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Abstract 

Background:  Rice bacterial blight (BB) has caused serious damage in rice yield and quality leading to huge eco-
nomic loss and food safety problems. Breeding disease resistant cultivar becomes the eco-friendliest and most effec-
tive alternative to regulate its outburst, since the propagation of pathogenic bacteria is restrained. However, the BB 
resistance cultivar selection suffers tremendous labor cost, low efficiency, and subjective human error. And dynamic 
rice BB phenotyping study is absent from exploring the pattern of BB growth with different genotypes.

Results:  In this paper, with the aim of alleviating the labor burden of plant breeding experts in the resistant cultivar 
screening processing and exploring the disease resistance phenotyping variation pattern, visible/near-infrared (VIS–
NIR) hyperspectral images of rice leaves from three varieties after inoculation were collected and sent into a self-built 
deep learning model LPnet for disease severity assessment. The growth status of BB lesion at the time scale was fully 
revealed. On the strength of the attention mechanism inside LPnet, the most informative spectral features related to 
lesion proportion were further extracted and combined into a novel and refined leaf spectral index. The effectiveness 
and feasibility of the proposed wavelength combination were verified by identifying the resistant cultivar, assessing 
the resistant ability, and spectral image visualization.

Conclusions:  This study illustrated that informative VIS–NIR spectrums coupled with attention deep learning had 
great potential to not only directly assess disease severity but also excavate spectral characteristics for rapid screening 
disease resistant cultivars in high-throughput phenotyping.

Keywords:  Plant disease, Visible/near-infrared spectroscopy, Attention mechanism, Deep learning, Rice bacterial 
blight resistance
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Background
Rice bacterial blight (BB), caused by Xanthomonas camp-
estris pv. Oryzae (Xoo), has been one of the most hazard-
ous and prevalent plant diseases in major rice-producing 
countries [1, 2]. With the sprawl of bacterial blight in the 
field, ruinous damage of rice yield and grain quality is 
inevitable which causes huge economic loss and brings 
food safety problems [3]. BB pathogens usually choose 
leaf wounds to invade and the infected rice leaf tends 
to acquire developmental wilted area on both edge and 
center consequently resulting in the deficiency of photo-
synthesis and the decrease of crop production. Although 
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the usage of specialized pesticides would terminate 
the lethal pathogens, during the practical operation it 
was unavoidable to pollute the ecological environment. 
Hence, for effectively managing and minimizing the 
effect of rice disease without environmental contamina-
tion, breeding rice disease resistant cultivar becomes 
essential. Researchers have spared no effort in mining 
gene locations/markers related to rice disease resistance 
ability and exploring the mechanism of genetic resistance 
[4–7]. Howbeit, cultivating the novel rice disease resist-
ant species requires multi-years planting and screening 
experiments over plenty of rice genotypes to verify the 
authentic antipathogenic ability. In conventional prac-
tice, rice breeders are supposed to manually measure 
the lesion length after bacteria inoculation which gives a 
rise to tremendous labor cost, low efficiency, and severe 
human error [7, 8]. In addition, from the perspective of 
plant phenotypic study, proper research about dynami-
cally monitoring BB lesion growth is scarce. In virtue of 
automatic BB disease severity assessment and sustainable 
phenotype acquisition, rapid and precise bacterial blight 
resistant cultivar selection would be achievable as well as 
uncovering disease resistant regularity, which in return 
benefit the advance of rice breeding.

Visible and near-infrared hyperspectral image contains 
both spatial and spectral information with hundreds of 
narrow and contiguous bands formed a 3D data cube [9]. 
With the advantage of the non-destructive and informa-
tive characteristic of visible/near-infrared spectrum, 
promising results and methods in plant phenotyping have 
been made [10–15]. By building discriminant and regres-
sion models based on contiguous and narrow hyperspec-
tral data, diverse plant disease is correctly determined 
and quantified. Furlanetto et  al. developed a procedure 
for detecting rust disease of soybean using spectral analy-
sis, and the validation accuracy of severity classification 
reached 82.51% [12]. Feng et al. investigated data fusion 
of multisource spectral data for disease early detection 
and the result of the final comparison showed that discri-
minant model based on visible/near-infrared spectrum 
achieved the best performance [14]. Bendel et al. applied 
hyperspectral images to detect black sigatoka in banana 
leaves with a prediction accuracy of 98% while presenting 
a contributory spectral band range [16]. Apparently, spe-
cific responses in spectral reflectance which are related 
to biotic and abiotic stresses are readily distinct [17]. 
Visible/near-infrared spectrum provides a powerful tool 
to assess plant vitality, stress state, and disease category 
[15]. Nevertheless, when it comes to plant disease phe-
notyping, more attention is paid on the early detection or 
classification of disease at single time point rather than 
dynamic surveillance of the symptom. For disease resist-
ance studies, pathogens are intentionally infected as an 

experimental stress so as to screening genotypes from 
their phenotype disparity after inoculation. Variation pat-
tern of lesion regions under time effect is the golden cri-
teria that specifically defines the disease resistant ability. 
Time-series rice leaf phenotyping is conducible to unveil 
the growing pattern of BB lesion benefiting the mecha-
nism study of resistant cultivar. And through disease 
severity ascertainment, both plant breeders and farmers 
attain credible references to formulate further strategy. 
Also, redundant features within the hyperspectral bands 
restrict the rapid and low-cost application from the per-
spective of practical conditions. Concise spectral combi-
nation calculated by retaining some key information of 
spectrum is going to accelerate the plant disease research 
progress in a more efficient way.

