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Sensor-based phenotyping of above-ground 
plant-pathogen interactions
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Abstract 

Plant pathogens cause yield losses in crops worldwide. Breeding for improved disease resistance and management by 
precision agriculture are two approaches to limit such yield losses. Both rely on detecting and quantifying signs and 
symptoms of plant disease. To achieve this, the field of plant phenotyping makes use of non-invasive sensor technol-
ogy. Compared to invasive methods, this can offer improved throughput and allow for repeated measurements on liv-
ing plants. Abiotic stress responses and yield components have been successfully measured with phenotyping tech-
nologies, whereas phenotyping methods for biotic stresses are less developed, despite the relevance of plant disease 
in crop production. The interactions between plants and pathogens can lead to a variety of signs (when the pathogen 
itself can be detected) and diverse symptoms (detectable responses of the plant). Here, we review the strengths and 
weaknesses of a broad range of sensor technologies that are being used for sensing of signs and symptoms on plant 
shoots, including monochrome, RGB, hyperspectral, fluorescence, chlorophyll fluorescence and thermal sensors, as 
well as Raman spectroscopy, X-ray computed tomography, and optical coherence tomography. We argue that choos-
ing and combining appropriate sensors for each plant-pathosystem and measuring with sufficient spatial resolution 
can enable specific and accurate measurements of above-ground signs and symptoms of plant disease.

Keywords: Plant disease, Phenotyping, Imaging sensors, Plant-pathogen interactions, Biotic stress, Signs and 
symptoms
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Background
Worldwide yield losses in major crops due to pathogens 
and pests are estimated to be 17–30% [1]. In this review, 
we will focus on plant pathogens, i.e., organisms or biotic 
agents that can cause disease [2] and not on pests such as 
insects and nematodes. Plant pathogens belong to various 
taxa including viroids, viruses, phytoplasmas, bacteria, 
oomycetes and fungi [3]. When a pathogen interacts with 
a plant, structural, physical, and biochemical changes can 
occur in both the plant and the pathogen. Depending 
on plant genotype, pathogen strain, and environmental 

conditions, the outcome of plant-pathogen interactions 
(PPI) may be disease, a physiological disturbance of the 
plant [3–5].

Disease resistance breeding and precision agriculture 
are key strategies to reduce yield losses due to plant dis-
ease in a sustainable way. Both rely on detection, iden-
tification and quantification of plant disease on various 
scales. In disease resistance breeding and pre-breeding, 
PPI are examined at the cell, tissue, whole plant and 
field plot level. Zooming in to the cell or tissue level can 
uncover the distinct mechanisms that determine plant 
resistance or susceptibility, and precise quantification 
of disease or resistance levels in whole plants or field 
plots aids the selection of the best genotypes. In preci-
sion agriculture, early and precise disease detection in 
the field enables efficient crop protection, e.g. by targeted 
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pesticide application or eradication of diseased plants. 
The challenge to detect and quantify plant disease in an 
unbiased and precise way initiated the field of plant dis-
ease phenotyping [6–8].

In general, “plant phenotyping” describes the study 
of the manifestation of a genotype under specific envi-
ronmental conditions [9]. In the context of PPI the phe-
notype consists of changes that can be described as 
contrasting indications of disease: signs and symptoms. 
Whereas these terms were originally used for changes 
that are visible to the human eye, here we will use them 
also for changes that can be detected by non-invasive 
sensors.

Following the American Phytopathological Society 
(APS) Illustrated Glossary of Plant Pathology, a “symp-
tom” is an indication of disease by reaction of the host 
[2]. These plant reactions include changes to pigmenta-
tion (e.g. necrosis, chlorosis), primary and secondary 
metabolism, and thermal energy dissipation (Fig.  1). A 
“sign” is an indication of disease from direct observation 
of a pathogen or its parts (e.g. sporulation, formation of 
fruiting bodies, mycelium, bacterial ooze) [2].

While the signs and symptoms are specific for each 
plant-pathosystem and influenced by environmental 
conditions, we classify them by their shared characteris-
tics for this review. In practice, signs and symptoms most 
often do not appear in isolation but occur simultaneously. 
For example, chlorosis, necrosis, and sporulation may 
successively co-occur in the same area of an infected leaf.

Phenotyping of PPI can be addressed with invasive 
methods. For example, colonization of a plant leaf by a 
pathogen can be detected, classified and quantified by 
quantitative polymerase chain reaction (qPCR) or for 
bacterial pathogens by measuring colony-forming units 
in a homogenate. Such invasive methods can be precise 
and objective. However, they are necessarily destructive 

and limited in speed and scalability, limitations that can 
be overcome by non-invasive sensors.

