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Abstract 

Background:  The application of autopilot technology is conductive to achieving path planning navigation and 
liberating labor productivity. In addition, the self-driving vehicles can drive according to the growth state of crops to 
ensure the accuracy of spraying and pesticide effect. Navigation line detection is the core technology of self-driving 
technology, which plays a more important role in the development of Chinese intelligent agriculture. The general 
algorithms for seedling line extraction in the agricultural fields are for large seedling crops. At present, scholars focus 
more on how to reduce the impact of crop row adhesion on extraction of crop rows. However, for seedling crops, 
especially double-row sown seedling crops, the navigation lines cannot be extracted very effectively due to the lack 
of plants or the interference of rut marks caused by wheel pressure on seedlings. To solve these problems, this paper 
proposed an algorithm that combined edge detection and OTSU to determine the seedling column contours of two 
narrow rows for cotton crops sown in wide and narrow rows. Furthermore, the least squares were used to fit the navi-
gation line where the gap between two narrow rows of cotton was located, which could be well adapted to missing 
seedlings and rutted print interference.

Results:  The algorithm was developed using images of cotton at the seedling stage. Apart from that, the accuracy 
of route detection was tested under different lighting conditions and in maize and soybean at the seedling stage. 
According to the research results, the accuracy of the line of sight for seedling cotton was 99.2%, with an average 
processing time of 6.63 ms per frame; the accuracy of the line of sight for seedling corn was 98.1%, with an aver-
age processing time of 6.97 ms per frame; the accuracy of the line of sight for seedling soybean was 98.4%, with an 
average processing time of 6.72 ms per frame. In addition, the standard deviation of lateral deviation is 2 cm, and the 
standard deviation of heading deviation is 0.57 deg.

Conclusion:  The proposed rows detection algorithm could achieve state-of-the-art performance. Besides, this 
method could ensure the normal spraying speed by adapting to different shadow interference and the randomness 
of crop row growth. In terms of the applications, it could be used as a reference for the navigation line fitting of other 
growing crops in complex environments disturbed by shadow.
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Introduction
Farmland visual navigation is an important branch of 
intelligent agriculture. In the unstructured and random 
complex farmland environment, the visual navigation 

unmanned vehicle can not only monitor the walking path 
in real time according to the actual growth status of crops 
in the farmland, but also complete spraying operation 
efficiently without damaging the crops. With increas-
ing attention from scholars at home and abroad, it has 
become a research hotspot of intelligent agriculture.

In the process of visual navigation of cotton spraying 
vehicle, the accurate acquisition of effective information 
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in the image is the premise of whether the navigation 
vehicle can operate correctly [1–3]. Outdoor agricultural 
environments are characterized by uncontrolled and var-
iable lighting conditions [4–8]. Shadows and over-intense 
or poor lighting are the major factors affecting the image 
quality [5–8]. In the seedling stage of cotton, some fac-
tors can affect the detection accuracy of crop rows in 
two main ways. First, cotton at the seedling stage has a 
shortage of crop plants due to the omission of seeding, 
lack of germination, being crushed by wheels, or insect/
disease infestation. Second, cotton grows at different 
rates and in different heights, which can result in missing 
seedlings under the perspective projection of the image. 
When path detection is performed for straight-line work 
on seedling cotton, a straight line needs to be fitted to 
the gap between two narrow rows of cotton as the navi-
gation line to be detected. There are two main factors 
causing two types of interference in the visual naviga-
tion images: (1) adhesions between two narrow rows of 
cotton far from the top end of the image; (2) significant 
gaps between plants in the same row of cotton. Thus, it is 
essential to effectively remove the row adhesions without 
making the gaps between the plants affect the segmenta-
tion of the cotton rows.

Least squares method, as one of the most common 
machine vision methods for identifying crop rows is 
aimed to deal with discontinuous lines, which has been 
used for real-time automatic guidance of agricultural 
vehicles [9]. Many scholars have studied the detection of 
navigation lines in seedling crops by different methods of 
finding feature points and fitting straight lines with least 
squares, and have achieved relatively good results [10–
14], even for curved seedling columns, and have been 
able to detect navigation lines accurately [15]. However, 
there is a lack of research on visual navigation of farm 
fields with a small number of missing seedlings. Although 
many scholars have studied how to solve the problem of 
missing seeds by automatically replenishing seeds with a 
replenishing device at the time of sowing [16, 17], further 
research, including data evaluation and data mining, is 
needed to detect a few missing seedlings in crop rows for 
other causes of row breakage.

