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Background
Germplasms are genetic materials accumulated through 
evolution and extinction on the Earth. Genetic diversity 
is essential to breed new cultivars that are agriculturally 
useful for humans [1, 2]. Genetic resources have been 
recognized as national properties rather than the shared 
heritage of humans since the Convention on Biological 
Diversity in 1992. Therefore, many countries have pro-
moted and preserved the diversity of genetic resources 
to be utilized as strategic and economic properties. 
However, with the expansion of genetic resources, the 
cost and time of their utilization, maintenance, and con-
servation have increased. Accordingly, core collection, 
proposed by Frankel [3], has emerged as an alternative. 
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Abstract
Background  Managing and investigating all available genetic resources are challenging. As an alternative, breeders 
and researchers use core collection—a representative subset of the entire collection. A good core is characterized 
by high genetic diversity and low repetitiveness. Among the several available software, GenoCore uses a coverage 
criterion that does not require computationally expensive distance-based metrics.

Results  ShinyCore is a new method to select a core collection through two phases. The first phase uses the coverage 
criterion to quickly attain a fixed coverage, and the second phase uses a newly devised score (referred to as the rarity 
score) to further enhance diversity. It can attain a fixed coverage faster than a currently available algorithm devised for 
the coverage criterion, so it will benefit users who have big data. ShinyCore attains the minimum coverage specified 
by a user faster than GenoCore, and it then seeks to add entries with the rarest allele for each marker. Therefore, 
measures of genetic diversity and distance can be improved.

Conclusion  Although GenoCore is a fast algorithm, its implementation is difficult for those unfamiliar with R, 
ShinyCore can be easily implemented in Shiny with RStudio and an interactive web applet is available for those who 
are not familiar with programming languages.
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A core collection is defined as a subset of accessions (a 
sample added to the core collection) that represents the 
genetic diversity of the entire collection by minimizing 
repetition and maximizing genetic variation [4–7]. A 
core collection should have a few redundant entries (an 
entry is an accession that is selected from the core collec-
tion, and an accession is a component of the entire col-
lection), and it should be small enough for convenient use 
and diverse enough for representing the entire collection 
[4]. From this broad definition, several operational defi-
nitions and criteria have been derived based on different 
views and specific objectives of the core collection [6, 8, 
9]. According to Galwey [10], the purpose of selecting a 
core collection is to (1) maximize the representativeness 
of variation trends in the entire collection and (2) maxi-
mize the representativeness of the full range of genetic 
variation in the entire collection. Meanwhile, according 
to Marita et al. [11], the purpose of selecting a core col-
lection is to (1) maximize the total genetic diversity of the 
core collection and (2) maximize the representativeness 
of the genetic diversity of the entire collection.

The quality of a core collection (or simply a core) 
depends on perspectives and purposes. For instance, 
Odong et al. [6] classified a core collection into three 
types, namely CC-D, CC-X, and CC-I. The CC-D type, 
a concept proposed by Galwey [10] for the first time, 
selects a core with a similar distribution to the entire 
collection; therefore, it is likely to include a large num-
ber of accessions with common alleles while excluding 
the rare ones. The CC-D type is preferred by research-
ers or breeders aiming to select reference sets for various 
breeding purposes. The CC-X type, a concept put forth 
by Marita et al. [11], includes accessions in a core with 
extreme values in both directions of the distribution of 
the entire collection. Unlike a CC-D core, a CC-X core 
is likely to select entries with rare alleles; however, it has 
the disadvantage of adding redundant accessions. Fur-
thermore, accessions located in the middle of the distri-
bution of the entire collection are unlikely to be selected. 
The CC-X type can be useful for screening resistant or 
susceptible accessions in a disease-resistance breed-
ing program. Finally, the CC-I type, the second concept 
proposed by Galwey [10] and Marita et al. [11], includes 
accessions that represent themselves and similar acces-
sions in the entire collection. Both rare and common 
alleles are included in a CC-I core, with minimum repeti-
tion of similar accessions. To this end, CC-I may be the 
best approach to construct a core collection for breeders 
and researchers.