Non-invasive sensing offers the possibility of time-
course measurements, higher throughput and lower costs 
[8, 10, 11]. The classic approach for non-invasive pheno-
typing is visual inspection by humans. This can yield pre-
cise and accurate estimates if raters are well trained and 
appropriate scales are used. However, visual estimates are 
prone to subjectivity, offer limited speed and scalability, 
are often qualitative rather than truly quantitative, and 
are innately limited to the visible spectrum of light [12]. 
Sensor-based non-invasive phenotyping has the potential 
to increase throughput and precision, and can detect dis-
ease signs and symptoms that are invisible to the human 
eye [7]. Essentially, non-invasive sensors capture the 
changes in interactions between electromagnetic radia-
tion and matter (Fig. 2).

The most established sensors for non-invasively meas-
uring PPI are red–green–blue (RGB), hyperspectral, 
thermal, and fluorescence sensors (Table  1). Less often, 
monochrome sensors, Raman spectroscopy, and tomo-
graphic sensors have been used [6, 13–16].

By focusing here on the biological aspects of disease 
phenotyping, namely the signs and symptoms, we high-
light the sensor-based technologies that are most suit-
able for specific plant-pathosystems. We group the signs 
and symptoms into five generalised categories (Fig.  1 
and Table  2) to illustrate the common biological pro-
cesses that underlie sensor-detected signals, to highlight 
similarities between different plant-pathosystems and to 

Primary 
metabolism
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Necrosis

Secondary
metabolism

Pathogen
signs

Thermal energy dissipation 

Fig. 1 Signs and symptoms of plant-pathogen interactions. Depicted 
skeletal formulas are glucose, representing primary metabolism, and 
cinnamic acid, representing secondary metabolism
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Fig. 2 Physical paths of electromagnetic radiation in biological 
samples and their detection using non-invasive sensors. Passive 
(ambient light) or active radiation can be used to illuminate or 
excite the sample. Radiation can be reflected, transmitted, scattered, 
absorbed and re-emitted by the sample to varying degrees. 
The characteristic radiation can then be measured with sensors 
positioned on the side of the  source of illumination or on the 
opposite side of the sample
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thereby point out possibilities to transfer and adapt phe-
notyping solutions (Table 3).

Signs, symptoms and sensors
Pathogen signs
After successful infection, plant pathogens propagate 
on or inside their host plant, either by rapid replication 
(e.g. bacteria, viruses) or mycelial growth (fungi, oomy-
cetes) [4]. Quantifying the pathogen, based on signs like 
spores or mycelium, is a direct measure of plant resist-
ance, defined in a strict sense as the ability of the host to 
restrict pathogen growth [19]. When a pathogen grows 
on the surface of the plant, sensors that directly capture 
the optical changes caused by its physical presence can 
be used for non-invasive measurement (Table 3).

Powdery mildews are surface-colonizing pathogens 
representing a variety of obligate biotrophic fungi that 
can cause disease on various host plants. Growing on 
the surface, these fungi only penetrate epidermal cells 
and use haustoria to acquire nutrients. RGB imag-
ing was successfully applied to quantify pathogen signs 
both for grapevine powdery mildew (Erysiphe neca-
tor) and cereal powdery mildew infection (Blumeria 
graminis spp.) [20, 21]. In both studies, mycelial growth 
on detached leaf pieces was imaged in automated pheno-
typing systems. For grapevine powdery mildew, this sys-
tem included a movable stage and a DSLR camera [20]. 
For cereal powdery mildew, a monochrome charge-cou-
pled device (CCD) camera was combined with narrow-
bandwidth illumination and a robotic arm system. The 

best correlation to visual estimates of infected area was 
achieved with a simple segmentation algorithm that uses 
the minimum of the three RGB values [21]. While the 
throughput of imaging can be easily increased compared 
to visual scoring for both cereal powdery mildew and 
grapevine powdery mildew, the preparation of leaf sam-
ples remains a bottleneck for these plant-pathosystems.

Unlike powdery mildews, many other filamentous 
pathogens like fungi and oomycetes form signs on the 
surface of the host only at the end of the disease cycle, 
in the form of spore bearing structures. Sporulation of 
Cercospora beticola, a polycyclic necrotrophic ascomy-
cete fungus, occurs on the leaves of infected sugar beet 
in the area of the necrotic lesions. Hyperspectral micros-
copy was used to show that sporulation is correlated to 
an overall decrease in reflectance in the area of lesions 
in the spectral range of 400–900 nm [22]. However, the 
advantage of hyperspectral images over RGB images in 
this study is unclear since the proposed trait is the dif-
ference of the integral of reflectance over the entire 
spectral range of the camera. It would be interesting to 
know whether the difference in reflectivity over a nar-
rower wavelength range (e.g. one of the RGB channels) 
could match or improve the quantification of fungal 
sporulation.