This paper presented an algorithm for detecting inter-
row lines in seedling cotton. The inter-row sticking and 
broken rows resulted from small seedling leaves and gaps 
between two narrow rows are the complications that 
affect the visual navigation path detection in the six-row 
wide and narrow row cotton planting method (machine 
picked cotton). The detection of interlinear lines is inves-
tigated for the interference of broken lines in seedling 
cotton pictures, the method of navigating the detection 
of interplant lines in seedling cotton, and the optimiza-
tion scheme of relevant parameters is analyzed according 

to the experimental environment. The remainder of this 
paper is organized as follows. “Introduction” section is 
the general introduction. “Material and methods” sec-
tion describes materials and methods used for strat-
egy in detail, which includes the segmentation and the 
classification of disease in the cotton leaf. “Experiment 
results” section shows the results obtained by employ-
ing the proposed method, and the discussion of the effect 
among proposed method and other plants. “Discus-
sions” discussed the different parameters in this method. 
Lastly, the conclusions are summarized in “Conclusions” 
section.

Material and methods
In this section, the principle of graph-cutting for the seg-
mentation of cotton rows as well as backgrounds was 
reformulated for cotton at the bud stage. In addition, a 
new graph-cutting-OTSU method of image segmentation 
was proposed to improve detection accuracy and robust-
ness. What’s more, an iterative least-squares method was 
put forward to accommodate the inhomogeneity and 
randomness of cotton growth.

Image acquisition
The test video was collected in the field in Xinjiang Agri-
cultural Division 7 cotton at 44°25′27.61″ N, 84°57′27.15″ 
E, 464 m above sea level, in an area with aridity and low 
rainfall, annual sunshine hours of 2721–2818  h, annual 
precipitation of 125.0–207.7  mm, and an average wind 
speed of 1.5  m/s, belonging to a typical temperate con-
tinental climate. Besides, the main cotton stems at the 
seedling stage were about 45 cm high, and the number of 
leaves was around 13.

The camera was mounted in the middle of the front 
bumper of the JohnDeer 754 tractor, which was directly 
in front of the cotton row to be identified for acquisi-
tion (see the camera installation position in Fig.  1). To 
avoid the obstruction of the camera by the cotton, the 
camera was mounted at a height higher than the height 
of the cotton plant. Specifically, the camera was posi-

tioned 100  cm from the ground and the angle between 

Note: H is the height of the camera(cm), is the angle between the camera’s optical axis and 
the geographic vertical line (°) 1 is the camera, 2 is the tractor, and 3 is the ground.

Fig. 1  Image acquisition schematic
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the camera’s optical axis and the plumb line was θ = 65°. 
The frame rate of the captured color video image was 30 
frames/s, and the size of each frame was 640 × 480 pixel. 
At the same time, the developed hardware environment 
was 3.2 GHz with 16 GB memory, and the software envi-
ronment was Microsoft Visual C + + 2010. Apart from 
that, the image processing was developed based on MIAS 
software from Beijing Modern FuBo Technology inc. 
under a Windows XP operating system.

Detection of inter‑row lines in broken rows of crops
In this study, the image was converted to grayscale map 
by using ExG (Excess Green Index), and the cotton rows 
were segmented using OTSU, which were edge detected 
by using Canny’s algorithm, respectively.

The logical NOT operation was used on the result of 
edge detection, and the new result was compared with 
the grayscale map by OR Logic Operation. Furthermore, 
the gap between two cotton rows was found. The cen-
tral region of the gap was extracted, and then the feature 
points of the central connection domain were found. 
Lastly, the least squares method was adopted to fit the 
inter-row line of the two narrow rows of cotton. Figure 2 
shows the main flowchart of the inter-row lines in the 
broken rows of cotton.

Image segmentation of cotton rows
Edge detection
To reduce row adhesion and segment cotton rows more 
accurately, this study combined edge detection with 
binary images to accurately detect the contours of cot-
ton rows. Indeed, the Canny operator could find as many 
edges in the image as possible [18–20]. Thus, the follow-
ing edge detection was performed by using the Canny 
operator on the grayed-out seedling image, to minimize 
the missed and false detections and pinpoint the centers 
of two narrow rows of cotton.