Deep learning algorithm which is known for its pow-
erful feature extraction and utilization capability is pre-
ferred to drastically exploit potential spectral features 
and reserve pivotal spectral bands. Combined with deep 
learning algorithm, several studies have already put 
their focus on disease classification, disease localiza-
tion with infected leaf spectrum [18–20]. Barbedo et al. 
augmented their plant disease image database by com-
bining the individual lesions and spots on every image, 
and their convolutional neural network fulfilled a per-
formance improvement for disease identification [21]. 
Zhou et  al. proposed a progressive detection model for 
vegetable disease through locating the interested region 
first, which provided an impressive perspective that it 
was possible to achieve superior results with the help of 
innovative model structure [22]. Moreover, Bari et al. put 
the faster region convolutional neural network (Faster-
RCNN) into application to diagnose the rice leaf disease 
[23]. Different from the whole image classification, the 
capability which was displaying the disease location fur-
ther improved the identification accuracy to 99.25%. In 
general, well-designed deep learning models apparently 
manifested impressive capability with plant disease.

In this paper, time-series visible/near-infrared spec-
trum combined with deep learning algorithm was inte-
grated to determine the rice bacteria blight severity and 
distinguish the BB resistant cultivar. Inspired by the 
thought in Hu’s study [24], attention mechanism inside 
the deep learning model was performed to mine the 
most essential spectral information response to BB infec-
tion for assisting high-throughput BB resistant breed-
ing development. The detailed content/objective of this 
paper were as follows: (1) to build a robust and accurate 
rice leaf bacterial blight severity estimation model based 
on time-series VIS–NIR spectrum and deep learning 
algorithm; (2) to mine intrinsical and refined leaf spec-
tral feature index related to disease severity through 
the attention mechanism; and (3) to explore the disease 



Page 3 of 16Zhang et al. Plant Methods           (2022) 18:49 	

severity variation pattern of different rice genotypes and 
screen BB resistant cultivar with the assist of the leaf 
spectral index.

Methods
Sample preparation
Three rice varieties, namely IR24, 3A26, and 4A37, with 
diverse BB resistance were chosen to cultivate in this 
study. First of all, IR24 (Orazy sativa ssp. Indica) is an 
elite cultivar designed by International Rice Research 
Institute but it is highly susceptible to the rice BB. Sec-
ondly, the other two varieties which possess BB resistance 
are constructed by introducing two quantitative trait loci 
(QTLs) related to the resistant ability into IR24 under the 
assistance of molecular makers [25]. So partial genetic 
base among IR24, 3A26, and 4A37 is identical while 
3A26 and 4A37 contained BB resistance QTLs that were 
mapped on chromosomes 5 and chromosomes 3 sepa-
rately. Their authentic resistance for BB had been thor-
oughly verified in Han’s study [25]. All these rice samples 
were provided by State Key Laboratory Breeding Base for 
Zhejiang Sustainable Pest and Disease Control, Hang-
zhou, China. Those rice plants were rigorously reared by 
block with the size of 2 m × 15 m and a row spacing of 
50 cm in the experimental field located at Zhejiang Acad-
emy of Agricultural Science, Hangzhou, China. Over the 
growing stage, sufficient water provision, nutrition sup-
ply, and fundamental disease control were guaranteed for 
decreasing the impact of irrelevant variables.

Two major comparable groups entailing BB inocula-
tion and ultrapure water inoculation were investigated. 
Xoo, a kind of bacterial blight strains, was cultured on 
the potato dextrose agar medium for proliferation. The 
optical density (OD600) of its bacterial solution which 
was attenuated by phosphate buffer saline (PBS) solu-
tion was supposed to reach 0.8. Artificial leaf tip remov-
ing method manufacturing about 3  mm wound tissue 
with scissors was conducted so that BB could be easily 
inoculated. The scissors ought to be dipped in the solu-
tion of Xoo and sterile water before cutting the rice leaf 
tip. Additional pretreatment procedure was not required 
before the spectral collection. Inoculation experiments 
in this study started at the beginning of the rice boot-
ing stage on August 22th in 2020, corresponding to the 
experiment setting for general BB resistance assessment.