An RGB flatbed scanner was used to assess the inter-
action between a panel of 335 wheat cultivars and 
Mycosphaerella graminicola (Septoria tritici blotch) [23]. 
Leaves were collected from a field trial with natural infec-
tion and scanned. From the scans the density, size and 

Table 1 Summary of sensors that have been used for phenotyping PPI

Sensor, technology Imaging/non-
imaging

Active/passive Effect measured Excitation/
illumination 
wavelengths

Measured 
wavelengths

Monochrome Imaging Mainly active Reflectance Variable Variable

RGB Imaging Mainly active, passive 
at large scale

Reflectance Variable, usually visible 
spectrum

Range: ~ 400–700 nm
R: ~ 600 nm
G: ~ 530 nm
B: ~ 460 nm

Hyperspectral Both Mainly active, passive 
at large scale

Reflectance, transmis-
sion

Variable 400–2500 nm

Thermal Mainly imaging Passive Emission NA 8–15 µm

Chlorophyll fluores-
cence (kinetics)

Imaging/non-imaging Active Emission 400–700 nm ~ 650–800 nm

Fluorescence Imaging/non-imaging Active Emission Mostly 300–400 nm Mainly 400–700 nm

Raman spectroscopy Non-imaging Active Inelastic scattering of 
photons (Raman scat-
tering)

Variable, often 
785–830 nm [17]

Raman bands, 
400–2133  cm−1 [18]

Optical coherence 
tomography

Imaging Active Reflectance of coher-
ent light

800–1000 nm or 
1200–1400 nm

800–1000 nm or 
1200–1400 nm

X-ray computed 
tomography

Imaging Active Attenuation, phase 
shift

~ 0.01–0.1 nm Visible light using 
scintillator
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melanisation of pycnidia (signs) as well as lesion size (a 
symptom) were measured. A Genome-Wide Associa-
tion Study using the phenotypic data identified 26 chro-
mosome intervals associated with Septoria tritici blotch 
resistance. Sixteen of these loci overlapped with inter-
vals that had already been identified based on visual 
assessment in previous studies, while ten had not been 
described before, demonstrating the potential power of 
quantitative phenotyping [23]. This example also illus-
trates the benefit of a high resolution, e.g. being able to 
discriminate single pycnidia to determine density and 
size, thus overcoming the weakness of low spatial resolu-
tion of many field phenotyping methods.

Transgenic pathogen strains that express detectable 
markers such as fluorescent proteins or bioluminescence 
conferring enzymes are another alternative to track and 
quantify pathogen growth directly [24, 25]. Fluorescent 
proteins have mainly been used to study the infection 
process in vivo at the cell level using epi-fluorescence or 
fluorescence confocal laser scanning microscopy. But 
also at the level of whole plants or seedlings, pathogens 
expressing fluorescent proteins, including bacteria, fungi, 
oomycetes and viruses have been used to track, image and 
quantify infection and colonization [26–31]. Plant auto-
fluorescence and low fluorescent protein signal intensity 
can hinder imaging at larger scales. Bioluminescence, 
so far mainly applied in bacteria, generates a light signal 
without prior excitation, therefore avoiding plant auto-
fluorescence. But the low signal intensity requires imag-
ing with sensitive cameras and extended exposure time in 
the dark (up to several minutes) [32, 33]. A recent study 
generated bioluminescent and fluorescent Pseudomonas 
syringae pv. phaseolicola [34]. The bioluminescence ena-
bled detection of the bacteria at the leaf scale in a dedi-
cated imaging chamber. Identified colonized plant parts 

could then be sampled and further investigated under the 
fluorescence microscope making use of the expressed flu-
orescent proteins. Since enzymes producing biolumines-
cent compounds have also been identified in fungi, such 
a luminescence based approach might also be feasible to 
facilitate quantification and examination of fungal infec-
tion at the macro- and microscopic level [35]. But all these 
approaches are restricted by the requirement for both 
a protocol for genetic transformation of the pathogen of 
interest and for facilities authorized to carry out experi-
ments with transgenic plant pathogens.

Symptom: changes in primary metabolism
In plant-pathogen interactions, the plant primary metabo-
lism is influenced both by manipulation of the pathogen 
and the immune response of the plant itself. Pathogen 
infection may modify source-sink relations in the plant 
or impair photosynthesis, while plant immune responses 
require additional resources from the pool of primary 
metabolites [36–38]. Together this may lead to detectable 
symptoms based on photosynthetic performance or altered 
accumulation and allocation of primary metabolites.