Binarization and expansion of images
The cotton rows and the background between rows 
were segmented correctly. Since there was basically no 
interference from weeds in the cotton field at the seed-
ling stage, a simple and stable segmentation could be 
performed by OTSU on the green significant grayscale 
map using a global threshold. At the lower end of the 
image, due to the viewpoint and the variability of cotton 
growth, there was a problem of row adhesion in seedling 
cotton at the upper end of the segmented image. How-
ever, since the seedling cotton was at the seedling stage 
and the leaves were small, the row break caused by the 

disconnected gaps between branches and leaves within 
a row of cotton affected the extraction of the connected 
regions.

To solve the problem of plant out of seedling breakage 
within a row while ensuring that the two rows of cot-
ton are not stuck together in the process of expansion, 
a 7 × 21pixel structural element is used to perform five 
expansion operations on the binary image, so that the 
cotton rows within the binary image form a connected 
domain within a row.

Additionally, a 7 × 21pixel structural element was 
used to perform five expansion operations on the binary 
image, with the purpose to solve the problem of plant out 
of seedling breakage within a row, and ensure that the 
two rows of cotton are not stuck together in the expan-
sion process. In this way, the cotton rows within the 
binary image could form a connected domain within a 
row. To accurately extract the cotton row contour, it is 
necessary to first connect the plant connected domains 
within a row of cotton.

Figure  3 is a schematic diagram of the expansion of 
binary image. In this case, Fig. 3a shows the binary image 

Grayscale
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Fig. 2  Flow chart of seedling line detection of seedling cotton
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calculated by OTSU, with white pixels as the target (cot-
ton rows) and black pixels as the background (soil or 
mulch between rows). Figure  3b displays the structural 
element, and the pixel with a pentagram indicates the ori-
gin of the structural element. The white pixel is 1, while 
the black pixel is 0. During the expansion process, each 
pixel in the binary image is scanned using the structure 
origin, and the structure element is “summed” with each 
pixel. If the result is 1, the value of the pixel in the binary 
image is set to 1, otherwise it is set to 0. Apart from that, 
the yellow box in Fig. 3c is the pixel whose result is 1 after 
the expansion. Compared with the white area before the 
expansion, the white area after the expansion increases in 
the direction of the vertical axis, but it does not affect the 
width of the white area on the horizontal axis.

Inter‑seeding line detection
Center area selection
The connected domain with area less than 50 pixel was 
removed, and the distance from centroid of each con-
nected region to the vertical line in the image was cal-
culated. Then the region where the form center had 
the shortest distance from the vertical line in the image 
was kept as the center cotton row to extract the naviga-
tion line, the purpose of which was to remove the noise 
interference in the image. Afterwards, the rest of the con-
nected regions were excluded.

The detected edge point pixels of the cotton rows were 
stored in the array T, and the two rows of cotton closest 
to the vertical line in the image were found. Besides, the 
gap between these two rows of cotton was extracted. The 
cotton rows after OTSU had the adhesion problem, and 
the adhesion problem of cotton rows was more obvious 
in the expanded binary image. For the expanded image, 

the image was inverted by the center connected domain 
extraction [21–25]. Furthermore, the pixel values of the 
two rows of cotton edge points in the inverted image 
were set to 255. The center connected domain acquisition 
map between rows of cotton in Fig. 4.

The ROI was set for the central connected domain so as 
to accurately extract the cotton row outline [26, 27]. Fur-
thermore, the horizontal axis of the leftmost pixel of the 
left connected domain was extended by 50 pixels to the 
left, while the horizontal axis of the leftmost pixel of the 
right connected domain was extended by 50 pixels to the 
right, as the width of the ROI region. Since the seedlings 
were more likely to break at the lower end of the image, 
while the seedlings were more likely to stick at the upper 
end of the image, the height of the ROI region was set to, 
and all subsequent calculations were limited to the inte-
rior of the ROI region Fig. 5.

Since the navigation line should be in the middle of 
two rows of cotton in a monopoly, the gap between the 
two rows is the area where the navigation line is located. 
In the previous step, the middlemost two rows of cotton 
had been found. The cotton, as the target, were show as 
white pixel dot, while the background area between the 
rows was shown as a black pixel dot. In this step, the soil 
between the middle two rows of cotton (black pixels) 
should be used as the processing target.

