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Introduction
Tea coal disease (Neocapnodium theae Hara) is a dis-
ease that occurs in tea and is caused by the presence of 
Neocapnodium theae Hara, or insects such as whitefly, 
scale, and aphid. It causes the leaves to wither and die. 
At the initial stage of the disease, small black circular or 
irregular spots appear on the surface of the leaves, which 
gradually expand. In extreme circumstances, the leaves 
become completely covered in black powdered coal, 
which then spreads to the twigs and stems. The surface 
of each part of the diseased plant is covered with a layer 
of bituminous coal [1]. Tea coal disease is widely distrib-
uted and occurs in various tea-producing provinces in 
China. When the disease occurs seriously, the tea garden 
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Abstract
Background  The common tea tree disease known as “tea coal disease” (Neocapnodium theae Hara) can have a 
negative impact on tea yield and quality. The majority of conventional approaches for identifying tea coal disease rely 
on observation with the human naked eye, which is labor- and time-intensive and frequently influenced by subjective 
factors. The present study developed a deep learning model based on RGB and hyperspectral images for tea coal 
disease rapid classification.

Results  Both RGB and hyperspectral could be used for classifying tea coal disease. The accuracy of the classification 
models established by RGB imaging using ResNet18, VGG16, AlexNet, WT-ResNet18, WT-VGG16, and WT-AlexNet was 
60%, 58%, 52%, 70%, 64%, and 57%, respectively, and the optimal classification model for RGB was the WT-ResNet18. 
The accuracy of the classification models established by hyperspectral imaging using UVE-LSTM, CARS-LSTM, NONE-
LSTM, UVE-SVM, CARS-SVM, and NONE-SVM was 80%, 95%, 90%, 61%, 77%, and 65%, respectively, and the optimal 
classification model for hyperspectral was the CARS-LSTM, which was superior to the model based on RGB imaging.

Conclusions  This study revealed the classification potential of tea coal disease based on RGB and hyperspectral 
imaging, which can provide an accurate, non-destructive, and efficient classification method for monitoring tea coal 
disease.
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presents a black and dirty area, and the growth of buds 
and leaves is hindered, resulting in a significant decline 
in tea production and a certain impact on tea quality [2]. 
Therefore, accurate, non-destructive, and efficient detec-
tion methods for tea coal disease are crucial for disease 
control.

Traditional diagnostic methods for tea coal disease, 
such as artificial visual surveys based on on-site disease 
symptoms, are prone to subjective influence and rely on 
professional knowledge. The similarity of symptoms can 
lead to misdiagnosis, which is time-consuming and labo-
rious. Another method, physical and chemical experi-
ments to detect crop diseases, is relatively objective and 
accurate, but it is costly, inefficient, and destructive to 
the tea plant itself [3, 4]. An authentic, efficient, and non-
destructive testing method is needed to detect and con-
trol diseases on time.

At present, the detection of plant diseases and pests 
based on image processing and computer vision has 
become an important research direction. Non-invasive 
sensing technologies such as RGB imaging, thermal 
imaging, multispectral, and hyperspectral imaging are 
potential non-invasive tools for detecting agricultural 
plant diseases, with multiple advantages compared to 
traditional methods [5–7]. Although RGB images have 
only three bands of red, green, and blue information, 
and their recognition ability is limited, RGB cameras are 
portable and low-cost. Although hyperspectral images 
have hundreds of continuous bands, not only limited to 
the visible light portion of the spectrum but also have 
large amounts of information and high accuracy, their 
costs are high. Due to the integration of spectrum and 
image, hyperspectral imaging technology has shown sig-
nificant advantages in providing objective, accurate, non-
destructive, and intuitive plant disease diagnosis results. 
And hyperspectral imaging detection technology obtains 
disease image and spectral information without causing 
damage to crops.

Currently, RGB is widely used in other crop diseases. 
For example, Jayapal et al. [8] proposed a combined RGB 
image and deep learning approach for identifying root 
rot. Comparing the performance of this model with the 
Transfer learning model, this model achieved an F1 score 
of 88% and an accuracy of 89% in less inference time. 
Amarasingam et al. [9] proposed a method for detecting 
sugarcane white leaf disease by combining RGB images 
and deep learning based on UAV, evaluating the perfor-
mance of existing deep learning models such as YOLOv5, 
YOLOR, DETR, and Faster R-CNN in sugarcane white 
leaf disease identification. The results showed that the 
YOLOv5 network had the highest accuracy, recall, and 
average precision of 95%, 92%, and 93%, respectively. Hal-
lau et al. [10] proposed an algorithm for sugar beet leaf 
disease recognition based on RGB images captured from 

smartphone cameras. A support vector machine with a 
radial basis function kernel was used to classify the dis-
eases. The results showed that the correct rate of classifi-
cation for white leaf spot, Ramularia leaf spot, Phoma leaf 
spot, beet rust, and bacterial blight was 82%. Sie EK et al. 
[11] proposed a combined RGB image and mixed linear 
model approach to assess peanut leaf spot disease (LSD) 
and yield in West Africa. The results showed the effec-
tiveness of the RGB image method as a high-throughput 
phenotyping tool for peanut LSD and yield assessment. 
Memon et al. [12] proposed a combined RGB image and 
deep learning approach to recognize cotton leaf disease, 
evaluating the performance of deep learning models such 
as custom CNN, VGG16, ResNet50, and the Meta Deep 
Learning model in the cotton leaf disease recognition. 
The results showed that the Meta Deep Learning model 
network has the highest accuracy of 98.53%.