VIS–NIR hyperspectral image acquisition
VIS–NIR hyperspectral images in the range of 413–
1016 nm with a total band amount of 473 were obtained 
by using the laboratory-built hyperspectral imaging sys-
tem in Zhejiang University, Hangzhou, China (Fig.  1). 
The whole VIS–NIR hyperspectral image system com-
prised spectrograph module, illumination module, and 

mechanical module. Complete rice leaves were neces-
sarily detached from the individual plant with a mini-
mum length of 15  cm for the data acquisition. Leaf 
samples which were carefully flattened were placed 
on a plastic plate with a black background for height-
ening the signal to noise ratio. An electrical motor-
driven moving belt took the responsibility to carry the 
sample plate with a pre-determined moving speed of 
2.2  mm/s. At a distance of 29  cm between the sample 
surface to the spectrograph lens, the pivotal hyper-
spectral images were taken by an imaging spectrograph 
(ImSpector V10E; Spectral Imaging Ltd., Oulu, Finland) 
coupled with a highly sensitive EMCCD camera (Rap-
tor EM285CL, Raptor Photonics limited, Larne, United 
Kingdom). For the purpose of avoiding image deforma-
tion and blur, the exposure time of the camera and the 
intensity of the illumination module which included 
two 150 W tungsten halogen lamps (3900 Lightsource, 
Illumination Technologies Inc., United States) was 
adjusted to 45 ms and 135. Hyperspectral image correc-
tion [Eq. (1)] was carried out after acquiring the bright 
reference image (the nearly 100% reflectance image of 
the pure white Teflon board) and the dark reference 
image (the nearly 0% reflectance image of covered lens) 
so as to eliminate the nature light influence.

where Ir represents the raw spectral image, Id represents 
the dark reference image, Ib is the bright reference image 
and Ic is the corrected hyperspectral image.

Time-series VIS–NIR hyperspectral images of a total 
of 306 rice leaves from 3 rice varieties were gathered on 
the 3rd, the 9th, the 15th, the 20th, the 28th, the 33th, 
the 38th, and the 43rd days after infection. The detailed 
sample composition was presented in Table 1.

(1)Ic =
Ir−Id
Ib−Id

Fig. 1  The structure diagram of VIS–NIR hyperspectral imaging 
system
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Spectral feature extraction and disease severity definition
In order to concentrate on the spectral features of regions 
of interest (ROIs) and reduce computing cost, it was nec-
essary to disregard background noises and average the 
pixel-wise spectrums of object. Two main procedures 
involving segmentation and concentration of the rice leaf 
spectral image and lesion spectral image were ineluc-
table. In the first place, considering the huge disparity 
between background and rice leaf, the threshold segmen-
tation method was capable enough to accurately extract 
leaf spectrum [26]. Pixel-wised spectral information from 
the background and rice leaf were located by ENVI 5.2. 
The threshold band and its reflectance value that could 
separate the objects was determined by means of calcula-
tion the L1 distance between their spectrums, according 
to the equation:

where Rb represented the spectral reflectance value of 
the background, Rl was the spectral reflectance value of 
rice leaf, and n referred to the series number of spectral 
band. Owing to the pre-experiment, the spectral band at 
778.69  nm and the threshold value of 0.11 was eventu-
ally chosen to fetch spectral mask of rice leaf. After that, 
averaged spectrum and pixel-wise area of rice leaf were 
calculated with the aid of connected component analy-
sis. Secondly, accompanied by the evolvement of irregu-
lar BB lesion region, the junction between healthy area 
and infected area would become more and more mixed 
generating an obstacle of applying L1 threshold segmen-
tation. And it was substantial to figure out the veritable 
lesion spectrum to appraise the disease severity. Thus, 
the specialized expert in BB disease manually labeled 
leaf lesion regions by utilizing software ENVI 5.2 after 
which both morphology and spectroscopy information 
of infected regions and partial healthy regions like pixel 
area and averaged reflectance value were acquired. Gen-
erally speaking, breeding specialist estimates BB disease 

(2)L1(Rb,Rl) = max
n

∣

∣Rn
b − Rn

l

∣

∣

severity through computing the pixel-wise proportion 
of lesion area to leaf area, as shown in Table  2, which 
emphasizes the intrinsical phenotypic difference [27]. 
Here, for the sake of following feature mining and model 
interpretability, the ratio of infected area over whole rice 
leaf area was computed in Eq.  (3) and similar disease 
severity definition was adopted.

where Pl represented lesion proportion over the leaf, 
∑

plesion and 
∑

pleaf  severally denoted pixel summation 
of lesion region and whole leaf region.