Photosynthetic performance can be probed by analyz-
ing chlorophyll a fluorescence and the kinetics of chlo-
rophyll a fluorescence (Chl-F) [39, 40]. According to the 
model of photosystem II (PSII) absorbed light energy can 
take three different paths: (i) drive photosynthesis (pho-
tochemical quenching); (ii) dissipate as heat (non-photo-
chemical quenching); (iii) re-emit as fluorescence [39, 41].

Measuring the kinetics of Chl-F, the changes of Chl-F 
under different light conditions, e.g. before and after a 
saturating light pulse, allows separation of these com-
ponents and calculation of diverse parameters that yield 
information about photosystem II (PSII) photochemistry, 
electron flux, and  CO2 assimilation [39, 40]. Commonly 

Table 3 Suitability of sensors for phenotyping PPI

“Not used/unsuitable” (−), “Preliminary” ( +) and “Widely used” (+ +)

RGB Hyperspectral Thermal Fluorescence Chlorophyll 
fluorescence 
(kinetics)

Raman 
spectroscopy

OCT X-ray CT

Pathogen signs Controlled +  + + − + − − + + 

Field +  +  + − − − − + −
Primary metabolism Controlled − + − − +  + + − −

Field − + − − +  + + − −
Secondary metabolism Controlled − + − + − + − −

Field −  + − + − + − −
Necrosis and chlorosis Controlled +  + +  + − + + − + + 

Field +  + + − + + − + −
Thermal energy dissipation Controlled − − +  + − − − − −

Field − − + − − − − −
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used parameters are the maximum quantum efficiency of 
PSII photochemistry  (Fv/Fm), the operating efficiency of 
PSII photochemistry (ɸPSII,  Fq’/Fm’ or ∆F/Fm), the level 
of photochemical quenching of PSII (qP or  Fq’/Fv’) or the 
level of non-photochemical quenching (NPQ) which esti-
mates the rate constant for heat loss from PSII [40].

With commercially available Chl-F kinetics imaging 
systems these parameters can be mapped onto imaged 
leaves or whole plants, enabling identification of spatial 
heterogeneity that may be linked to localized patho-
gen infection [42]. Many of the Chl-F parameters (e.g. 
 Fv/Fm, qP, NPQ) are measured on dark-adapted plants 
and commonly require light sources in close proximity 
to the plant to provide e.g. a saturating pulse to meas-
ure maximum fluorescence  (Fm). Therefore, most Chl-F 
imaging systems are designed for growth chambers or 
greenhouses where LED panels can provide even illumi-
nation and plants can easily be dark adapted [42]. How-
ever, there are also field phenotyping systems that include 
Chl-F imaging with active illumination [43]. Dark adap-
tion in the field can be achieved by imaging at night or 
before dawn. But because the sensor needs to be close to 
the plants, Chl-F imaging with active illumination in the 
field is limited to ground-based phenotyping platforms 
which offer limited throughput compared to uncrewed 
aerial vehicles (UAV).

Analysis of spectral reflectance under sunlight does not 
require active illumination and is therefore an alternative 
for probing photosynthesis that is compatible with aerial 
vectors like UAVs or aircrafts. Spectral reflectance data 
can be used to build predictive models for photosynthetic 
parameters like maximum carboxylation rate of Rubisco 
or to estimate sun-induced chlorophyll fluorescence [44–
47]. For example, sun-induced chlorophyll fluorescence, 
determined from spectral images taken from an aircraft, 
has successfully been used to estimate disease severity of 
olive trees infected with the bacterium Xylella fastidiosa 
[48]. But these approaches are technically challenging, 
both in data acquisition and data analysis, and interpre-
tation is difficult because the relationship of reflectance, 
canopy geometrical structure, leaf physiology and vari-
ation in solar radiation is not fully understood [47, 49, 
50]. So far, these challenges limit applications, despite the 
potential especially for large scale remote sensing of plant 
stress.

Chlorophyll fluorescence imaging systems with active 
illumination on the other hand have been used in numer-
ous studies to monitor the effect of pathogen infection on 
plants [42]. A common response, in many cases prior to 
visual changes, is the decrease of ɸPSII resulting from a 
decreased PSII electron transport as well as an increased 
heat dissipation rate (NPQ). This has also been observed 
for infections of many biotrophic pathogens like powdery 

mildew of wheat and barley (B. graminis), powdery mil-
dew of cucurbits (Podosphaera xanthii), downy mildew 
of lettuce (Bremia lactucae) and downy mildew of grape-
vine (Plasmopara viticola) [51–54]. These biotrophic 
pathogens often induce visible symptoms only at late 
infection stages, thus Chl-F imaging may be particularly 
useful to visualize and quantify early colonization.