Currently, hyperspectral imaging has applications in 
disease monitoring of other crops. For example, Feng 
et al. [13] used hyperspectral imaging technology (HSI) 
to detect leaf diseases in four rice varieties, and used a 
self-designed convolutional neural network (CNN) as 
the fundamental network for deep transfer learning 
methods. The accuracy of the three deep transfer learn-
ing methods exceeded 88%. Zhao et al. [14] identified the 
disease severity of wheat leaves infected with powdery 
mildew based on hyperspectral images and image seg-
mentation techniques. A technical procedure for iden-
tifying and evaluating leaf-scale wheat powdery mildew 
was proposed. The results show that the SVM model con-
structed by PCA dimensionality reduction has the best 
effect, with a classification accuracy of 93.33%. Abdul-
ridha, Batuman and Ampatzidis [15] used hyperspectral 
imaging (HSI) to detect citrus canker disease. The over-
all classification accuracy of the two classification meth-
ods, SVM with RBF kernel and KNN, were (94%, 96%, 
and 100%) and (94%, 95%, and 96%), respectively. Citrus 
crop infected with late-stage canker disease were suc-
cessfully distinguished, with a classification accuracy of 
92%. Wu et al. [16] used hyperspectral imaging combined 
with machine learning methods for strawberry gray 
mold identification and compared the accuracy of three 
machine learning models, Extreme Learning Machine 
(ELM), Support Vector Machine (SVM), and K-Nearest 
Neighbor (KNN). The results showed that the ELM clas-
sification model performed the best for classifying straw-
berry gray mold with an accuracy of 96.67%. Lee et al. 
[17] used hyperspectral imaging combined with machine 
learning methods to detect Basal Stem Rot (BSR) dis-
ease early in oil palm trees and compared the accura-
cies of multiple machine learning models. The results 
showed that all machine learning algorithms could iso-
late the infection stage, with overall accuracies of 86.67%, 
66.67%, and 73.33% for MLP, SVM, and 1D CNN models, 
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respectively. Currently, modeling algorithms are mainly 
divided into machine learning and deep learning. Among 
them, machine learning models not only achieve stable 
detection of crop diseases, but also demonstrate the abil-
ity to identify different stages of development of the same 
disease, leading crop disease detection technology to pre-
cision agriculture and intelligent agriculture. For exam-
ple, Zhang et al. [18] collected hyperspectral imaging 
technology to obtain spectral information in the 384 to 
1034 nm wavelength range of rapeseed sclerotinia sclero-
tiorum, evaluated the SSR detection index of diseased 
leaves using linear discriminant analysis, and established 
a partial least squares disease identification model with 
an accuracy of up to 85%. Harakannanavar et al. [19] 
proposed a tomato leaf disease detection method based 
on machine learning and image processing. Machine 
learning methods, such as SVM, K-NN, and CNN, were 
used and the accuracy of the proposed model was 88%, 
97%, and 99.6%, respectively. Koc et al. [20] proposed a 
machine learning based method for the prediction of yel-
low rust in wheat. Using a machine learning approach 
(RF) combined with SVI data from spectral sensors in the 
RF model, the model prediction accuracy obtained was 
0.50–0.61. Dias et al. [21] proposed a combined machine 
learning and UAV multispectral imagery approach to 
assess the severity of tomato late blight, and developed a 
random forest (RF) model to predict disease severity with 
a coefficient of determination of up to 0.93 for the test 
set.

However, deep learning has attracted much atten-
tion due to its outstanding performance in different 
artificial intelligence applications, and is widely used 
in computer vision [22]. Deep learning is a new field 
in machine learning research. Deep learning is a new 
field in machine learning research and is a method in 
machine learning based on learning representations of 
data as a branch of machine learning that is more effec-
tive. For example, Sujatha et al. [23] compared the per-
formance of machine learning (SVM, RF, and SGD) and 
deep learning (Inception-v3, VGG16, VGG19) in detect-
ing citrus plant diseases. The results show that deep 
learning methods perform better than machine learning 
methods: RF-76.8%<SGD-86.5%<SVM-87%<VGG19-
87.4%<Inception-v3-89%<VGG16-89.5%. Ma et al. [24] 
compared the performance of machine learning (SVM, 
RF) and deep learning (DCNN) in recognition of four 
cucumber leaf disease symptoms. The results showed 
that the deep learning method DCNN had the best rec-
ognition with an accuracy of 93.4%. Wang, Sun and Wang 
[25] evaluated the performance of apple disease severity 
using pre-trained deep learning models based on trans-
fer learning (e.g., VGG16, VGG19, Inception-v3, and 
ResNet50). Among them, VGG16 was the most high-per-
forming model with an accuracy of 90.4%. Gao et al. [26] 

compared the performance of machine learning algo-
rithm (SVM) and deep learning algorithms (XGBoost, 
and KNN) in recognizing wheat fusarium head blight. 
The results showed that the deep learning algorithm 
XGBoost had the highest performance with an accuracy 
of 93.63%. Sood et al. [27] used a deep learning based 
CNN transfer learning model for early recognition and 
classification of wheat rust on CGIAR image dataset. The 
results showed that VGG16 achieved 99.54% classifica-
tion accuracy. However, there are no reports on the high-
throughput acquisition and deep learning algorithms for 
spectral imaging data of tea coal disease infestation.

This study collected tea leaves with different disease 
levels and obtained RGB and hyperspectral images. For 
the RGB images, they were flipped 90°, 180°, 270°, verti-
cally, and horizontally to expand the sampled data by 
five times, followed by wavelet transform enhancement; 
for the hyperspectral images, the standard normal varia-
tion (SNV), the second derivative (2-D), and the Sav-
itzky-Golay (S-G) algorithms were used to preprocess 
the spectral data, The CARS and UVE algorithms were 
used to filter the characteristic bands of the spectral data. 
A classification model for the severity of tea coal disease 
was established using deep learning algorithms such as 
ResNet18, VGG16, and AlexNet for RGB image data. A 
classification model for the severity of tea coal disease 
was established using SVM and LSTM algorithms for 
hyperspectral image data, and the model was evaluated 
using four metrics. This work demonstrated the potential 
of RGB and hyperspectral imaging-based tea coal disease 
classification, which could provide an accurate, non-
destructive, and efficient way for tea coal disease moni-
toring. The general framework of this study is shown in 
Fig. 1. The main contributions of this study are as follows:

(1)	Comparison of two imaging techniques, RGB and 
hyperspectral.

(2)	Comparison of the optimization effect of two 
filtering feature banding methods, CARS and UVE, 
on the prediction model.

(3)	Comparison of modeling results with and without 
two-dimensional discrete wavelet transforms 
(2DWT) enhancement techniques.

(4)	Discussion of the prediction ability of machine 
learning and deep learning models such as ResNet18, 
VGG16, AlexNet, SVM, and LSTM.

Materials and methods
Study area
The experiment was conducted at Chunxi Tea Garden 
in Feixian County, Linyi City, Shandong Province, China 
(117°77’E, 35°22’N). The region has a warm-temperate 
monsoon continental climate with abundant light, four 
distinct seasons, mild climate and abundant rainfall, with 
an average annual temperature of 13℃, average annual 
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sunshine hours of 2400–2600  h, and average annual 
precipitation of about 800  mm. The area of the test tea 
garden is more than 300 mu. The soil has a bulk den-
sity of 1.50 g cm-3, an organic matter content of 1.65%, 
and a pH of 5.8. The tea varieties planted in this tea gar-
den include Zhongcha 108, Longjing 43, Jiukeng, and 
Longjingchangye. The location diagram of the test area is 
shown in Fig. 2.

Data acquisition
This study was conducted in two seasons (spring and 
autumn) when tea plants in multiple plots of the Chunxi 
Tea Garden exhibited obvious symptoms of tea coal dis-
ease. Autumn was the first sampling, and about 250 tea 
leaf samples were randomly collected; the following 
spring was the second sampling, with about 400 tea leaf 
samples randomly collected. Experts are also invited to 
classify the collected leaves into four grades based on the 
severity of the disease: standard, mild degree, moderate 

degree, and severe degree. RGB and hyperspectral data 
were collected simultaneously for leaves with different 
disease levels.

The RGB image data were collected under natural light 
conditions using a digital camera (EOS·6D, Canon Co. 
Ltd, Beijing, China) with a picture resolution of (5184 
pixels × 3456 pixels), a total of 700 pictures were taken, 
and the image storage format was JPEG, and the shoot-
ing angle was vertical. The RGB image data were flipped 
90°, 180°, 270°, vertically, and horizontally to expand the 
sample data by a factor of 5.