Because the three types of core collections have differ-
ent perspectives and purposes, each should be evaluated 
according to different criteria. Odong et al. [6] suggested 
various distance-based criteria for each of the three 
types and discussed their properties. First, a CC-X core 

can be evaluated based on two criteria: the average dis-
tance between each entry and the nearest neighboring 
entry (E-NE) and the average genetic distances between 
the entries (E-E). A core selected based on E-NE maxi-
mizes the average distance between each entry and the 
nearest contiguous entry to avoid the selection of simi-
lar accessions. Meanwhile, the E-E criterion maximizes 
the average genetic distance between the entries of the 
core collection, although it may induce high redundancy 
within the distribution. Thus, the E-NE criterion is more 
widely used than the E-E criterion for CC-X cores. Next, 
the evaluation criteria for CC-D were devised to compare 
the probability distributions of the entire and core collec-
tions. In addition to descriptive statistics for the center, 
spread, and shape, the quantile–quantile plot [12] and 
Kullback–Leibler distance [13] have been widely used. 
For categorical data, the chi-square goodness-of-fit can 
be used as an alternative to measure the discrepancy 
between the distribution of the core and entire collec-
tions. Finally, the average distance between each acces-
sion and the nearest entry (A-NE) is used to evaluate the 
CC-I core. The A-NE criterion selects an optimal core 
collection by minimizing the average distance between 
each accession and its nearest entry. The entries tend to 
be located at the center of clusters rather than at their 
outer region.

For categorical data, Shannon’s diversity index (SH) 
[14] and coverage (CV) [15] are commonly used crite-
ria for CC-I [6]. CV measures the proportion of marker 
alleles in the entire collection that are retained in the 
core collection [16]. SH measures whether the distribu-
tion of marker alleles is well balanced (i.e., equal pro-
portions). Both CV and SH have been devised for CC-I 
[6], although their aims are different. SH is maximized 
in the core collection when all possible alleles have the 
same proportion, although this is not a necessary con-
dition to maximize CV. In the presence of thousands of 
markers in the core selection, CV serves as an efficient 
criterion to attain genomic diversity with a few entries; 
however, researchers and breeders sometimes desire 
multiple entries of the rarest alleles. Thus, SH is a more 
suitable criterion. Through examples in the present arti-
cle, we showed that both CV and SH increase rapidly at 
the beginning of core selection, but SH stops increasing 
(or even decreases) mid-way. Furthermore, an increase 
in the last 1% of CV requires a substantially large num-
ber of entries. In this context, considering a two-phase 
core selection may be reasonable. In the first phase, we 
focused on CV until the minimum (specified by the user) 
was attained. In the second phase, we focused on entries 
with rare alleles. The proposed two-phase core selec-
tion is available in R/Shiny, an interactive web applet, 
for those who are not familiar with the R programming 
language and is referred to as ShinyCore. In the present 
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study, we compared ShinyCore and GenoCore using two 
wheat datasets generated with a single nucleotide poly-
morphism (SNP) array.

Materials and methods
GenoCore
For a given core, we defined CV = m− 1 ∑ici /ei, where m 
is the number of markers, ci is the number of genotype 
classes (allele types) for the ith marker in the core col-
lection, and ei is the number of genotype classes for the 
ith marker in the entire collection [5]. This is the average 
proportion of genotype classes covered by the core across 
all markers, and this criterion has been devised for the 
CC-I type [6].

Some samples (accessions from the entire collection) 
may have missing genotypes. GenoCore determines the 
first entry with the minimum number of missing geno-
types. Once the first entry is determined, GenoCore 
sequentially maximizes CV until a fixed value is attained 
(specified by the user). Unlike distance-based measures 
and SH, CV does not decrease core size (the number 
of accessions in the core). In other words, an additional 
entry into the core collection does not lower CV. Com-
pared with other core collection algorithms, which 
require random processes, GenoCore sequentially maxi-
mizes CV, allowing faster computation while selecting 
the same core (no variations from run to run).

GenoCore attempts to reduce the computation time 
by calculating the coverage score (which is different 
from CV) for each accession. The average genotype fre-
quency across all non-missing genotype markers is cal-
culated, and the sample with the highest coverage score, 
which increases CV at each iteration, is selected [5]. This 
method rapidly increases CV, because a sample with a 
high coverage score tends to have more common alleles. 
When two or more samples have the same coverage 
score, another statistical measure, the diversity score, can 
be used [5], and the one with the lowest diversity score is 
removed.

ShinyCore.
The proposed method, ShinyCore, uses a brute-force 

method instead coverage and diversity scores to maxi-
mize CV. ShinyCore comprises two phases. The first 
phase, called the covering phase, focuses on maximizing 
CV. The second phase, called the thickening phase, seeks 
to include accessions with rare alleles in the final core 
collection.