Detection of interplant lines
Since the navigation line should be in the middle of two 
rows of cotton in a monopoly, the gap between the two 
rows is the area where the navigation line is located. In 
the previous step, the middlemost two rows of cotton had 
been found. The cotton, as the target, was a white pixel 
dot, while the background area between the rows was 
shown as a black pixel dot. In this step, the soil between 

(a) binary image (b) structural elements (c) inflated result
Note: The ☆ in the structure element is the origin of the structure element.

Fig. 3  Expansion sketch of binary image
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the middle two rows of cotton (black pixels) should be 
used as the processing target, which is calculated as For-
mula (1).

The background (black pixels) with area less than 
1000 pixels was inverted to obtain the connected 
domain in the middle of the two middlemost rows of 
cotton. All the pixel points of this connected domain 
were used as the feature points for straight line fitting 
by the least squares method to get the interplant line.

For the interplant line, the formula for calculating the 
lateral error of navigation was calculated as formula (2).

(1)B
(

x, y
)

= 0, A
(

x, y
)

= 255 ∩ B
(

x, y
)

= 255

where x and y are the horizontal and vertical coordinates 
of the vehicle each time it is ready to move forward, y1 
and x1 are the coordinates of the vehicle’s position after 
traveling a certain distance; y0 and x0 are what the pro-
fessional considers to be the ideal position of the vehicle 
when it travels to that position.

The body position pose in intelligent vehicle visual 
navigation is closely related to three factors: vehicle 
transverse pendulum angular velocity, vehicle center-
of-mass velocity, and center-of-mass lateral eccen-
tricity. Assuming that the motion trajectory remains 
constant and does not change abruptly during the travel 

(2)m =

√

(x1 − x0)
2 +

(

y1 − y0
)2

Note: L1-L5 are the five rows of cotton visible from left to right in the image, the dot is the center 
of mass of each row, and d1-d5 are the distances from the center of the cotton rows corresponding 
to L1-L5 to the vertical line (black dashed line) in the image.

Fig. 4  Extraction of central crop rows

(a) Cotton rows after expansion (b) Cotton row edge detection results (c) Inter -row central 
connectivity domain acquisition map

Fig. 5  Cotton line edge point detection effect map
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of the vehicle along the visual navigation path, the 
transverse pendulum angular velocity can be expressed 
by Eq. (3).

(3)

ρ =
ÿ

(

1+ ẏ2
)3/2

∣

∣

∣

∣

∣

x=0

ρ̇ = v
dρ/dx

ds/dx

ωp = vρ

where x, y are the coordinates of the vehicle center of 
mass, v is the velocity of the vehicle center of mass, s is 
the vehicle trajectory, ρ is the road curvature, ρ̇ is the rate 
of change of the road curvature, and ωp is the predicted 
transverse angular velocity of the vehicle.

Experiment results
Analysis of interplant line detection results in cotton rows 
at seedling stage
Figure  6 shows the process of acquiring inter-row lines 
in seedling cotton rows. For seedling cotton planted with 

     
(a) Original map of cotton at seedling stage      (b) 2G -R-B grayscale map

     
(c) Binarization and expansion results    (d) Edge detection results  

     

(e) Connected domain extraction  (f) Inter  seeding line detection results
Fig. 6  The process of extracting the line between seedlings of cotton
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one film and six rows, the background between the rows is the mulch and soil, as shown in Fig.  6a, because the 
cotton plants have small branches, leaves grow sparsely, 
there is no weed interference, and it is very neat. As the 
cotton seedlings have just grown out, the leaves are light 
green and there is a clear gap between the two rows. At 
the far end of the image (top end), there is row adhe-
sion between the two narrow rows due to the perspec-
tive principle. However, at the close end of the image 
(bottom end), the cotton seedlings appear very sparse 
and the gap within a row causes a break in the row, and 
the navigation path detected by the inter-row naviga-
tion line is a straight line. Which can represent the trend 
where the gap between the two narrow rows is located. 
Despite the obvious film reflection, only the rows of cot-
ton with green leaves are highlighted and the inter-row 
background (soil and film) is suppressed, as displayed in 
Fig. 6b.