Hyperspectral image data acquisition and calibration 
were performed according to the method of Huang et 
al. [28] Hyperspectral image data were acquired using a 
hyperspectral camera (GaiaField-Pro-V10, Jiangsu Dua-
lix Spectral Image Technology Co. Ltd, China) in a built 
cube dark box. The data were lens-corrected and reflec-
tance-corrected using the analysis tools of the data pre-
processing software SpecVIEW (Jiangsu Dualix Spectral 

Fig. 2  Location of experimental area

 

Fig. 1  The overall framework of this study. (A) Data acquisition; (B) Data preprocessing; (C) Modeling and Model evaluation
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Image Technology Co. Ltd, China). The hyperspectral 
images in preprocessed RAW format were then opened 
with ENVI 5.3 (Research System Inc, Boulder, CO, USA), 
and the entire leaf sample was selected as the region of 
interest (ROI), and the mean reflectance spectral values 
of the samples were extracted using the ROI tool, and the 
spectral reflectance curves were saved to obtain a total 
spectral matrix of 650 × 176 (number of samples × num-
ber of variables) for data analysis.

Hyperspectral equipment
The hyperspectral equipment used in this study is com-
posed of an external cube dark box and an internal 
hyperspectral camera, a camera holder, four symmetri-
cally distributed 200  W adjustable halogen linear light 
sources (hsia-ls-t-200w, China), an external computer, 
and other components. Place black flannelette under the 
leaf sample to ensure it is not affected by other reflec-
tive light sources. The parameters of the hyperspectral 
imaging system are set as follows: The model is GaiaField 
Pro-V10, and the hyperspectral camera has a 1936 × 1456 
(space × Spectral) pixel, the spectral range of the cap-
tured image is in the visible and near-infrared band 
(400-1000 nm), and the reflectivity of 176 bands can be 
measured. The imaging method is a built-in push scan, 
with a spectral resolution of 3.5 nm, a frame rate of 7s/
cube, a data interface of USB2.0, and a weight of 3 kg. The 
hyperspectral imaging device is shown in Fig. 3.

Data preprocessing
Two-dimensional discrete wavelet transforms (2DWT) of 
varying degrees of disease images
To better extract the feature information of the leaves of 
tea coal disease, the images of the diseased leaves were 
enhanced by wavelet transform. [29]This is because the 
wavelet transform enhancement processing applied in 

previous studies has made good progress in improving 
model accuracy, and the model has strong generalization 
ability and is suitable for tea tree disease classification. 
Wavelet transform can reduce or remove the correlation 
between different features of the extracted diseased leaf 
images by selecting appropriate filters. The RGB images 
of leaves with different degrees of disease are shown in 
Fig. 4 (I). The wavelet transform converts the image into 
a signal and then separates the signal in terms of low and 
high frequencies to obtain four components as shown in 
Fig. 4 (II). Where the LL component represents the low-
frequency information of the image, the HL component 
represents the high-frequency information in the hori-
zontal direction of the image, the LH component rep-
resents the high-frequency information in the multiply 
straight direction of the image, and the HH component 
represents the high-frequency information in the diago-
nal of the image. The leaf images with different degrees 
of disease after wavelet transform processing are shown 
in Fig. 4 (III).

During the decomposition of the image by wave-
let transform, the LL component can be looped several 
times until the requirement is satisfied. In this paper, the 
LL component is looped only once for the discrete wave-
let transform of an image f(x, y) of size A×B, as shown in 
Eq. (1):

	
Wφ (j0, a, b) =

1√
AB

A−1∑

x=0

B−1∑

y=0

f (x, y) φj0,a,b(x, y)� (1)

Spectral preprocessing
Spectral data is susceptible to interference from 
unwanted signals, which affects the modeling effect. 
Therefore, spectral preprocessing is required before data 

Fig. 3  (I) Hyperspectral equipment real view. (II) Hyperspectral equipment mode diagram. (A) cube dark box; (B) hyperspectral camera); (C) 200 W halo-
gen linear light sources; (D) tea leaf samples; (E) computer
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analysis to improve the accuracy and reliability of the 
model [30, 31]. The standard normal variation (SNV) 
can correct spectral errors caused by scattering. By pre-
processing each spectrum, the spectrum is made as free 
of scattering error effects as possible. By centering and 
normalization, factors such as noise and signal shift in 
the spectral data can be eliminated so that different spec-
tral data have the same scale as each other, improving 
the stability, reliability, and comparability of the spectral 
data. When processing a large amount of spectral data, 
centralization, and standardization can improve the 

efficiency and accuracy of data processing and reduce 
the processing complexity. The derivative processing can 
eliminate the impact of factors such as instrument back-
ground or baseline drift on the signal during data acquisi-
tion, resolve overlapping peaks, and improve resolution 
and sensitivity, but it also introduces some errors in the 
process. The second derivative (2-D) processing can 
eliminate the linear background shift and improve the 
spectral resolution and sensitivity. The Savitzky-Golay 
(S-G) method can effectively enhance the signal to noise 
ratio of spectral images and reduce the impact of random 

Fig. 4  (I) Original image. (II) Schematic diagram of wavelet transform. (III) Leaf images with different degrees of disease after wavelet transform process-
ing. (A) mild degree; (B) moderate degree; (C) severe degree; (D) standard
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noise [32, 33]. It is a polynomial decomposition of the 
data within the moving window of the original spectrum 
using polynomials and fitting the data with least squares, 
which is essentially a weighted average method. This 
method is more straightforward and faster than similar 
smoothing methods, preserving distribution properties 
such as relative maxima, minima, and widths. Therefore, 
before modeling, we combined SNV, 2-D, and S-G pre-
processing algorithms to preprocess the original spectral 
data of the sample.

Screening of characteristic bands
Screening characteristic bands is a commonly used tech-
nical means for spectral data analysis. Compared to other 
methods, characteristic band selection only selects the 
band related to target information from the full spec-
trum band and does not change the physical informa-
tion of the spectrum [34]. The uninformative variable 
elimination (UVE) algorithm can remove the wavelength 
variables that are less efficient for modeling coefficients 
and select the characteristic wavelength variables, and 
the removed wavelength variables we call uninformative 
variables. The uninformative variable removal algorithm 
is based on the partial least squares (PLS) algorithm. 
Removing uninformative variables reduces the number 
of variables used for modeling and the model complexity. 
To select the uninformative variables, the UVE algorithm 
adds a set of white noise variables to the PLS model with 
the same number of variables as the original, and then 
obtains the regression coefficients corresponding to each 
variable, including the noise variables, based on the inter-
section and retention method of the PLS model [35, 36]. 
The stable values of each variable coefficient are divided 
by the standard deviation, and their quotients are com-
pared with the stable values obtained from the random 
variable matrix to remove those wavelength variables 
that are as invalid for modeling as the random variables. 
The competitive adaptive reweighted sampling (CARS) is 
a feature variable selection method that combines Mar-
kov Chain Monte Carlo (MCMC) and PLS model regres-
sion coefficients, imitating the principle of “survival of 
the fittest” in Darwin’s theory. Then, the PLS model is 
built based on the new subset, and the wavelength in the 
subset with the smallest root mean square error of PLS 

model cross-validation is selected as the characteristic 
wavelength after multiple calculations [37, 38]. Therefore, 
before modeling, two feature band selection algorithms, 
UVE and CARS, are combined to analyze hyperspectral 
data. The basic parameters of CARS and UVE algorithms 
used in this study were shown in Table 1.