ShinyCore does not use coverage score for the follow-
ing reasons. We argue that two or more accessions with 
the same coverage score do not imply the same genotype 
class for all markers. In a high-dimensional dataset (with 
thousands of markers), the impact of selecting a sam-
ple based on coverage and diversity scores is unknown. 
Therefore, we considered a brute-force approach that 

maximizes CV at each iteration without eliminating 
any samples according to coverage and diversity scores. 
CV calculation in the proposed brute-force approach 
is expected to be accurate, although this can result in 
slightly different cores between ShinyCore and GenoCore 
at the same fixed CV.

During the covering phase of ShinyCore, computation 
is accelerated after each iteration using the following two 
operations. First, an NA value is assigned to the marker 
of an accession if the genotype class of this marker is 
already covered by the current core. Second, markers are 
removed such that all genotype classes are fully covered 
by the current core. The first operation is useful because 
calculating the number of non-NA genotype classes for 
each accession is computationally simpler than calculat-
ing CV with all possible entries. The second operation 
reduces the dimension of the working dataset after each 
iteration, which further shortens computation time, par-
ticularly after several iterations.

Researchers and breeders prefer to include more 
accessions containing the rarest alleles of a marker. For 
instance, suppose that the entire collection of 100 sam-
ples has genotype classes A, B, and C of a marker with 
frequencies of 5, 45, and 50, respectively. If the core of 
size 10 includes 1, 1, and 8 of the three genotype classes, 
this marker is fully covered; however, breeders and 
researchers may prefer to include more As. Here, SH is 
the criterion for this purpose (i.e., a uniform distribution 
of genotype classes). Unlike CV, SH decreases with core 
size. Thus, the simultaneous maximization of CV and SH 
can be challenging and computationally expensive.

To address this challenge, we quantified each acces-
sion as follows. Suppose that an accession is randomly 
selected from the entire collection. Then, the probability 
of selecting the jth allele of the ith marker can be defined 
as ηij = pij /(1 − pij), where pij is the proportion (relative fre-
quency) of the jth allele of the ith marker in the entire col-
lection. Next, we quantified the plausibility of selecting a 
rare allele as (ηij)−1 = (1 − pij)/pij, and defined the total rar-
ity score of an accession as RS = ∑i (ηij*)−1, where ηij* indi-
cates the probability of selecting the j*th allele observed in 
the ith marker for that accession. During the thickening 
phase, entries with a high RS value are added to increase 
the likelihood of including rare alleles across all markers.

Core size (the number of accessions in a core) tends to 
increase exponentially to attain an additional percent-
age of CV. In other words, substantially more accessions 
in the core are required to increase CV from 98 to 99% 
than from 97 to 98%. For some researchers and breeders, 
given that CV is sufficiently high, including rare alleles in 
the core collection may be more valuable than increas-
ing the last 1% of CV. Following the covering phase (i.e., 
after attaining the minimum CV specified by the user), 
the thickening phase is performed as follows. Let np 
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denote the core size required to attain a CV of p%. A Shi-
nyCore user may specify the minimum and maximum 
percent CV as desired. For instance, if a user specifies the 
minimum CV of 98% and the maximum CV of 99%, Shi-
nyCore works as follows: (1) Covering phase: Find a core 
of size n99 that attains 99% CV and remembers the core 
size n98 when it attains 98% CV. (2) Thickening phase: 
Start from the core of size n98, which attained 98% CV, 
and then add n99–n98 entries of the highest values of RS 
from the entire collection that were not selected in the 
core. The final core size is n99, and the CV is between 98% 
and 99%.

The interface web application is available at https://ste-
venkimcsumb.shinyapps.io/ShinyCore. This applet does 
not require users to understand the R programming lan-
guage and the R script is available at zenodo repository 
(https://doi.org/10.5281/zenodo.8137684).

Results
The performance of GenoCore was evaluated based on 
the CV, SH, and modified Roger’s distance (MR) crite-
ria. The performance of GenoCore has been shown to be 
superior or comparable to that of the other core selection 
programs [5]. In this section, ShinyCore is compared to 
GenoCore using two datasets. The first dataset (hereaf-
ter, wheat 1) was derived from the wheat 35 K SNP array 
dataset developed by Wilkinson et al. [17] (Table 1). The 
second dataset (hereafter, wheat 2) is part of the wheat 
15 and 90 K Infinium array used to analyze quantitative 

trait loci and perform marker-assisted breeding (MAS) 
for disease resistance [18] (Table 1).