Due to the principle of perspective, there is a sticky 
connection between two narrow rows. The more it is 
against the upper end, the more serious the sticky phe-
nomenon is. However, as the middle two narrow rows of 
cotton face the camera, with the bottom in the image as 
the center, the outward direction is the direction of the 

(a) Sunny day        (b) Cloudy day
Fig. 7  Results of inter-row line detection in cotton at seedling stage under different weather conditions
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line of sight, and the middle two narrow rows of cotton 
shade each other in the same direction as the planting 
direction of the cotton rows basically, which makes the 
row break phenomenon not severe. Nevertheless, the 
planting direction has a certain angle with the direction of 
the line of sight. Because of the principle of perspective, 
the more the cotton rows on both sides of the image, the 
more serious the breakage phenomenon. A rectangular 

structure with vertical orientation is used for expansion 
and the row breaks in the image are in a vertical orien-
tation. It can be observed that the row breaks are much 
less severe and only the obvious missing seedlings can be 
seen in the expanded binarization. The inverse operation 
is performed on the binary image of cotton rows after 
expansion in Fig. 6c, and then calculated with the result 
of edge detection in Fig.  6d. The outline of cotton rows 
expands outward during expansion, which strengthens 
the effect of row adhesion, but its inverse image and the 
result of edge detection are affected. To find the inter-
section, the edges cut the expanded cotton rows, and a 
more accurate cotton row contour is obtained. The two 
narrow rows are separated by the detected cotton row 
edges. To further solve the problem of row adhesion and 
row breakage, the ROI region is set in the middle part 
of the image to further avoid the impact of row adhe-
sion and row breakage on detection, as shown in the red 
box in Fig. 6e. Besides, the image within the ROI region 
is inverted again to obtain the middle two narrow rows 
of cotton middle gap connected domain. Removing the 
small area can help remove the excess part of the cut 
edge, and the trend of the connected domain is the same 
as the gap between the two narrow rows of cotton. The 

        
(a) Seedling corn    (b) Soybean at seedling stage 

Fig. 8  Test results of lines between seedlings of different crops

Table 1  Test results of lines between seedlings of different crops

Video ID Total frames Start frame Consecutive frames Accuracy rate 
(%)

Cause of the error

Cotton 1 (Sunny day) 876 / / 100 /

Cotton 2 (Sunny day) 832 387/871 8/4 98.5 Missing seedlings/rut marks

Cotton 3 (Cloudy day) 651 732 8 98.7 Missing seedlings

Corn 1 (Sunny day) 976 613 16 98.3 Missing seedlings

Corn 2 (Sunny day) 832 347 11/9 97.5 Missing seedlings

Corn 3 (Cloudy day) 995 553 7/10 98.2 Missing seedlings/rut marks

Soybean 1 (Sunny day) 814 285 14 98.2 Missing seedlings

Soybean 2 (Sunny day) 665 339 9 98.6 Missing seedlings

Soybean 3 (Cloudy day) 512 479 8 98.4 Rut marks
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connected domain obtained in the ROI region is the mid-
dle gap between the two narrow rows of cotton, and the 
results obtained by fitting a straight line to the connected 
domain using least squares are displayed in Fig.  6f. The 
final straight line detection results obtained are consist-
ent with the results obtained by human eye observation.

Adaptation analysis of inter‑seed line detection algorithm
This paper not only conducted an inter-row line detec-
tion study on cotton planted in wide and narrow rows of 
six rows of one film and at the seedling stage in a row-
break crop, but also detected the inter-row lines of cot-
ton at the seedling stage on sunny and cloudy days. The 
results have been shown in Fig. 7, in which Fig. 7a, b pre-
sent the results of inter-row navigation line detection for 
seedling cotton on sunny and cloudy days, respectively.

We carried out a seedling inter-row line detection 
study on corn and soybean that were also sown in dou-
ble rows, as shown in Fig. 8. The navigation line detection 
was performed for seedling corn and seedling soybean 
crops at the seedling stage, to test the suitability of the 
algorithm. Figure 8a displays the results of navigation line 
detection for seedling corn, while Fig.  8b presents the 
results of navigation line detection for seedling soybean. 
Since the leaves of seedling corn are narrow and long, 
the Canny operator with Gaussian radius of 0.5 is used 
to reduce the excessive edge lines caused by the excessive 
length of the leaves, and the edges of corn rows obtained 

by this operator are less. However, the soybean leaves 
are ovate, like the palm-shaped leaves of cotton, and the 
Canny operator with Gaussian radius of 0.3 was used for 
edge detection.