Modeling and model evaluation
Modeling
Hyperspectral image data is modeled using SVM and 
LSTM algorithms. The SVM is a nonparametric machine 
learning method based on statistical learning theory and 
structural risk minimization [39, 40]. It can maximize 
separation or edges between different categories of sam-
ples by constructing a set of hyperplanes. It has several 
unique advantages in solving small sample, nonlinear, 
and high-dimensional pattern recognition problems. The 
phenomenon of " Curse of Dimensionality” and “Over 
learning” can be largely avoided. Several parameters 
should be evaluated and specified, including kernel func-
tions, gamma values, and costs [14].The LSTM model can 
better process sequential data [41]. The architecture of 
the LSTM model consists of a LSTM Layer with 20 Num-
HiddenUnits, two FullyConnected Layers, a Softmax 
Layer and a Classification Layer [42]. It is a recently pop-
ular recursive neural network in machine learning [43]. 
Designed to avoid the problem of long-term dependen-
cies, it has proven to be very effective in capturing long-
term dependencies.

The RGB image data is modeled using deep learning 
algorithms such as ResNet18, VGG16, and AlexNet. The 
basic architecture of the ResNet 18 network is ResNet, 
and the depth of the network is 18 layers, including the 
convolutional layer and fully connected layer, excluding 
the pooling layer and Batch Norm layer. When the net-
work is “not too deep,“ it simplifies optimization by pro-
viding faster convergence at an early stage. Moreover, 
the residual structure can accelerate learning, make the 
model easier to learn, and effectively prevent the explod-
ing gradient problem or vanishing gradient problem. 
The ResNet18 network model is more accurate than the 
primary network model. VGG16 includes 13 convolu-
tional layers, 3 fully connected layers, and 5 pooling lay-
ers. The model is relatively stable and easy to transplant. 
The most prominent feature is its simplicity, as the entire 
network uses the same convolutional kernel size (3 × 3) 
and maximum pool size (2 × 2). Convolutional concat-
enation has fewer parameters and more nonlinear trans-
formations than a larger convolution kernel alone. And 
convolution kernels are concatenated to extract features 
multiple times, which is more delicate than single con-
volution kernels. The AlexNet model, which uses Relu 
for the first time and conducts multi GPU training, 
dramatically reduces the amount of computation and 

Table 1  The parameters of feature band selection algorithms
Algorithm Parameters Value
CARS Method None

Fold 10
Number of PCA 10
Monte Carlo sampling times 300

UVE Optimal factor number 5
Leave-One-Out 700
Cutoff 0.99
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accelerates the convergence speed. To prevent overfitting 
and improve generalization capabilities, overlap pooling, 
data enhancement, and the introduction of dropout are 
implemented. The validation set was used for parameter 
tuning. The neural network parameters with the highest 
single-round accuracy were saved and the model param-
eters were loaded into the training set. The final deter-
mined specific parameters were shown in Table 2.

Test environment and model evaluation
The conditions for processing data in this experiment are 
as follows. Hardware Processor: Inter Xeon CPU E5-2640 
V4 @ 2.4GHZ 2.40GHZ (two processors); RAM: 128 
GB; Software environment: CUDA Toolkit 10.1; CUDN 
V7.6.0; MATLAB 2020; Python 3.8; Pytorch-GPU 1.6.0; 
Operating system: Windows 10.

To evaluate the performance of the model, the four 
indexes, Accuracy, Precision, Recall, and F1-score were 
used. To evaluate the overall ability of the tea coal disease 

classification model, the Accuracy index was used, which 
refers to the proportion of correctly identified samples; 
the Precision referred to the ratio of the number of cor-
rectly identified tea coal disease samples to the total 
number of identified tea coal disease samples; the Recall 
was the ratio of the number of correctly identified tea 
coal disease samples to the total number of tea coal dis-
ease samples; and the F1-score was the attempt to do An 
evaluation index of the coordination between precision 
and recall. The specific calculation formula was shown in 
Eq. (2)(3)(4)(5).

	
Accuracy =

TP + TN

TP + FP + TN + FN
� (2)

	
Precision =

TP

TP + FP
� (3)

	
Recall =

TP

TP + FN
� (4)

	
F1 − score =

2 ∗ precision ∗ recall

precision + recall
� (5)

The “TP” (True Positive) indicated the number of sam-
ples correctly identified as tea coal disease. The “FN” 
(False Negative) is the number of samples not identified 
as tea coal disease. The “FP” (False Positive) is the num-
ber of samples incorrectly identified as tea coal disease. 
The “TN” (True Negative) is the number of samples cor-
rectly identified as health samples [29].

Results and analysis
Data preprocessing
The RGB image samples were flipped 90°, 180°, 270°, ver-
tically, and horizontally to expand the sample data by a 
factor of 5. Furthermore, the sample size of RGB images 
was divided into the training set, the testing set and the 
validation set in the ratio of 3:1:1.

To illustrate the differences between different disease 
severity levels, an average original spectrum was plotted 
for visualization. 2D and 3D images of spectral charac-
teristics of four disease severity levels can be compared. 
1,2,3,4 represent mild, moderate, severe, and standard 
degrees, respectively (Fig. 5A, C). From the spectral fea-
tures, the overall trend of the average spectral reflectance 
of the four disease severities in the specified wavelength 
band was similar, and the difference between the two 
seasonal samples could be clearly seen from the two-
dimensional spectral image features. Still, the overall 
trend of the two seasonal samples was similar. The spec-
tral features had three inflection points, near 552, 673, 
and 800  nm wavelengths, respectively. The reflectance 
of the four disease severities showed an increasing trend 

Table 2  Main parameters of the SVM, LSTM, ResNet18, VGG16 
and AlexNet models
Model Model parameters Value
SVM The Kernel Function Polynomial Kernel

Cache_size 200
Tol (Tolerance Used in the 
IterativeAlgorithm)

10− 3

Max_iter -1
C (Regularization Parameter) 1

LSTM Normalize L2
Optimizer Adam (Adaptive 

moment estimation)
Activation Function Tanh 

(TanHyperbolic)
NumHiddenUnits 20
Learning Rate 0.001
Epochs 40
Batch Size 64
Dropout 0.5
Verbose 1

ResNet18 Learning Rate 0.001
Epochs 90
Batch Size 32
Activation Function ReLU
Normalize L2

VGG16 Learning Rate 0.001
Epochs 90
Batch Size 16
Activation Function ReLU
Normalize L2

AlexNet Learning Rate 0.001
Epochs 90
Batch Size 16
Activation Function ReLU
Normalize L2
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in the wavelength range of 397–552 nm, and a decreas-
ing trend in the wavelength range of 552–673 nm. In the 
wavelength range of 673–800  nm, the reflectance of all 
four disease severities increased exponentially, and a sig-
nificant difference could be observed in the reflectance 
of reaching the inflection point with increasing disease 
severity, which increased between 0.7 and 0.95.