A general drawback of Chl-F imaging is the lack of 
specificity as photosynthesis and Chl-F are influenced 
by many biotic and abiotic stress factors alike [55]. This 
could be partially overcome by taking into account the 
differences in spatial patterns of Chl-F changes. Patterns 
induced by localized pathogen infection might be distin-
guishable from patterns induced by abiotic stresses that 
affect the whole plant.

While Chl-F provides information about the current 
productivity of the plant, it does not allow for quantifi-
cation of the actual concentration of primary metabo-
lites. Changes in accumulation and allocation of sugars, 
starch, amino acids or proteins can, in principle, also be 
estimated directly via reflectance spectroscopy or imag-
ing spectroscopy in the visible (VIS, 400–700 nm), near-
infrared (NIR, 700–1000  nm) and shortwave infrared 
(SWIR, 1000–2500 nm) range [56–58]. Such approaches 
are based on combining non-invasive spectroscopic 
measurements with biochemical analysis of the same tis-
sue to build predictive models. For example, Ely et al. [56] 
developed spectra-trait models for leaf starch, glucose, 
and protein content based on reflectance spectroscopy 
(500–2400  nm) and biochemical analysis of leaves of 
eight crop species. However, the usefulness of such mod-
els for linking spectral features to metabolic changes dur-
ing PPI still requires validation.

So far, studies only indicate that reflectance spectros-
copy may sense specific changes in primary metabolism 
during PPI. Gold et  al. [59] collected reflectance spec-
tra (400–2400 nm) with a portable non-imaging contact 
spectrometer from potato leaves at different infection 
stages of Phytophthora infestans or Alternaria solani. 
Using spectra-trait models they estimated pathogen-
induced changes in leaf sugar, starch and nitrogen con-
centration and found increased sugar concentration 
during the biotrophic, necrotrophic and sporulation 
phase of P. infestans. But these estimates were not vali-
dated by chemical analysis and the applied spectra-trait 
models were originally developed on data from forests 
and grasslands [60]. Although the study shows clear dif-
ferences in reflectance spectra between tissue infected 
with the different pathogens and tissue at different infec-
tion stages, the interpretation of these spectral differ-
ences remains unclear.

A similar study in rice with healthy and sheath blight 
(Rhizoctonia solani) affected plants found that differential 
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spectral regions could be linked to absorption features of 
starch, cellulose and protein content, although they were 
not chemically validated [57, 61].

Both of these studies used non-imaging spectrome-
ters and found spectral features in the SWIR range to be 
important for detection of diseased plant tissue. There-
fore, imaging SWIR sensors might be particularly useful 
to not only measure changes to primary metabolites but 
also to provide spatial information on these changes.

Symptom: changes in secondary metabolism
Plant secondary metabolites (PSM) are a large group of 
structurally and functionally diverse metabolites that 
are, as opposed to primary metabolites, considered 
non-essential for primary functions like photosynthesis, 
growth and reproduction [62, 63]. Those PSM that are 
involved in plant immunity are commonly classified into 
two groups, phytoanticipins and phytoalexins [64]. While 
phytoanticipins are constitutively produced and stored in 
plant tissue, phytoalexins are synthesized in response to a 
pathogen. Members of both groups show in vitro antimi-
crobial and insect-deterrent activity [65].

Independent of their function, PSM can be informative 
markers for preformed resistance (phytoanticipins), or 
a symptom of the infection progress, and magnitude or 
quality of the plant immune response (phytoalexins). Due 
to their specific absorption and, in some cases, fluores-
cence spectra they may be detected non-invasively, e.g. 
by reflectance and fluorescence spectroscopy or imaging 
[57, 66].

In grapevine, infection with the downy mildew patho-
gen Plasmopara viticola induces the accumulation of 
stilbenes, a group of phenolic compounds [67]. Pure 
stilbenes emit a violet-blue fluorescence around 400 nm 
when excited with UV light (335 nm) [68]. A fluorescence 
signal with a similar spectrum was imaged in downy mil-
dew infected grapevine leaves at the cell level using con-
focal laser scanning microscopy, as well as at the tissue 
level using epifluorescence macroscopy [68–70]. Mass 
spectrometry imaging revealed co-localization of stil-
benes with the violet-blue fluorescence signal, suggesting 
that stilbenes are indeed the source or at least contribute 
to the observed fluorescence [70]. Since stilbene synthase 
expression has also been linked to downy mildew resist-
ance, the violet-blue fluorescence may not only enable 
detection and quantification of downy mildew infection 
but also allow for the assessment of differences in plant 
defense responses [71].