Error analysis
In this study, inter-row navigation line detection was per-
formed for seedling cotton, seedling corn, and seedling 
soybean, respectively. Beyond that, three video segments 
were obtained for each of the three crops in the seedling 
state, as displayed in Table 1.

The algorithm was verified through multiple video 
images collected. The detection results were correct, 
according to the detection results observed from the 
judgment of experienced personnel. The inter-row 
navigation line detection for seedling crops is the gap 
between two narrow rows of crops, while the variability 
of seedling crops in the early and late emergence causes 
the randomness of missing seedlings [28–30]. Besides, 
the algorithm is sensitive to the lack of seedlings. Thus, 
the lack of seedlings significantly affects the results of 
navigation line detection.

The impact of rutted seedlings on the results of naviga-
tion line detection has been divided into two cases. If the 
rutted seedlings are in the ROI area, the seedlings of the 
crops pressed by the rutted seedlings are missing, which 
significantly affects the navigation line. If the rutted seed-
lings are outside the ROI area, the results of navigation 

(a) ExG grayscale                  (b) ExG accumulation              (c) G-component diagram (d) G -fractional accumulation
Fig. 9  Gray-scale image contrast of cotton in seedling stage

     
(a) OTSU binarized cotton rows              (b) Swollen cotton rows 

Fig. 10  Cotton row binary map comparison
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line detection will not be affected. The main influence on 
the detection results is the lack of seedlings and rutting 
marks.

The accuracy of the line of sight for seedling cotton was 
99.2%, corresponding to a following accuracy of ± 1 cm. 
The average processing time was 6.63  ms per frame. 
Besides, 98.1% of the line of sight for seedling corn was 
accurate, with an average processing time of 6.97 ms per 
frame. In addition, 98.4% of the line of sight for seedling 
soybean was accurate, with an average processing time 
of 6.72 ms per frame. In addition, the standard deviation 
of lateral deviation is 2 cm, and the standard deviation of 
heading deviation is 0.57 deg.

Missing seedlings accounted for the majority of cases 
among the different error detection scenarios. Among 
the three different crops, the accuracy of seedling detec-
tion was higher for cotton than for the other two crops, 
because cotton is planted in a film-laying manner and 

the transparent film avoids the clutter of the background 
between the rows when covering the soil between the 
rows and prevents the growth of weeds between the 
rows. For the cotton in the seedling stage, the color in 
the image was more obvious on sunny days, so that the 
detection was better.

Discussions
Gray‑scale map analysis of seedling cotton application 
images in RGB color space
Figure 9 shows the comparison of grayscale maps of cot-
ton at the seedling stage. Among them, Fig.  9a displays 
the ExG grayscale map, Fig.  9b presents the results of 
pixel accumulation in the vertical direction to the ExG 
grayscale map. Besides, Fig. 9c shows the G component 
grayscale map, and Fig.  9d displays the results of pixel 
accumulation in the vertical direction to the G compo-
nent grayscale map.

Comparing Fig.  9a, b, it can be observed that the G 
component is enhanced in the ExG grayscale map, and 
the cotton rows can be clearly distinguished. The pixel 
accumulation results in the ExG grayscale map contain 
richer pixel change information, and the peaks formed by 
the pixel accumulation values are set by the cotton rows. 
Comparing Fig. 9(c, d), it can be seen that although the 
G component of cotton leaves is higher, the soil color 
is lighter and each RGB color component of the soil is 
higher. Thus, although the cotton rows can also be clearly 
seen in the G component grayscale map, the effect is not 
as obvious as that seen in the ExG grayscale map, and 

     
(a) Sobel                 (b) Prewitt  

     

(c) Roberts           (d) Canny  
Fig. 11  Comparison of detection results of edge detection operators

Fig. 12  Test results of navigation line of cotton seedling
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the fluctuation pattern of the accumulated values cor-
responding to the cotton rows cannot be identified in its 
pixel accumulation results.