The core of size n99 at the end of the covering phase 
(before the thickening phase) is referred to as ShinyCore 
99% CV. A core of the same size after the thickening pro-
cess is referred to as ShinyCore 98% CV + T. The core that 
attained 99% CV using GenoCore is referred to as Geno-
Core 99% CV; the code is available at https://github.com/
lovemun/Genocore [5].

For the wheat 1 dataset, the core sizes of ShinyCore 
99% CV, ShinyCore 98% CV + T, and GenoCore 99% CV 
were 89, 89, and 73, respectively. The core selected by 
GenoCore 99% CV attained a CV of 99.0% according to 
the calculation by GenoCore but attained a CV of 98.6% 
according to calculation by ShinyCore. For the wheat 2 
dataset, the respective core sizes were 32, 32, and 28, and 
GenoCore 99% CV attained a CV of 98.7% according to 
calculation by ShinyCore.

Venn diagrams of the three core collections are pre-
sented in Fig. 1. The three cores shared a large number of 
entries. Despite the different approaches for reducing the 
computation time between GenoCore and ShinyCore, 72 
of the 73 entries in GenoCore 99% CV overlapped with 
those in ShinyCore 99% CV for the wheat 1 dataset. Shi-
nyCore attained a CV of 98% with n98 = 55 entries, and 
none of the additional entries of ShinyCore 98% CV + T 
overlapped with those of ShinyCore 99% CV. Therefore, 
the covering and thickening phases were markedly differ-
ent. A similar trend was observed for the wheat 2 dataset.

Table  2 summarizes the cores of GenoCore 99% CV, 
ShinyCore 99% CV, and 98% CV + T for the wheat 1 and 
2 datasets. We observed similar trends for both datas-
ets as follows. ShinyCore formed a larger core size than 
GenoCore at the same fixed CV. The core selected by 
GenoCore 99% CV showed a slightly lower CV than 
0.99 according to calculation by ShinyCore. ShinyCore 
attained a CV of 99% faster than GenoCore. For the 
thickening phase, ShinyCore 98% CV + T required an 
additional computation time of 0.19 and 0.16  min for 
the wheat 1 and 2 datasets, respectively. Finally, the 

Table 1  Datasets used in the present study
Name SNP chip Number of 

markers
Num-
ber of 
samples

Reference

Wheat 
1

Affymetrix 
Axiom 35 K SNP 
array

14,099 556 Wilkinson et al. 
(2012)
Jeong et al. (2017)

Wheat 
2

15 K & 90 K 
Infinium array

12,896 890 Wang et al. (2014)
Soleimani et al. 
(2020)

Fig. 1  Venn diagrams of accessions selected by ShinyCore (99% CV and 98% CV + T) and GenoCore (99% CV). The diagrams indicate wheat 1 (left) and 2 
(right) datasets, respectively
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thickening phase of ShinyCore 98% CV + T enhanced 
genetic diversity (as measured by SH) and genetic dis-
tance (as measured by MR) at the cost of a slight decrease 
in CV.

Regarding the shortened computation time, using the 
same computer (16.0 GB; 10th generation of Core i5), 
ShinyCore 99% CV was approximately 5.8 and 3.1 times 
faster than GenoCore 99% CV for the wheat 1 and 2 data-
sets, respectively. We anticipate a substantially reduced 
computation time when a larger dataset is analyzed.

Figure  2 shows CV, SH, and MR with respect to core 
size using ShinyCore 99% CV. SH was calculated using 
the logarithm of base c, where c is the number of geno-
type classes for each marker. This helped visualize CV, 
SH, and MR simultaneously on a single graph, as the val-
ues of all three measures range between 0 and 1, with 1 
indicating the most plausible value for each criterion. CV 
uniformly increased with respect to core size, but the SH 
and MR did not. SH increased up to a certain core size 
and then plateaued or decreased. MR did not change sig-
nificantly with respect to core size. Therefore, even if we 
increase the core size using GenoCore, the values of SH 
and MR are unlikely to be greater than those obtained 

using ShinyCore. When ShinyCore 98% CV + T was com-
pared to GenoCore 99% CV, the calculated CV was the 
same for both wheat datasets, but ShinyCore 98% CV + T 
selected a larger core that was genetically more diverse 
and distant than GenoCore 99% CV (Table 2). Since Shi-
nyCore seeks to include accessions with rare alleles in 
the thickening phase, it may include more diverse entries 
than GenoCore, which is advantageous in genome-wide 
association studies.