Data analysis methods
For fully reveal the specific spectral features which had 
a distinct association on BB disease severity, a self-built 
deep learning model, namely two-branch LPnet, was cre-
ated. The concrete model structure and homographic 
hyper-parameter were displayed in Fig.  2. Since non-
infected experimental groups were involved in the phe-
notyping assessment, healthy state identification became 
critical and LPnet was qualified to output hybrid results 
including the lesion proportion and health state. For the 
health state classification branch of LPnet, the ground 
truth label was determined by the experiment setting, for 

(3)Pl =
∑

plesion
∑

pleaf
× 100%

Table 1  The detailed sample structure from various experimental groups

Time after infection 
(day)

IR24 4A37 3A26

Sterile water Xoo Sterile Water Xoo Sterile water Xoo

3 10 10 10 11 10 10

9 10 10 10 10 10 10

15 5 5 5 5 5 5

20 5 5 5 5 5 5

28 6 5 5 5 5 6

33 5 5 5 5 5 5

38 5 5 5 5 5 5

43 5 5 6 6 6 5

Table 2  The assessment criteria of BB disease severity

Rank Lesion 
proportion 
(%)

0 0

1 0–10

2 10–20

3 20–50

4 50–75

5 75–100
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example, water group was labeled as 0 and Xoo group was 
labeled as 1. And ground truth label for this regression 
branch was settled to be the calculated lesion proportion 
which was normalized to the range of 0–1.

As for the health state identification branch, the model 
structure was constructed to be lite and directly receive 
averaged spectrums from the input without affecting the 
learning process of the side-branch. Softmax function 
was performed to transform the output score to logarith-
mic probability for latter iteration. In the lesion proportion 
prediction branch, averaged spectrums of whole rice leaf 

obtained at different inoculation times were all sent into 
the attention block which was designed to highlight sig-
nificant features based on simulating visual attention [29]. 
Parameters of the input neural numbers were highly cor-
related to the wavelength number of VIS–NIR spectrums. 
The attention block was defined as:

(4)Ra = f (W ∗ Rw + b)

(5)Rij = (Ra ∗ Rw)i,j

Fig. 2  The schematic structure and corresponding parameters of established two-branch LPnet. a The complete composition of LPnet; b The 
detailed structure of ResNet block
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where Rw indicated the whole leaf VIS–NIR spectrum 
and Ra represented the output of attention branch layers. 
i, j respectively denoted the sample size and spectral band 
amount, W  and b were the trainable parameters.

Feature extraction had been always an important 
research field in hyperspectral image analysis [28]. 
Remarkably, through modeling training progress, the 
branch layers inside attention block automatically 
learned and outputted the spectral band’s weight driven 
by the model task, which was exactly the essence of spec-
tral feature mining. Since not only the locations of spec-
tral wavelengths but also homographic weights were 
simultaneously confirmed. Convolutional neural network 
(CNN) with the properties of weight sharing and local 
sparse perception was adopted to form the backbone for 
the spectral feature excavation. Furthermore, residual 
learning blocks which were composed by CNN were 
able to increase the model depth without increasing bur-
den to optimization [30]. Average pooling layer focused 
on refining the scale-invariant feature so the quantity of 
training parameters would not be overly large leading to 
overfitting. In the end, two fully connected layers com-
bined with activation function, namely Sigmoid, built 
non-linear regression models to predict the lesion pro-
portion of diverse rice cultivars.

Based on gradient descent theory, deep learning model 
will automatically seek for the optimal results of the loss 
function. Cross entropy loss and Mean square error 
(MSE) were selected to minimize the training loss of clas-
sification branch and regression branch, while choos-
ing adaptive moment estimation (Adam) algorithm with 
a gradient descent step of 0.001 as the optimizer. The 
tenfold cross validation was performed for the sake of 
adjusting hyper-parameters. All the trainable weights and 
bias inside the model were initialized according to uni-
form distribution for speeding up model convergence. A 
callback function which was implanted into the training 
procedure recorded the weights and structure of model 
at the lowest validation loss and highest validation accu-
racy during 10,000 training epoch. Training set and test-
ing set were randomly divided at a ratio of 7:3 without 
intentionally partitioning. During the evaluation phase, 
typical statistic indicators were chosen, including classifi-
cation accuracy, the coefficient of determination (R2), the 
root mean square error (RMSE), and the ratio of standard 
deviation of the prediction set to standard error of pre-
diction (RPD).

Leaf spectral index selection strategy
Vegetation indices which are calculated via combin-
ing transformation patterns of multiple spectral bands 
have always been the low-cost and efficient indicator 
to observe multifarious plant properties including the 

plant disease [31, 32]. Inspired by the thought of vegeta-
tion index, the attention block in LPnet was designed to 
mine the refined spectral traits for BB lesion proportion 
and disease severity. As shown in Fig. 2A, directed by the 
BB lesion proportion prediction assignment, multiplica-
tion of the optimized wavelength weights and original 
spectrums in LPnet was going to make the focal spectral 
bands stand out. Attention weights that contained posi-
tive and negative values were extracted and sorted by 
size, and spectral bands that possessed top 2 absolute 
values from both sides and their respective weights were 
further positioned. Afterward, BB disease severity which 
had strong connection to lesion proportion could be esti-
mated by calculating relative value of spectral combina-
tion towards non-infected rice spectrums, which would 
be also instrumental for screening the BB resistant culti-
var. Several universal vegetation indices (Additional file 1: 
Table  S1) were chosen to compare with the established 
spectral combination in the value of correlation coeffi-
cient (R) with lesion proportion to screen the most com-
petitive, concise, and precise leaf spectral index. The flow 
chart of data collection and processing in this paper was 
concluded in Fig. 3.