The SNV, 2-D, and S-G algorithms were used to pre-
process the hyperspectral data to avoid the effects of 
unwanted and interfering signals and random noise 
and to improve the spectral resolution (Fig. 5B, D). The 
results showed that compared with the original spectra, 
the spectral curves after combined pretreatment with 
SNV, 2-D, and S-G were more stable, with more promi-
nent peaks and valleys, and the accuracy and reliability 
of the model were higher. Similarly, from the perspective 
of spectral characteristics, the overall trend in spectral 
reflectance was similar for the four disease severities. 
The variation was significant in the wavelength range 

of 673–811  nm, with the reflectance peaking near the 
wavelength of 742 nm. In addition, there were significant 
differences between the spectra of the four disease sever-
ities, which could be clearly distinguished.

Feature band selection for spectral data
Although there is a high correlation between hyperspec-
tral bands, as bands and samples increase, problems such 
as band collinearity and data redundancy may arise [44]. 
Therefore, we conduct feature band screening on spectral 
data to reduce the impact of unrelated bands, reduce the 
complexity of the model, and improve the accuracy of the 
model [45–47].

This study used UVE and CARS algorithms to filter 
feature bands (Fig.  6; Table  3). The results showed that 
among the feature band screening methods, the number 
of feature bands screened by UVE was the highest, with 
91 bands, while the number of feature bands screened by 
CARS was the lowest, with 30 bands.

Fig. 5  Original spectra and Spectra after preprocessing. (A) 2-D Original spectra; (B) 2-D Spectra after preprocessing; (C) 3-D Original spectra; (D) 3-D 
Spectra after preprocessing
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Overall accuracy of the model
To compare the performance of RGB imaging technol-
ogy and hyperspectral imaging technology under dif-
ferent models, the various models of the two imaging 
techniques were tested under the same test environ-
ment and data set, respectively (Table 4). As the network 
depth increases, the training loss decreases and the net-
work performance was more optimized. Among them, 
the classification accuracy of ResNet model enhanced 
by wavelet transform (WT-ResNet)was 70% under RGB 
imaging technique, which was the highest among the six 
models, and the enhancement process using the wavelet 
transform could significantly improve the model accu-
racy by 5-10%, which was consistent with the results of 
our team’s previous studies, but all of them were lower 
than the accuracy of hyperspectral imaging technique, 
which indicated that hyperspectral imaging technique 
was significantly better than RGB imaging technique. 
Under the hyperspectral imaging technique, the clas-
sification accuracy of the CARS-LSTM model was 95%, 
which was the highest among the six models. The model 
accuracy of LSTM under the same feature band screen-
ing method was significantly better than SVM, indicating 
that the deep learning approach was significantly better 
than the traditional machine learning approach, The clas-
sification accuracies of different feature band filtering 
methods under the same modeling algorithm (SVM and 
LSTM) were CARS > NONE > UVE method, indicating 
that the CARS method filters the feature bands better 
than the UVE method filters the feature bands and the 
full band method.

Table 3  Bands screening results
Screening 
Method

Number of 
Bands

Characteristic Bands (nm)

UVE 91 397–458,507–554,618–628,655–672,689–
734,752–769,780–840,924–946,1001

CARS 30 426–429,458–465,488–494,531–
557,662,721,734,798,823–836,858,916–
920,942–949,1001

Comparison of the performance of different network 
models for grading different disease
To further compare the classification performance of 
RGB imaging and hyperspectral imaging techniques 
under different models, three evaluation indexes, Recall, 
Precision, and F1-score, were used to evaluate twelve 
models (Fig.  7). The results showed that among the 
six models under the RGB image technique, the mod-
els enhanced by wavelet transform were significantly 
improved in each metric, and the WT-ResNet18 model 
with 70% precision performed better under the RGB 
image technique. Among the six models under the hyper-
spectral image technique, the CARS-LSTM model with 
95% accuracy performed better. Overall, for classifica-
tions 2 and 4, the CARS-LSTM model had the highest 
three evaluation indexes. For the classification of 1, the 
CARS-LSTM model had the highest two evaluation 
indexes of precision and F1-score, the Recall evalua-
tion index was 96% and the 100% difference between 
the two models of UVE-LSTM and NONE-LSTM was 
not significant (only 4%). For the classification of 3, the 
CARS-LSTM model had the highest precision evalua-
tion index, and the other two evaluation indexes Recall 
and F1-score differed little from the UVE-LSTM model 
(only 3.58% and 0.28%). This might be related to the dis-
ease characteristics of 1 and 3, where the network with 
relatively more feature band screening performed better. 

Fig. 6  Distribution of characteristic bands. (A) UVE; (B) CARS.
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In general, the CARS-LSTM model had the best overall 
performance in grading the disease severity of tea coal 
disease.

Confusion matrix
The confusion matrices were used to observe the misclas-
sification between the four categories of disease severity 
(Fig. 8). The results showed that none of the six models 
for RGB imaging (Fig. 8A, B, C, D, E and F) could distin-
guish well between 1 and 2, despite significant improve-
ments in the wavelet transform enhancement processing 
method. About 65% of 1s is misclassified as the other 
three categories and about 60% of 2s is misclassified as 
the other three categories. There were two possible rea-
sons for this situation. One was that the features of the 
two degrees of mild and moderate disease were too simi-
lar for the model to recognize; secondly, the RGB images, 
with only three bands of red, green, and blue, were much 
less accurate than the hyperspectral images with 176 
bands in recognizing the degree of disease, leading to the 
confusion of the features of these two degrees of disease. 
Therefore, in the subsequent study, we could increase the 
number of images and collect images with distinct tex-
ture features to further optimize the model. For the six 
models of hyperspectral imaging (Fig. 8G, H, I, J, K, and 
L), the misclassification was much less than that of the 
RGB imaging technique model. The misclassification of 
the LSTM model under hyperspectral imaging was less 

than that of the SVM model, which indicated that the 
deep learning approach was significantly better than the 
traditional machine learning approach. Finally, we found 
that the CARS-LSTM model can classify accurately 
with the least misclassification, and the Accuracy of this 
model is 95%. The results indicated that the CARS-LSTM 
model has good robustness and can accurately classify 
tea coal disease.

Discussion
In this study, we compared the accuracy of six tea coal 
disease classification models based on RGB imaging 
technology and six tea coal disease classification models 
based on hyperspectral imaging technology. The results 
showed that the CARS-LSTM model gave the best results 
with an accuracy of 95%. This indicated that the CARS-
LSTM model could classify complex and similar disease 
levels. We analyzed the reasons why the CARS-LSTM 
model outperforms other models. First, the captured 
hyperspectral images had 176 bands, which were much 
more informative than the 3 bands of red, green, and blue 
in RGB images; second, the model used a deep learning 
method of LSTM; finally, the CARS method filtered out 
fewer feature bands than UVE, eliminating redundant 
feature bands.