Figure  3 presents the results of principal compo-
nent analysis (PCA) applied to compare the three cores 
selected by GenoCore 99% CV, ShinyCore 99% CV, and 
98% CV + T. In the two-dimensional space of PC1 (x-axis) 
and PC2 (y-axis), the entries are well spread and the loca-
tions of the three cores are similar. For the wheat 1 data-
set (the top three panels of Fig. 3), ShinyCore 98% CV + T 
included more extreme entries in the bottom-right clus-
ters (high values of PC1 and low values of PC2), which 
were excluded from the other two cores. From a distance-
based perspective, these extreme entries may be consid-
ered redundant. In contrast, ShinyCore 99% CV included 
an extreme entry with the maximum value of PC2 (the 
top middle panel of Fig.  3), which was excluded from 

Table 2  Comparison of evaluation metrics between ShinyCore and GenoCore
Dataset Software Core size CVa SHb MR Time (min)c

Wheat 1 GenoCore (99% CV) 73 0.986 0.632 0.604 3.45
ShinyCore (99% CV) 89 0.990 0.626 0.601 0.59
ShinyCore (98% CV + T) 89 0.987 0.644 0.608 0.78

Wheat 2 GenoCore (99% CV) 28 0.987 0.768 0.711 1.66
ShinyCore (99% CV) 32 0.990 0.770 0.711 0.53
ShinyCore (98% CV + T) 32 0.987 0.777 0.714 0.69

aCV was calculated using ShinyCore and was slightly lower than the value reported by GenoCore.
bSH was calculated using the logarithm of base c, where c is the number of genotype classes of each marker, and this base gives SH values between 0 and 1, with 1 
implying equal proportions
cComputation time was calculated using the same computer (16.0 GB; 10th generation of Core i5)

Fig. 2  Coverage (CV), Shannon’s diversity index (SH), and modified Roger’s distance (MR) with respect to core size of wheat 1 (left) and 2 (right) datasets. 
This figure is drawn based on the core selected by ShinyCore 99% CV
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the other two cores. For the wheat 2 dataset (the bottom 
three panels of Fig.  3), GenoCore 99% CV included an 
entry with the maximum value of PC2 (the top left panel 
of Fig. 3), which was excluded from the two cores selected 
by ShinyCore. Overall, GenoCore 99% CV selected the 
most diverse core among based on the results of two-
dimensional PCA, although its SH and MR values were 
lower than those of ShinyCore 98% CV + T (Table 2). The 
PCA plot provides an overall graphical assessment and 
comparison; however, it is limited in its ability to evaluate 
genomic diversity and distance, because a large amount 
of information is lost when thousands of markers are 
summarized into a two-dimensional space.

As an alternative, we visually evaluated the effects of 
the thickening phase of ShinyCore, as shown in Figs.  4 
and 5. We calculated the SH value of each marker for the 
entire collection and each core. In Fig. 4, the x-axis repre-
sents the SH value of each marker in the entire collection, 
and the y-axis represents the SH value of each marker in 
the core. The black solid curve represents the SH value 
of ShinyCore 98% CV + T with respect to the SH value of 
the entire collection, and it is mostly above the red and 
blue dotted curves (GenoCore 99% CV and ShinyCore 

99% CV, respectively) for both datasets. For the wheat 1 
dataset, ShinyCore 98% CV + T, ShinyCore 99% CV, and 
GenoCore 99% CV showed the maximum SH values of 
45.9%, 18.9%, and 35.2% for 14,099 markers, respectively. 
For the wheat 2 dataset, the respective SH values were 
42.4%, 30.4%, and 27.2% for 12,896 markers. Therefore, 
the thickening phase is indeed helpful, particularly in bal-
ancing the distribution of severely unbalanced alleles.