Effect of different edge operators on cotton row extraction
Figure 10 shows the binary image of seedling cotton and 
the effect after expansion, where Fig.  10a displays the 
result of automatic threshold segmentation using OTSU, 
and seedling cotton at the seedling stage has row adhe-
sion as well as row breakage. Figure 10b shows the binary 
image with expansion of the OTSU segmentation result. 
Beyond that, there is less row breakage in this image, 
while the row adhesion is more obvious than in Fig. 10a.

Figure 11 shows the results of cotton row edge detec-
tion in the ExG grayscale map, which compares the 
effect of detection by different edge detection operators. 
Figure  11a–d presents the detection results using Sobel 
operator, Prewitt operator, Roberts operator and Canny 
algorithm, respectively. Indeed, the canny algorithm 
adopts the second-order differentiation for edge detec-
tion. Comparing the other three results of edge detection 
using the first-order differentiation, it can be observed 
that the obtained cotton row edges are more complete.

Since the detection results of the Canny operator out-
perform the other detection operators, the detection 
results of different Gaussian radii are compared again in 
the Canny operator with Gaussian radii of 0.04, 0.1, 0.3 
and 0.5, respectively. For the Gaussian radius of 0.04 and 
0.1, the cotton row edge in the detection result is too 
fine, while for the detection result of Gaussian radius of 
0.5, the edge information is too little to meet the condi-
tion of subsequent removal of row adhesion. Hence, the 
edge detection of Gaussian radius of 0.3 has been cho-
sen. With Gaussian radius of 0.3, the result is presented 
in Fig. 12, in which the red box is the ROI region, and the 
center of mass of each connected domain is calculated 
in this region. Apart from that, the connected domain in 
which the center of mass is nearest to the vertical line in 
the image is selected, and all the pixel points in this con-
nected domain are used as feature points. What’s more, 
the least squares method is adopted to fit the navigation 
line of cotton at the seedling stage.

Conclusions
For cotton grown in one film with six wide and narrow 
rows of machine harvested cotton, this paper proposed a 
method for cotton navigation path detection during the 
seedling stage. The seedling leaves of seedling cotton are 
small, and there are some gaps between two narrow rows. 
Apart from that, row adhesion and row breakage increase 
the complexity of visual navigation path detection. For 
these two disturbances, this paper proposed a detection 
algorithm for seedling column lines.

In a film six wide and one narrow planting method 
(machine picked cotton), the seedling leaves are small, and 
there are some gaps between the two narrow rows. Mean-
while, the near row breakage and distant sticking phenom-
ena all cause the great interference to the extraction accuracy 
of cotton rows. To overcome these disturbances, this paper 
developed algorithms for a film of six rows of seedling cot-
ton through wide and narrow row planting methods. On the 
one hand, using the rectangular structure for extension of 
the binary image can effectively solve the row breakage prob-
lem. On the other hand, using the extended binary map and 
the cotton row edge results for calculation of the ExG grey 
map respectively can effectively solve the row sticking prob-
lem. At the same time, the inter-row line of two narrow rows 
of cotton at the seedling stage was obtained accurately and 
reliably by finding the connecting domain between two nar-
row rows of cotton in the middle of the image through mor-
phological operations and fitting a straight line. Besides, the 
video inspection was performed on corn and soybean at the 
seedling stage, so as to verify the generalization ability of the 
algorithm.

As shown by the experimental results, the line-of-sight 
accuracy for seedling cotton was 99.2% with an average 
processing time of 6.63  ms per frame. In addition, the 
line of sight accuracy for maize seedlings was 98.1%, with 
an average processing time of 6.97 ms per frame. Soybean 
seedlings were 98.4% accurate for line of sight, with an 
average processing time of 6.72 ms per frame. Moreover, 
the accuracy of the navigation line detection was no less 
than 98%. There are differences in leaf shape and sow-
ing method of different seedling crops, so the navigation 
results also differ. The average results of nine field trials 
conducted on cotton, corn and soybeans showed that, the 
standard deviation of lateral deviation is 2  cm, and the 
standard deviation of heading deviation is 0.57 deg.

As the cotton at the seedling stage was detected dif-
ferently from cotton at the bud and boll stage naviga-
tion lines, seedling cotton had been detected by fitting a 
straight line to the gap between two rows of cotton. How-
ever, for cotton at the bud and boll stage, the detection 
was done on the rows of cotton. Particularly, the naviga-
tion line was determined when the crop row was bent at 
the seedling stage, because the sowing line is not straight.
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