Hyperspectral imaging technology was superior to 
RGB imaging technology. RGB imaging had a limited 
capacity for recognition but was relatively inexpensive, 

Fig. 7  Evaluation results of different network models for different disease degree grading. (A) mild degree; (B) moderate degree; (C) severe degree; (D) 
standard
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whereas hyperspectral imaging offered great information 
and accuracy but was more expensive. We adopted and 
compared RGB and hyperspectral imaging approaches, 
respectively, for the purpose of tea coal disease classifi-
cation. We also compared deep learning and machine 
learning algorithms, and the findings showed that hyper-
spectral imaging techniques achieved better results in 
disease classification. This was a great innovation com-
pared to the single imaging technique used by previous 
authors. In the study by Yuan et al. [48], hyperspectral 
imaging was used to detect anthracnose in tea trees, and 
the results showed an overall accuracy of 98% at the leaf 
level and 94% at the pixel level in identifying the dis-
ease. In the study by Alves et al. [49], the visible spectral 
regions of the symptomatic leaves of five diseases, includ-
ing soybean rust (SBR), Calonectria leaf blight (CLB), 
wheat leaf blight (WLB), Nicotiana tabacum-Xylella 

fastidiosa (NtXf), and potato late blight (PLB), were 
studied using RGB images. The results showed that the 
SBR, CLB, and WLB models achieved high prediction 
accuracy (> 97%) on the testing set. the prediction accu-
racy of both NtXf and PLB models was below 90%. In 
this case, the highest accuracy rate of 95% was achieved 
using hyperspectral images with a deep learning algo-
rithm, much higher than the highest accuracy rate of 
60% achieved using RGB images with a deep learning 
algorithm the reason behind this captured hyperspectral 
images have 176 bands, which are much more informa-
tive than the three bands of red, green, and blue of RGB 
images. Therefore, the results also highlight the impor-
tance of high-throughput acquisition methods.

Moving forward, the model accuracy was higher for the 
CARS algorithm screening fewer feature bands. In con-
trast, the UVE algorithm for the models screening more 

Fig. 8  Confusion matrix for different network models. (A) ResNet; (B) VGGNet; (C) AlexNet; (D) WT-ResNet; (E) WT-VGGNet; (F) WT-AlexNet; (G) UVE-SVM; 
(H) CARS-SVM; (I) NONE-SVM; (J) UVE-LSTM; (K) CARS-LSTM; (L) NONE-LSTM
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feature bands and the full band model was less accurate. 
Various reports have shown that selecting some sig-
nificant spectral variables represented better prediction 
results than spectra containing redundant variables [50, 
51]. In the study by Yang et al., they observed that the 
characteristic wavelength model produced after screen-
ing performed better than the complete wavelength 
model. This was established by comparing the spec-
tral data processed and unprocessed by the model [52]. 
Therefore, the selection of characteristic wavelengths was 
an essential step in processing a large amount of hyper-
spectral image spectral data, and by this step, the amount 
of data could be reduced, and prediction models with 
more vital generalization ability could be obtained.

Deep learning algorithms outperformed machine 
learning algorithms. The deep learning algorithms of 
ResNet18, VGGNet16 and AlexNet were used to model 
the RGB image data, and the algorithms of machine 
learning of SVM and the deep learning algorithm of 
LSTM were used to model the hyperspectral image 
data (Table  4). The results demonstrated that the deep 
learning models performed better, indicating that the 
extracted feature strips covered the feature information 
of the four disease severities. Among them, the CARS-
LSTM model exhibited the highest accuracy, with a 95% 
accuracy. It was consistent with prior research find-
ings. In our team’s study by Li et al. [29], five models, 
F-RNet, ResNet18, VGG16, AlexNet and SVM, were 
developed to identify three tea pests and disease symp-
toms. The results showed that the deep learning models 
such as ResNet18, VGG16 and AlexNet had 82%, 80% 
and 73% accuracy, respectively, which were significantly 
greater than the SVM machine learning model with 
65% accuracy. In the study by Goluguri, Devi and Srini-
vasan [53], three models, DCNN-LSTM, DCNN-SVM, 
and DCNN-ANN, were developed for rice disease iden-
tification. The results showed that the EAFSO (efficient 

artificial fish swarm optimization) joint DCNN-LSTM 
deep learning model identified rice diseases with 97.5% 
accuracy, much better than the machine learning mod-
els of DCNN-SVM and DCNN-ANN. In this case, the 
CARS feature band filtering method with the deep learn-
ing algorithm achieved the highest 95% accuracy, which 
is much higher than other algorithms. This is because it 
is better to select some representative spectra than those 
containing redundant variables. Besides, the depth of the 
model structure of the deep learning algorithm is better 
than that of the machine algorithm. Hence, the results 
also highlight the importance of the CARS algorithm and 
deep learning.

Considering the practical application, it was almost 
impossible to apply the hyperspectral imaging system to 
real-time disease identification and classification in tea 
plantations due to its high cost and lengthy processing 
cycle. Consequently, we planned to combine theory and 
practice to solve the problems in agricultural production 
by establishing a disease detection platform and realiz-
ing real-time data reception for rapid judgment through 
manual remote control, pending further research. This 
study exclusively obtained samples of tea coal disease 
from a singular geographic region during two distinct 
seasons. In future research, we can collect tea coal dis-
ease samples from more seasons and more geographic 
areas to increase the data set, thus enhancing the gener-
alization of the model and studying the effects of tea coal 
disease seasons and geographic areas on the model per-
formance in more depth.

Conclusion
This study established a classification model of tea coal 
disease based on RGB and hyperspectral imaging tech-
nology to classify the severity of tea coal disease. RGB 
and hyperspectral images of leaves with different degrees 
of tea coal disease were collected. Respectively using 
deep learning algorithms such as ResNet18, VGG16, and 
AlexNet for RGB image data to establish a classification 
model for the severity of tea coal disease; Three methods, 
SNV, 2-D, and S-G, were used for spectral preprocess-
ing of hyperspectral image data. Two methods, UVE and 
CARS, were used to screen characteristic bands. SVM 
and LSTM algorithms were used to establish a classifica-
tion model for the severity of tea coal disease.

The results indicated that the residual network 
enhanced by wavelet transform outperformed other 
networks in the RGB imaging technology classification 
model. Among the hyperspectral feature band screen-
ing methods, the CARS was superior to the UVE; among 
the deep learning and machine learning algorithms, the 
LSTM algorithm was superior to the SVM algorithm. 
Both RGB and hyperspectral could be used to classify 
tea coal disease. The RGB optimal classification model 

Table 4  Accuracy of two imaging techniques with different 
models for testing disease Classification
Image type Model Accuracy 

(%)
RGB image ResNet18 60

VGGNet16 58
AlexNet 52
WT-ResNet18 70
WT-VGGNet16 64
WT-AlexNet 57

Hyperspectral image UVE-LSTM 80
CARS-LSTM 95
NONE-LSTM 90
UVE-SVM 61
CARS-SVM 77
NONE-SVM 65
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was WT-ResNet18, and the hyperspectral optimal clas-
sification model was CARS-LSTM. At the same time, the 
model based on hyperspectral imaging was superior to 
the model based on RGB imaging.

In summary, we selected the CARS-LSTM classifica-
tion model for the severity of tea coal disease, with an 
accuracy of 95%. This study revealed the classification 
potential of tea coal disease based on RGB and hyper-
spectral imaging, which can provide an accurate, non-
destructive, and efficient classification method for tea 
coal disease monitoring.

