in
receipt of healthcare services among a vulnerable popula-
tion of patients with DM risk, pre-DM, or DM and creates
validated data sources for studying vulnerable populations.
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