Each marker showed the rarest allele, and the pro-
portion of the rarest alleles could be calculated for each 
marker in the entire and core collections. In Fig. 5, the x- 
and y-axes represent the proportion of the rarest alleles 
of each marker in the entire and core collection, respec-
tively. From the perspective of CC-I type, which is the 
primary objective of GenoCore and ShinyCore, a high 
proportion of the rarest allele in the core is plausible, par-
ticularly when their proportion is low in the entire col-
lection. Here, all three cores demonstrated a plausible 
property, and ShinyCore 98% CV + T appeared to be the 
most suitable in this regard.

Fig. 3  Principal component analysis (PCA) biplots showing entries included in the core subset (red square) and accessions of the entire collection (white 
circle). The top and bottom three panels represent the wheat 1 and 2 datasets, respectively
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Discussion
Indeed, the thickening phase helps increase SH and MR, 
with a slight loss of CV. The required core size increases 
exponentially with CV, which allows the users to spec-
ify the minimum and maximum value. The two control 
parameters can be used to temper the inclusion of rarer 
alleles. If the minimum CV is set at a lower value (at a 

fixed value of the maximum CV), the resulting core will 
include more rare alleles (according to the rarity score) at 
the cost of a slight loss of CV value (Table 3). ShinyCore 
has been designed such that (1) its final core size is the 
same as the core size at the maximum CV, (2) its final 
CV is guaranteed to be between the minimum and maxi-
mum, and (3) it seeks more genetic diversity and distance 

Table 3  The core metrics (CV, SH, and MR) and the logarithmic rarity score, log(RS), with respect to the minimum coverage (%) at the 
maximum coverage of 99% specified by user

Specified Parameters Core Metrics (CV + T)
Dataset Maximum CV (%) Minimum CV (%) CV (%) SH MR log(RS)
Wheat 1 99 98 98.7 0.644 0.608 6.710

99 97 98.6 0.643 0.607 6.712
99 95 98.6 0.641 0.606 6.714
99 90 98.5 0.643 0.607 6.715

Wheat 2 99 98 98.7 0.777 0.714 6.795
99 97 98.6 0.777 0.714 6.816
99 95 98.4 0.777 0.714 6.834
99 90 97.9 0.778 0.714 6.851

Fig. 5  Comparison of the proportion of the rarest allele of each marker in wheat 1 (left) and 2 (right) datasets (x- and y-axes presents the proportions 
observed in the entire and core collection, respectively)

 

Fig. 4  Shannon diversity index (SH) of the core collection for each marker of wheat 1 (left) and 2 (right) datasets
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after attaining the minimum CV. ShinyCore achieves the 
same goal as GenoCore within a shorter time. In addi-
tion, ShinyCore forms two cores—one after the covering 
phase (before the thickening phase) and the other after 
the thickening phase; therefore, users can select any of 
the two. As a future direction, we may consider more 
parameters to temper the inclusion of more rare alleles 
(e.g., different kinds of rarity score) and make the various 
options available as an R package. For users who are not 
familiar with programming, the menu-driven ShinyCore 
applet is available which is simple and easy to use (see 
supplemental data and materials).

The choice of a criterion in core selection depends on 
the breeders’ and researchers’ perspectives and objec-
tives [6], and they tend to value multiple criteria instead 
of a single one. In the present study, we focused on cover-
age (as measured using CV) as well as genetic diversity 
and distance (as measured using SH and MR). However, 
maximizing all three criteria simultaneously is challeng-
ing, and a trade-off is inevitable. Alternatively, a weighted 
criterion can be considered after normalizing multiple 
criteria [19, 20]. In future studies, the advantages and 
disadvantages of weighted criteria (simultaneous optimi-
zation) versus a sequential approach (multi-phase opti-
mizations or one criterion per phase) should be explored. 
Finally, many core selection programs are available, each 
devised with specific objectives, criteria, and computa-
tional methods and each with certain advantages and dis-
advantages. Therefore, a fair comparison among multiple 
core selection programs is often difficult. In the present 
study, we compared ShinyCore and GenoCore, as their 
objectives and criteria were very close. Users should 
make practical decisions.

Conclusion
The size of the entire collection has been increasing in 
genetic diversity analyses; therefore, computation time 
has become a critical component of a core selection pro-
gram. In the present study, we focused on the CC-I type 
of core selection, whose quality can be evaluated based 
on both coverage and diversity. We accelerated the cov-
ering phase and developed and implemented the rarity 
score of individual accessions to accelerate the thickening 
phase. Similar to GenoCore, ShinyCore uses sequential 
optimization, which not only renders the algorithm fast 
but also attains a consistent core across runs.
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