Acknowledgements
Thanks to Dr. Shah Zaman of Pakistan, a native English speaker.

Author contributions
YX carried out the experiment, collected and organized data, provided the 
article’s picture, and wrote the manuscript. YM and HL used multiple models 
to analyzed the data. LS, SW, XL, and JS embellished the language of this 
article. HL, LS, and XY participated in the design of the experiment and 
directed the study. ZD, YW, and KF proposed the hypothesis for this work, 
designed the experiment, helped organize the manuscript structure and 
directed the study.

Funding
The research was funded by the Technology System of Modern Agricultural 
Industry in Shandong Province (SDAIT-19-01), the Special Foundation for 
Distinguished Taishan Scholar of Shandong Province (No.ts201712057), 
the Livelihood Project of Qingdao City (21-1-4-ny-2-nsh), the Special Talent 
Program of SAAS (CXGC2023A11), the Agricultural Improved Variety Project of 
Shandong Province (2020LZGC010).

Data Availability
Not applicable.

Declarations

Competing interests
The authors declare no competing interests.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Received: 17 April 2023 / Accepted: 29 August 2023

References
1.	 Lv L, Zhao F. Identification of Tea Plant Diseases and Pests and Green Preven-

tion and Control. Zhongyuan Farmers’ Publishing House; 2010.
2.	 Zhou T, Yu J, Hu X. Primary Color Map of Tea Pest Control. Zhejiang Science 

and Technology Press; 2010.
3.	 Bock CH, Poole GH, Parker PE, Gottwald TR. Plant Disease Severity estimated 

visually, by Digital Photography and Image Analysis, and by Hyperspectral 
Imaging. CRC Crit Rev Plant Sci. 2010;29(2):59–107.

4.	 Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, et al. 
Advanced methods of plant disease detection. A review. Agron Sustain Dev. 
2014;35(1):1–25.

5.	 Ali MM, Bachik NA, Muhadi NA, Tuan Yusof TN, Gomes C. Non-destructive 
techniques of detecting plant diseases: a review. Physiol Mol Plant Pathol. 
2019;108.

6.	 Sankaran S, Mishra A, Ehsani R, Davis C. A review of advanced techniques for 
detecting plant diseases. Comput Electron Agric. 2010;72(1):1–13.

7.	 Oerke EC, Herzog K, Toepfer R. Hyperspectral phenotyping of the reaction of 
grapevine genotypes to Plasmopara viticola. J Exp Bot. 2016;67(18):5529–43.

8.	 Jayapal PK, Park E, Faqeerzada MA, Kim Y-S, Kim H, Baek I et al. Analysis of 
RGB Plant images to identify Root rot Disease in korean ginseng plants using 
deep learning. Appl Sci. 2022;12(5).

9.	 Amarasingam N, Gonzalez F, Salgadoe ASA, Sandino J, Powell K. Detection of 
White Leaf Disease in sugarcane crops using UAV-Derived RGB Imagery with 
existing Deep Learning Models. Remote Sens. 2022;14(23).

10.	 Hallau L, Neumann M, Klatt B, Kleinhenz B, Klein T, Kuhn C, et al. Automated 
identification of sugar beet diseases using smartphones. Plant Pathol. 
2018;67(2):399–410.

11.	 Sie EK, Oteng-Frimpong R, Kassim YB, Puozaa DK, Adjebeng-Danquah J, 
Masawudu AR, et al. RGB-image method enables indirect selection for leaf 
spot resistance and yield estimation in a groundnut breeding program in 
Western Africa. Front Plant Sci. 2022;13:957061.

12.	 Memon MS, Kumar P, Iqbal R. Meta Deep learn Leaf Disease Identification 
Model for Cotton Crop. Computers. 2022;11(7).

13.	 Feng L, Wu B, He Y, Zhang C. Hyperspectral imaging combined with deep 
transfer learning for Rice Disease Detection. Front Plant Sci. 2021;12:693521.

14.	 Zhao J, Fang Y, Chu G, Yan H, Hu L, Huang L. Identification of Leaf-Scale Wheat 
Powdery Mildew (Blumeria graminis f. sp. Tritici) combining Hyperspectral 
Imaging and an SVM Classifier. Plants (Basel). 2020;9(8).

15.	 Abdulridha J, Batuman O, Ampatzidis Y. UAV-Based remote sensing technique 
to detect Citrus Canker Disease utilizing Hyperspectral Imaging and Machine 
Learning. Remote Sens. 2019;11(11).

16.	 Wu G, Fang Y, Jiang Q, Cui M, Li N, Ou Y et al. Early identification of strawberry 
leaves disease utilizing hyperspectral imaging combing with spectral 
features, multiple vegetation indices and textural features. Comput Electron 
Agric. 2023;204.

17.	 Lee CC, Koo VC, Lim TS, Lee YP, Abidin H. A multi-layer perceptron-based 
approach for early detection of BSR disease in oil palm trees using hyper-
spectral images. Heliyon. 2022;8(4):e09252.

18.	 Zhang C, Liu F, Feng XP, He Y, Bao YD, He LW. Comparison and selection 
of vegetation indices for detection of Sclerotinia Stem rot on oilseed 
rape leaves using ground-based hyperspectral imaging. Adv Anim Biosci. 
2017;8(2):264–6.

19.	 Harakannanavar SS, Rudagi JM, Puranikmath VI, Siddiqua A, Pramodhini R. 
Plant leaf disease detection using computer vision and machine learning 
algorithms. Global Transitions Proceedings. 2022;3(1):305–10.

20.	 Koc A, Odilbekov F, Alamrani M, Henriksson T, Chawade A. Predicting yellow 
rust in wheat breeding trials by proximal phenotyping and machine learning. 
Plant Methods. 2022;18(1):30.

21.	 Dias F, Valente D, Oliveira C, Dariva F, Copati M, Nick C. Remote sensing 
and machine learning techniques for high throughput phenotyping of 
late blight-resistant tomato plants in open field trials. Int J Remote Sens. 
2023;44(6):1900–21.

22.	 Gao J, Zhao L, Li J, Deng L, Ni J, Han Z. Aflatoxin rapid detection based on 
hyperspectral with 1D-convolution neural network in the pixel level. Food 
Chem. 2021;360:129968.

23.	 Sujatha R, Chatterjee JM, Jhanjhi NZ, Brohi SN. Performance of deep learning 
vs machine learning in plant leaf disease detection. Microprocess Microsyst. 
2021;80.

24.	 Ma J, Du K, Zheng F, Zhang L, Gong Z, Sun Z. A recognition method for 
cucumber diseases using leaf symptom images based on deep convolutional 
neural network. Comput Electron Agric. 2018;154:18–24.

25.	 Wang G, Sun Y, Wang J. Automatic image-based Plant Disease Severity 
Estimation using deep learning. Comput Intell Neurosci. 2017;2017:2917536.

26.	 Gao C, Ji X, He Q, Gong Z, Sun H, Wen T et al. Monitoring of wheat Fusarium 
Head Blight on Spectral and Textural Analysis of UAV Multispectral Imagery. 
Agriculture. 2023;13(2).

27.	 Sood S, Singh H, Jindal S. Rust disease classification using deep learning 
based Algorithm: the case of wheat. Food Systems Resilience. Sustainable 
Development; 2022.