Software tools
Involved programming codes for data processing were 
written and performed on a personal computer whose 
operating system was Ubuntu 18.04 coupled with Intel(R) 
Core(TM) i7-8700  K CPU, 3.70  GHz, 16  GB RAM, 
and GeForce GTX 1080-Ti GPU. Classic ENVI 5.2 was 
applied to deal with the spectral analysis. The LPnet was 
created on the foundation of the open source deep learn-
ing framework Keras (https://​keras.​io/) by using Python 
3.7.6 (https://​www.​python.​org/). Relevant algorithm code 
is available on the GitHub address (https://​github.​com/​
jinnu​ozhang/​LPnet). Furthermore, all figures were drawn 
with the help of Origin 9.1 and Microsoft PowerPoint 
2016.

Results and discussion
Spectral trait
Given that the operation of mask extraction, averaged 
spectrums of partial healthy leaf regions could be fit-
tingly derived through an extra segmentation procedure. 
Leaving out the variety restriction, spectrums of lesion 
regions and their partial healthy regions from Xoo group 
under disparate infection time were presented in Fig.  4 
along with their standard deviation so as to explore some 
constitutive spectral differences brought by the BB dis-
ease. Apparently, in terms of curve tendency and reflec-
tance values, there were distinct discrepancies between 
them. What stands out in the figure is that spectrums 
of lesion regions appeared evidently higher reflectance 

https://keras.io/
https://www.python.org/
https://github.com/jinnuozhang/LPnet
https://github.com/jinnuozhang/LPnet
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property in the visible spectral range of 400–750  nm 
and relative overlapping in the range of 750–1000  nm 
compared with healthy leaf regions. Prior plant disease 
related studies that had noted the importance of VIS–
NIR spectrums and the similar tendency of lesion spec-
trum could be found [33–35]. Healthy leaf regions which 
possessed intact tissue structure tended to accumulate 
more photosynthetic pigments like xanthophylls, chlo-
rophylls, and carotenoids resulting in a strong absorp-
tion in the visible region [36]. While the BB pathogen 
stressed normal physiological activities, naturally the 
most sensitive indicators connected to photosynthesis 
would respond sharply. When it came to the short-wave-
length near-infrared spectral range (750–1000  nm), the 
reflectance values were theoretically related to the mul-
tiple frequency vibration of hydrogen-containing groups 
like O–H [35, 36]. Studies indicated that water content 
within the plant leaf would be revealed in that range [9, 
11]. Hence, it was predictable that withered leaf areas 

Fig. 3  The flow chart of spectrum acquisition and processing

Fig. 4  Averaged spectral curves of lesion region and healthy leaf 
region
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caused by BB pathogen reserved less water content so 
the reflectance values would become relatively high, 
which was proved in the exhibition of Fig. 4. Healthy rice 
leaves possessed comparatively less reflectance in the vis-
ible range, which was corresponded with the conclusion 
in Furlanetto et al. study [12]. According to some previ-
ous studies, leaf internal structure damage caused by the 
bacteria would firstly decrease the spectral reflectance in 
the near-infrared range [14, 35, 37]. Furthermore, the loss 
of biomass like water content might eventually cause the 
uprising reflectance.

From the chart, it could be seen that the lesion spec-
trum curve had higher statistic dispersion meaning a 
substantial spectral evolution with the sprawl of BB 
lesion. Apparently, influenced by the time after infection, 
there were certain connections between the growing of 
lesion areas and spectral reflectance variation.

Apart from spectrums from separated regions of rice 
leaves, intact and unified rice leaf spectrums from three 
varieties were concentrated to figure out the variation 
pattern under both water treatment and Xoo treatment. 
In Fig. 5 there is a clear diversity of diversity among these 
three rice varieties. To start with, compared with non-
infected spectrums in Fig.  5B, D and F, the increasing 
of infection time length caused drastic spectral changes 
in those infected samples, which was consistent with 
the results in Fig.  4. And the non-infected spectrums 
appeared equivalent status with spectrums from partial 
healthy regions of infected spectrums. Based on that phe-
nomenon, it could be challengeable to early detect the BB 
infection using VIS–NIR spectrums since the majority 
of regions of the slightly infected leaf were still lively. In 
Rumpf et al. study, with less than 2% lesion leaf area, the 
infection identification rate could only reach 65% [38], 
which implied the difficulty of early detection. What was 
noteworthy was that in the visible range of spectrums the 
curve tendency of IR24 bore out its susceptible character-
istic (Fig. 5E). With the pathogen infestation prolonging, 
curves of 3A26 and 4A37 revealed resistant ability hold-
ing back the lesion expansion at different levels, which 
was shown in the form of uptrend speed declining at vis-
ible spectral reflectance range. And it was also observed 
that the spectral reflectance first dropped and then raised 
in the near-infrared range corresponding to the former 
analysis. Overall, conspicuous spectral phenotype dispar-
ity associated with genotype difference could be found 
through spectral analysis designating a huge potential of 
utilizing VIS–NIR spectrum for BB resistance screening.