Blue (around 440 nm) and green (around 520 nm) fluo-
rescence upon UV excitation has also been described in 
Nicotiana benthamiana infected with Pepper mild mot-
tle virus, likely due to accumulation of the phenolic com-
pound chlorogenic acid, and in wheat infected with leaf 

rust (Puccinia triticina) or powdery mildew (Blumeria 
graminis f. sp. Tritici) [72, 73].

These examples indicate that changes in UV-excited 
blue and green fluorescence, induced by certain patho-
gens, is a conserved response across plant species. In 
fact, it has been described as a general conserved stress 
response, also to abiotic stresses including drought, nutri-
ent deficiencies and increased UV irradiation [74–77]. 
Responsible fluorophores in most cases are likely stress-
induced soluble and cell wall bound phenolic compounds 
that fluoresce in the blue-green spectrum [78]. For exam-
ple, the fluorescent stilbenes accumulate in grapevine 
leaves also in response to prolonged UV-C irradiation 
[70]. Consequently, distinction between infections of dif-
ferent pathogens, or between biotic and abiotic stress, 
might not be possible. This is a critical limitation for phe-
notyping in field trials, where various stresses can occur 
simultaneously.

Plant secondary metabolite content of leaves may 
also be estimated via reflectance spectroscopy [79, 80]. 
Spectral indices or models for leaf traits like phenolic 
content have been mostly developed and validated for 
remote sensing in landscape ecology studies [60, 79]. 
For example, Kokaly and Skidmore [80] proposed that 
an absorption feature around 1660 nm is related to con-
tent of phenolic compounds in different plant species and 
showed that in fresh tea leaves (Camellia sinensis), this 
absorption feature correlates with total phenolic com-
pound content.

Only a few studies have combined spectral measure-
ments with biochemical analysis of diseased plants. 
This is required to link spectral features to physiologi-
cal processes during PPI. Brugger et  al. [81] explored 
spectral imaging in the UV range (250–400  nm), which 
is particularly interesting because many plant secondary 
metabolites involved in stress responses feature absorp-
tion maxima in that range. They found in barley infected 
with powdery mildew (Blumeria graminis f. sp. hordei) 
that changes in flavonoid content during the first 5 days 
of infection correlated with reflectance intensity around 
wavelengths that match flavonoid absorption spectra. 
But adverse interaction of the sensor with the required 
UV light source restrains interpretation of these results. 
Another study combined spectral imaging in the SWIR 
range (970–2500 nm) with untargeted metabolic finger-
printing of three different sugar beet genotypes infected 
with Cercospora beticola [82]. Although there were corre-
lations between several secondary metabolites and spec-
tral data, it remains unclear if this correlation is due to 
direct contribution of these metabolites to the reflectance 
spectrum. Combining imaging spectroscopy with mass 
spectrometry imaging could help to provide direct links 
between specific metabolite groups and spectral features.
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Raman spectroscopy is another technology to measure 
changes in plant secondary metabolism. After excitation 
of the sample with a laser it measures the inelastic scat-
tering of photons (also called Raman scattering), which 
can provide both qualitative and quantitative informa-
tion about the chemical composition of the sample [15, 
83]. Raman scattering can be collected with portable 
non-imaging handheld Raman spectrometers [84, 85] 
and this approach has been applied to detect viral, bacte-
rial and fungal infections in plants [85–89]. For example, 
a handheld Raman spectrometer was used to detect C. 
liberibacter spp. infection in citrus trees. Using orthogo-
nal partial least squares discriminant analysis, grapefruit 
leaves were classified into healthy, infected, and nutri-
ent-deficient categories with 98% accuracy in the train-
ing set, but the authors did not validate the classification 
accuracy in a test set [86, 87]. Infection was associated 
with increased intensity of the Raman band assigned 
to lignin and phenolic compounds. Correspondingly, a 
follow-up study found increased p-coumaric acid con-
tent in infected leaves, a phenolic compound and lignin 
precursor whose Raman spectrum matches the disease 
associated bands [90]. Similar disease associated bands, 
likely corresponding to phenolic compounds, have also 
been described for virus infection in wheat, tomato 
and rose [15, 88, 91]. These studies used non-imaging 
Raman spectrometers, which only provide point meas-
urements and do not yield any spatial information. But 
Raman spectroscopy can also be combined with digital 
imaging so that Raman spectra are recorded for each 
pixel [92]. This has been explored as a tool for quality 
and safety inspection in food, pharmaceutical, and bio-
medical sectors and, for example, to detect watermelon 
seeds infected by the bacteria Acidovorax citrulli [93, 94]. 
So far, the lengthy image acquisition has restricted the 
throughput and therefore applications of Raman imag-
ing, but Lee et al. [94] report a relatively fast system that 
requires 250 s to image an area of five by twenty cm with 
a spatial resolution of 250 by 1024 pixels. Such systems 
may already be useful for certain phenotyping challenges, 
but further reducing the acquisition time would widen 
the range of possible applications.