28.	 Huang Y, Wang D, Liu Y, Zhou H, Sun Y. Measurement of Early Disease 
Blueberries based on Vis/NIR Hyperspectral Imaging System. Sens (Basel). 
2020;20(20).

29.	 Li H, Shi H, Du A, Mao Y, Fan K, Wang Y, et al. Symptom recognition of disease 
and insect damage based on Mask R-CNN, wavelet transform, and F-RNet. 
Front Plant Sci. 2022;13:922797.



Page 15 of 15Xu et al. Plant Methods           (2023) 19:98 

30.	 Sun Y, Wang Y, Xiao H, Gu X, Pan L, Tu K. Hyperspectral imaging detection of 
decayed honey peaches based on their chlorophyll content. Food Chem. 
2017;235:194–202.

31.	 Schafer R. What is a Savitzky-Golay Filter? [Lecture Notes]. IEEE Signal Process 
Mag. 2011;28(4):111–7.

32.	 Kong W, Liu F, Zhang C, Bao Y, Yu J, He Y. Fast detection of peroxidase 
(POD) activity in tomato leaves which infected with Botrytis cinerea 
using hyperspectral imaging. Spectrochim Acta A Mol Biomol Spectrosc. 
2014;118:498–502.

33.	 Mao Y, Li H, Wang Y, Fan K, Shen J, Zhang J, et al. Low temperature 
response index for monitoring freezing injury of tea plant. Front Plant Sci. 
2023;14:1096490.

34.	 Qing H, He-ru X, Jiang-ping L, Mei-chen L, Peng-wei H. De-gang S. Spectral 
Selection Method based on ant colony-genetic algorithm. Spectrosc Spectr 
Anal. 2022;42(7):2262–8.

35.	 Shu M, Shen M, Zuo J, Yin P, Wang M, Xie Z, et al. The application of UAV-
Based hyperspectral imaging to Estimate crop traits in maize inbred lines. 
Plant Phenomics. 2021;2021:9890745.

36.	 Li Z, Wang J, Xiong Y, Li Z, Feng S. The determination of the fatty acid content 
of sea buckthorn seed oil using near infrared spectroscopy and variable 
selection methods for multivariate calibration. Vib Spectrosc. 2016;84:24–9.

37.	 Wu D, Chen X, Zhu X, Guan X, Wu G. Uninformative variable elimination for 
improvement of successive projections algorithm on spectral multivariable 
selection with different calibration algorithms for the rapid and non-destruc-
tive determination of protein content in dried laver. Anal Methods. 2011;3(8).

38.	 Yuan R, Liu G, He J, Wan G, Fan N, Li Y et al. Classification of Lingwu long 
jujube internal bruise over time based on visible near-infrared hyperspectral 
imaging combined with partial least squares-discriminant analysis. Comput 
Electron Agric. 2021;182.

39.	 Boser BE, Guyon IM, Vapnik VN, editors. A training algorithm for optimal mar-
gin classifiers. Proceedings of the fifth annual workshop on Computational 
learning theory; 1992.

40.	 Zhang S, Huang H, Huang Y, Cheng D, Huang J. A GA and SVM classifica-
tion model for Pine Wilt Disease Detection using UAV-Based Hyperspectral 
Imagery. Appl Sci. 2022;12(13).

41.	 Guo Y, Qu F, Yu Z, Yu Q. Deep LSTM with guided filter for hyperspectral image 
classification. Comput Inform. 2020;39(5):973–93.

42.	 Li H, Mao Y, Wang Y, Fan K, Shi H, Sun L et al. Environ Simul Model Rapid 
Prediction Tea Seedl Growth Agron. 2022;12(12).

43.	 Turkoglu M, Hanbay D, Sengur A. Multi-model LSTM-based convolutional 
neural networks for detection of apple diseases and pests. J Ambient Intell 
Humaniz Comput. 2019;13(7):3335–45.

44.	 Wu D, Nie P, He Y, Bao Y. Determination of Calcium Content in Powdered 
milk using Near and Mid-Infrared Spectroscopy with Variable Selection and 
Chemometrics. Food Bioprocess Technol. 2011;5(4):1402–10.

45.	 Sarathjith MC, Das BS, Wani SP, Sahrawat KL. Variable indicators for optimum 
wavelength selection in diffuse reflectance spectroscopy of soils. Geoderma. 
2016;267:1–9.

46.	 Xu S, Zhao Y, Wang M, Shi X. Determination of rice root density from Vis–NIR 
spectroscopy by support vector machine regression and spectral variable 
selection techniques. CATENA. 2017;157:12–23.

47.	 Mao Y, Li H, Wang Y, Fan K, Song Y, Han X et al. Prediction of tea polyphenols, 
free amino acids and Caffeine Content in Tea Leaves during Wilting and 
Fermentation using Hyperspectral Imaging. Foods. 2022;11(16).

48.	 Yuan L, Yan P, Han W, Huang Y, Wang B, Zhang J et al. Detection of anthrac-
nose in tea plants based on hyperspectral imaging. Comput Electron Agric. 
2019;167.

49.	 Alves KS, Guimarães M, Ascari JP, Queiroz MF, Alfenas RF, Mizubuti ESG, et al. 
RGB-based phenotyping of foliar disease severity under controlled condi-
tions. Trop Plant Pathol. 2021;47(1):105–17.

50.	 Wu D, Chen X, Shi P, Wang S, Feng F, He Y. Determination of alpha-linolenic 
acid and linoleic acid in edible oils using near-infrared spectroscopy 
improved by wavelet transform and uninformative variable elimination. Anal 
Chim Acta. 2009;634(2):166–71.

51.	 ElMasry G, Iqbal A, Sun D-W, Allen P, Ward P. Quality classification of cooked, 
sliced turkey hams using NIR hyperspectral imaging system. J Food Eng. 
2011;103(3):333–44.

52.	 Yang C, Zhao Y, An T, Liu Z, Jiang Y, Li Y et al. Quantitative prediction and visu-
alization of key physical and chemical components in black tea fermentation 
using hyperspectral imaging. Lwt. 2021;141.

53.	 Goluguri NVRR, Devi KS, Srinivasan P. Rice-net: an efficient artificial fish swarm 
optimization applied deep convolutional neural network model for identify-
ing the Oryza sativa diseases. Neural Comput Appl. 2020;33(11):5869–84.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 


	﻿A deep learning model for rapid classification of tea coal disease
	﻿Abstract
	﻿Introduction
	﻿Materials and methods
	﻿Study area
	﻿Data acquisition
	﻿Hyperspectral equipment
	﻿Data preprocessing
	﻿Two-dimensional discrete wavelet transforms (2DWT) of varying degrees of disease images
	﻿Spectral preprocessing
	﻿Screening of characteristic bands


	﻿Modeling and model evaluation
	﻿Modeling
	﻿Test environment and model evaluation

	﻿Results and analysis
	﻿Feature band selection for spectral data
	﻿Overall accuracy of the model
	﻿Comparison of the performance of different network models for grading different disease
	﻿Confusion matrix

	﻿Discussion
	﻿Conclusion
	﻿References