Disease severity estimation
With the development of withered streak alongside time 
changing, lesion proportion of these three rice varie-
ties naturally exhibited hierarchical order. Prediction 

results of both training set and testing set were gathered 
and made the comparison with the ground truth values. 
Table  3 provided an overview of the statistical compo-
sition of lesion proportion. As presented in Fig.  6, the 
lesion proportion regression branch outputted prom-
ising results that the R2 of training set and testing set 
reached 0.9891 and 0.9619 respectively. What’s more, 
in consideration of the RMSE value from both training 
set and testing set, overfitting did not occur which gave 
a solid proof for stable prediction ability of LPnet. The 
PRD value which was a reliable standard for the model’s 
inference performance was calculated to be 5.124 giving 
solid confidence in the prediction. According to other 
research, leaf area regression models had been stud-
ied and also achieved expected results [39]. The reason 
for the regression capability of LPnet was likely to be 
on account of the essential discrepancy of data resource 
which was composed by lesion spectrum and leaf spec-
trum and the powerful feature processing ability of deep 
learning algorithm. The superior performance of our 
LPnet was further verified by comparison with other leaf 
area prediction studies [40–42]. Obviously, with the bac-
terial blight exacerbating, the proportion of disease area 
increased leading to a dramatically inherent variation 
inside averaged spectrums. Therefore, under such pivotal 
theoretical bond, it could reasonably achieve such dis-
cernible performance.

The results of the health state identification from the 
classification branch of LPnet were summarized in Fig. 7. 
It is apparent that the correct classification rate of infec-
tion achieved 92.43%. By diving into the misclassification 
profile in Fig.  7C, it could be noticed that minor lesion 
growth would be hard to make a difference in altering the 
prediction category toward the infection. These results 
reflected those of Nguyen et al. who also found that the 
degree of spectral disparity between healthy samples and 
infected samples was going to determine the model’s dis-
criminant ability [43]. The estimation accuracy, which 
was 89.13%, of BB disease severity of all rice leaf sam-
ples was set out in Fig. 7B combining lesion proportion 
regression and infection classification results.

Joint voting mechanism of two separate model 
branchs was constructed to reduce the estimation 
errors which were mainly confined to the healthy 
leaves. For example, without infection identification, 
due to the flaw of structure of regression branch in 
LPnet, it was unlikely to produce zero lesion propor-
tion for non-infected samples which was doomed to 
increasing estimation error. Liang et  al. put up with 
an image-based plant disease estimation network to 
classify 27 different diseases into 3 severity ranks [44]. 
Wang el at and Xiao et  al. also estimate the leaf dis-
ease severity on account of classification results [45, 
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46]. However, none of these studies had taken the dis-
ease severity criterion followed by the breeding expert 
and time factor into consideration. When it comes to 
delimiting BB resistant cultivar, lesion proportion is the 
most generic indicator for breeding expert. There is a 

Fig. 5  Averaged spectrums of different rice varieties under variant time after infection. a, c, e The infected group, indicating 3A26, 4A37, IR24 
respectively; b, d, f The healthy group, indicating 3A26, 4A37, IR24 respectively

Table 3  Summary statistics for lesion proportion of rice leaves

Variable Min Max Mean Std.Dev

Lesion proportion (%) 0 84.76 6.76 15.33
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congruent relationship between the lesion proportion 
and resistant peculiarity at a specific time point. The 
established LPnet was intentionally designed to predict 
the lesion proportion rather than severity rank for the 
sake of coping with flexible disease severity standards 
contrasting to other specified models with restricted 

output rank amount. Both the interpretability of deep 
learning model as well as the performance of final eval-
uation were guaranteed. Taken together, these results 
provided important insights into exploiting LPnet to 
mining the hidden features in disease leaf spectrum in 
view of its excellent performance.

Fig. 6  The regression results curves of established LPnet. a Training set; b Testing set

Fig. 7  The disease severity estimation results of established LPnet. a The classification branch confusion matrix of testing set (accuracy:92.43%); b 
The disease severity estimation confusion matrix of testing set (accuracy:89.13%); c The detailed information of misclassification of infected samples