Symptom: necrosis and chlorosis
Pathogen-induced chlorosis and necrosis are promi-
nent symptoms of plant disease as they are visually evi-
dent and very common. Chlorosis results from changes 
in pigmentation, mainly the degradation of chlorophyll, 
and necrosis from the death of cells and tissue. Both may 
occur locally in lesions, with chlorosis often preceding or 
surrounding necrotic lesions. Viruses can cause chlorosis 
in diverse patterns that are often reflected in their name 

(e.g. “chlorosis”, “mottle”, “mosaic”, “streak”, “vein clear-
ing”, “yellowing”) [95].

Both chlorosis and necrosis can be induced by spe-
cific pathogen-produced metabolites or proteins, e.g. 
the chlorosis inducing coronatine from Pseudomonas 
syringae or the necrosis and ethylene-inducing peptide 
1 (Nep1)-like proteins from Botrytis cinerea [96–101]. 
Particularly pathogens with a necrotrophic life style pro-
duce toxins that kill plant cells, by disrupting the plant 
cell membrane directly or by generating membrane 
damaging reactive oxygen species [102, 103]. In interac-
tions with viruses and biotrophic pathogens like downy 
mildews, chlorosis is often induced in later stages of the 
infection, and chlorophyll degradation appears to be reg-
ulated by the same plant genes that control regular leaf 
senescence [104–106]. The area of chlorotic or necrotic 
tissue can serve as a good proxy to estimate spread of 
the pathogen, as well as the impact on yield, depending 
on plant developmental stage, type of the pathogen and 
stage of the infection.

While chlorotic tissue has reduced chlorophyll con-
tent, necrotic tissue lacks all pigments characteristic for 
healthy plant tissue. This results in changes of absorption 
and reflectance in the visible spectrum, evident as color 
ranging from yellow (chlorosis) to shades of brown to 
black (necrosis). Besides the lack of pigments, necrotic 
tissue also differs from healthy tissue in water content 
and three-dimensional structure due to the collapse 
of cells. A lower ratio of cell surface to intercellular air 
space due to a collapse of e.g. the spongy mesophyll leads 
to reduced reflectance of NIR radiation [107]. Changes 
in water content in necrotic tissue also impacts SWIR 
reflectance due to several water absorption peaks in the 
SWIR range [108, 109]. Consequently, sensors that detect 
reflectance in the VIS–NIR-SWIR range are useful to 
quantify chlorosis and necrosis. The contrast between 
healthy leaf tissue and lesions lacking chlorophyll may 
be enhanced by imaging the red steady-state chlorophyll 
fluorescence [110, 111]. The onset of cell death can also 
be visualised by imaging the increased chlorophyll fluo-
rescence that results from the disassembly of the chloro-
plast thylakoid membrane in tissue undergoing cell death 
[112]. Additionally, the changes in plant internal tissue 
structure that precede and are associated with necro-
sis and tissue damage can be measured with different 
tomography methods, e.g. optical coherence tomography 
(OCT) or X-Ray computed tomography (CT) [113, 114].

In controlled experiments, particularly on samples 
that are easy to image such as detached leaves, RGB 
imaging is an established method to track and quantify 
chlorosis and necrosis. Barbacci et  al. [115] combined 
a detached leaf assay with a setup for automated RGB 
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image acquisition and analysis to quantify necrotic lesion 
development on Arabidopsis inoculated with S. scleroti-
orum. This enabled measurement of latency period and 
lesion doubling time (LDT) at high resolution (measure-
ment every 10 min over 36 h) and of large sample sizes 
(120–270 leaves per imaging unit). Whereas latency 
period varied mostly between different S. sclerotiorum 
isolates, LDT was mainly determined by the plant geno-
type and independent of the inoculated isolate. Using 
the differences in LDT as a robust indicator of quantita-
tive resistance led to the identification of the nucleotide-
binding site leucine-rich repeat gene LAZ5 as a negative 
regulator of quantitative resistance to S. sclerotiorum. On 
a similar scale, RGB imaging enabled quantification of 
chlorosis induced by P. syringae in Arabidopsis seedlings 
growing in 48-well plates [116, 117]. The assay was tested 
in a genome-wide association study to efficiently distin-
guish between presence and absence of effector-triggered 
immunity and confirmed the loci of known resistance 
genes.