Page 11 of 16Zhang et al. Plant Methods           (2022) 18:49 	

Leaf spectral index selection
Guided by the attention mechanism and selection strat-
egy, intrinsical spectral features were further refined 
from the fully trained LPnet to form an effective spectral 
combination. The neurons of LPnet were activated by 
the spectrums from training set. As illustrated in Fig. 8, 
before the channel-wise multiplication operation atten-
tion values extracted from the attention block were plot-
ted alongside with leaf averaged spectrum. Conspicuous 
peaks and valleys of attention curves might elucidate that 
during the learning progress of LPnet highlighted valu-
able wavelengths in the form of positive attention and 
negative attention. Comparison of the finding with those 
of other studies confirmed that the attention module 
inside the deep learning structure was able to empha-
size informative features in relation to the assigned 
object [47, 48]. A total of 4 distinct wavelengths and their 
learned weights were clearly noted, including 513  nm, 
536  nm, 673  nm, and 679  nm. The majority of selected 
bands were located in the visible scope leaving out the 
near-infrared wavelengths, whose cause might be that 
undulant near-infrared variation pattern under the BB 
influence in Figs. 4, 5 had a negative impact on quantify-
ing consistent growth of the lesion. The location of fine-
grained spectral wavelengths indicated that leaf pigments 
related substances had a stronger association with lesion 
proportion. For instance, wavelengths at around 660 nm 
usually indicated the existence of chlorophyll a and chlo-
rophyll b [49]. Since spectrums of infected leaves suffered 
a declining first and uprising next tendency in the range 
of 780–1000 nm with the infection time increasing, other 
universal vegetation indices which contained some near-
infrared bands inside the formulas tended to inversely 

change towards the disease infection. The concise and 
accurate index formula was screened and presented as 
Eq. (6).

where R513,R536,R673,R679 respectively indicted the 
reflectance values of wavelengths. The corresponding 
weight meant attention values derived from the LPnet. 
And ILP denoted the calculated leaf spectral index. It was 
interesting that the equation of the proposed index paid 
more attention to the variation values since those four 
bands were located closely.

From the point of view examining the internal struc-
ture of deep learning model for better interpretability, 
attention mechanism takes the responsibility to empha-
size valuable features through the attention weighted 
operation [50]. Attention model based on saliency map 
outputted numerous attention points which were identi-
cal with human sight on testing images [51]. So, it was 
critical to fully make full use of those extracted atten-
tion information. In contrast to earlier studies concern-
ing merely the location of feature wavelengths calculated 
through original data structure [52, 53], our proposed 
methods integrated deep learning feature processing 
ability and spectrum mining.

Vegetation indices like NDVI had been widely used 
to determine whether the area of interest was infected 
by disease [54]. By means of measuring the correlation 
coefficient values between spectral indexes and lesion 
proportions, comparison between multiple known vege-
tation indices and proposed ILP was performed in Table 4 
by utilizing the whole spectral dataset, and the feasibility 
and utility of ILP were explicitly validated. It was notice-
able that the proposed spectral combination ILP stood out 
and achieved the highest R value of 0.9660 suggesting a 
strong relation to lesion proportion. Besides, what was 

(6)
ILP = 2.19R513 − 0.84R536 + 2.55R679 − 1.87R673

Fig. 8  Attention weight curves of LPnet processed by Savizky-Golay 
filter (window size = 5) and averaged spectral curves of rice leaves

Table 4  The numerical results of correlation coefficient (R) 
values between various vegetation indices and lesion proportion

Vegetation index R value Vegetation index R value

ILP with weights 0.9660 MTVI − 0.7558

ILP without weights 0.4454 PRI − 0.3020

NDVI − 0.7671 ZM − 0.5492

RDVI − 0.7531 RVSI − 0.0157

TVI − 0.7427 HI − 0.7331

GNDVI − 0.4833 CI − 0.6816

OSAVI − 0.7658 MCARI − 0.4471

TCARI − 0.4654 NRI − 0.7594

SR − 0.5698 ARI 0.5613

MSR − 0.6397 SIPI − 0.7558

TVI − 0.7494
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interesting about the data in this table was that without 
learned attentional weights the relevance between ILP and 
disease status decreased sharply manifesting the signifi-
cance of attention mechanism. The development of spec-
tral disease indices based on VIS–NIR spectrums had 
been investigated by Meng et al. and instead of applying 
deep learning algorithm, they focused on picking certain 
features with discriminative power [55]. But there were 
two individual indices for healthy estimation and infected 
estimation as well as relatively low qualitative results. 
Apparently, the proposed ILP was stable and precise 
enough to compete with other vegetation indices. This 
kind of laboratory study was going to be transferred into 
practical practice in the wild environment. In the future, 
aligned with unmanned aerial vehicle and remote sens-
ing spectrum, the leaf spectral index would make a great 
difference in high throughput plant disease phenotyping.

Disease‑resistant cultivar identification
In general, taking the lesion proportion as evidence, BB 
resistant variety was able to be accurately singled out by 
breeders. In Fig. 9A, both the actual values of lesion pro-
portion and ILP deriving from Xoo experimental group 
were exhibited and compared by rice variety at 8 dif-
ferent times after the inoculation. In the meantime, the 
results of analysis of variance (ANOVA) which was per-
formed to differentiate whether there were significant 
differences among those three varieties were labeled 
by letters (p < 0.05). It was obvious that as the infection 
period prolonged, the proportion of lesion areas gradu-
ally increased, and on the 20th day, there was a significant 
discrepancy between resistant varieties and susceptible 
varieties. In addition, there were also evident distinctions 
between resistant varieties on the 43rd day showing the 

resistant ability diversity among those cultivars. Taking 
Fig. 9A as a realistic reference, consistent value variation 
routine and the intervarietal difference could be observed 
in Fig.  9B, which meant that the proposed leaf spectral 
combination could effectively represent the development 
of BB disease in order to screen resistant varieties and 
evaluate the resistant ability among those resistant varie-
ties. Although the numerical ILP results were not identical 
with the ground truth of lesion proportion, the essential 
features of BB propagation pattern were totally seized.

And when deterministic disease severity was esti-
mated, time-series plant phenotyping would directly 
point out the right direction of screening the resistant 
cultivar. Averaged lesion proportions and ILP values 
from every time point in this experiment were col-
lected and automatically classified into disease severity 
in Fig. 10. Notably, the determination of rank 0 which 
represented the healthy samples was fulfilled by fus-
ing the prediction results of the classification branch 
rather than inventing another spectral index. As the 
golden reference to determine disease severity, severity 
rank calculated by lesion proportion appeared similar 
with ANOVA analysis results. It could be found that 
the time-series regularity of both lesion proportion and 
disease severity stayed the same. For instance, on the 
20th day, the disease severity ranks of 3A26 and 4A37 
stayed at 1 while IR24 reached 2. And at the last experi-
mental date, a totally separate distribution of severity 
rank among 3 rice varieties could be detected. Despite 
refined spectral reflectance combination was supposed 
to be recalculated by the well-designed ranking stand-
ard, there was no doubt about its effectiveness and low-
budget since it merely took 4 spectral bands.

Fig. 9  The histograms of lesion area development (a) and proposed index values (b) at different time after infection and rice variety
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All in all, with the aid of the proposed ILP, it was acces-
sible to choose an appropriate point-in-time to measure 
the lesion proportion or assess disease severity, like the 
20th day or the 43rd day, discovering the burst and dif-
ferentiation of BB resistant abilities. In the progress of 
identifying authentic BB resistant varieties, some hidden 
information had even been revealed that 4A37 and 3A26 
possessed diverse resistant ability. A Study had been 
done that QTLs in chromosomes 3 (4A37) explained 
about 26.9% of the resistance variance less than QTLs in 
chromosomes 5 (3A26) [25], which might result in the 
diversified phenotyping resistance.

The pseudo-RGB images of rice leaves drawn in three 
default wavelengths (R channel at 656.03  nm, G chan-
nel at 550.71  nm, and B channel at 550.71  nm) and the 
pseudo-color spectral images calculated based on the leaf 
spectral index ILP were further visualized in Fig. 11. Com-
pared with the original RGB images, leaf locations with 
different degrees of infection were highlighted on the ILP 
visualization images, while the healthy leaves appeared 
with no obvious highlight areas. And by examining the 
values on the color bars, it could be found that the larger 
the lesion proportion value, the larger the calculated 
value of the proposed index. The diseased leaves would 
reach 1.0 while the healthy leaves only reached 0.1. The 
results visualization gave another solid proof for the fea-
sibility of our proposed leaf spectral combination.

Conclusion
In the current study, time-series averaged VIS–NIR 
spectrums of rice leaves from different rice varieties, 
namely 3A26, 4A37, and IR24, at various times after 
inoculation was collected and analyzed. Spectrums 

from regions of interest including the whole leaf 
region, lesion region, and partial healthy region were 
extracted and calculated to obtain lesion proportions. 
On account of the high performance and data process-
ing ability of deep learning, a self-built two-branch 
LPnet was able to identify the health state of input rice 
leaf spectrums and precisely predict lesion proportions. 
The classification accuracy and regressive R2 of testing 
set reached 92.43%and 0.9619 respectively. Convincing 
BB disease severity estimation was achieved by fusing 
the results of two LPnet branches and the identification 
rate of testing set achieved 89.13%. Moreover, based on 
the attention block inside the model, VIS–NIR spectral 
traits of infected rice leaves were further mining and 
an innovative leaf spectral index ILP which was proved 
to be highly related to lesion proportion was proposed, 
giving a rise to a simple and refined method of assess-
ing disease severity. With the variation of infection 
time, the effectiveness and feasibility of ILP for identify-
ing the BB resistant variety and assessing the resistant 
ability was studied and verified that appropriate point-
in-time (the 20th day, the 43rd day) to evaluate BB 
resistant phenotype was determined. Finally, intuitive 
verification was performed in the form of visualizing 
the infected and non-infected rice leaves. In conclu-
sion, the proposed LPnet and rice leaf spectral index 
ILP have great potential in rapidly assisting the disease 
resistance breeding and precisely excavating the essen-
tial phenotype. A further study with more focus on 
coupling with unmanned aerial vehicle or other port-
able spectrographs to finish high-throughput rice field 
phenotyping assessment is advocated.

Fig. 10  The disease severity estimation radar maps based on the averaged lesion proportions (a) and ILP values (b) at different time after infection
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