In field experiments, necrosis in maize infected by Seto-
sphaeria turcica (Northern corn leaf blight) or sugar beet 
infected by C. beticola (Cercospora leaf spot) has been 
assessed by sensors [118, 119]. Wiesner-Hanks et al. [118, 
120] acquired images with a RGB camera mounted on 
a UAV flying 6 m above a maize field trial. The necrotic 
lesions captured in these images were manually anno-
tated and used to train a CNN. Combining this CNN 
with a conditional random field method allowed auto-
mated segmentation of the aerial images to identify and 
quantify lesion area.

In a sugar beet field trial, Jay et  al. [119] tested both 
RGB imaging from a ground-based vehicle and spectral 
imaging (six bands between 450 and 850  nm) from a 
UAV to assess Cercospora leaf spot severity. They deter-
mined the necrotic spot density from RGB images and 
green fraction from both RGB and spectral images. The 
image data was compared to visual severity scores given 
by an expert on a 1–9 scale. Spot density gave a better 
prediction for low (less severe) visual scores and green 
area was a better predictor for high visual scores. Con-
sequently, combining these two features as input for a 
neural network enabled a good prediction of the visual 
disease scores. Because only the ground-based RGB sen-
sor enabled measuring both of these features, it outper-
formed the aerial spectral sensor.

Symptom: thermal energy dissipation
Plant-pathogen interactions can result in a change of 
tissue temperature by affecting energy balance terms 
such as transpiration or light absorption [121]. These 
induced changes often precede other symptoms and 
are characterized by complex spatial and temporal 

dynamics. This makes thermal energy dissipation an 
interesting candidate trait for early detection of dis-
ease. PPI can cause an increase in tissue temperature 
by inducing stomatal closure and vascular occlusion. 
Conversely, damage to cells and deregulation of sto-
matal opening can lead to decreased tissue tempera-
ture through uncontrolled transpiration [122, 123]. 
Photosynthetic performance has an influence on plant 
temperature as well because part of the absorbed light 
energy, if not emitted as fluorescence or converted in 
photochemistry, is dissipated as heat in the process of 
non-photochemical quenching [39].

Temperature can be remotely measured in the ther-
mal infrared spectrum (TIR, 8000–15,000  nm) with 
radiometric sensors [124]. This technology has long been 
applied to measure abiotic stresses, particularly drought 
stress which is associated with an increased canopy tem-
perature [125, 126]. Multiple plant-pathosystems have 
also been studied with thermal sensors [127].

Vascular pathogens that grow within the xylem of host 
plants can cause occlusion of the vascular system due 
to both their own growth and the plant responses to the 
pathogens. This can lead to symptoms similar to drought 
stress, as the hydraulic conductivity is inhibited by the 
occlusion [128]. In a field experiment, the crown tempera-
ture of olive trees under natural infection with Verticillium 
dahliae, a vascular fungal pathogen, was measured with 
infrared temperature sensors (Apogee IRR-P) mounted 
1 m above the trees. The temperature was positively cor-
related with Verticillium wilt disease severity levels across 
multiple sites [129]. The same authors validated and vastly 
increased the throughput of their methods by mounting 
a broad-band thermal camera (FLIR SC655) on a crewed 
aircraft and flying it over 3000 ha of olive orchards [130].

The measurement of plant thermal energy dissipation is 
not easy to measure in the field as environmental effects 
and the influence of other stresses decrease specificity 
of the measurements. Therefore, many studies of plant 
thermal energy dissipation are performed in controlled 
environments.

An abscisic-acid-induced stomatal closure in leaves of 
cucumber infected with the vascular pathogen Fusar-
ium oxysporum f. sp. Cucumerinum could be detected 
by an increase in temperature with a FLIR SC620 digi-
tal infrared camera in a controlled environment [123]. 
The maximum temperature of leaves of infected plants 
was reached nine days after infection. The authors also 
observed a fast decrease of temperature ten days after 
infection and attributed it to uncontrolled water loss due 
to cell damage. Eleven days after infection, leaf tempera-
ture rose again which was attributed to dehydration of 
the leaves.
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Virus-plant interactions can also influence tissue tem-
perature. Tobacco infected with tobacco mosaic virus 
shows a fast increase in leaf temperature at the initial 
infection site preceding a hypersensitive response. 
This increase in temperature is due to stomatal closure 
which is induced by salicylic acid accumulation. The 
same areas of the leaves later appear as necrotic lesions 
[131]. Changes in leaf temperature were also observed 
in sweet potato upon infection with two different 
viruses, Sweet potato feathery mottle virus (SPFMV) 
and Sweet potato chlorotic stunt virus (SPCSV) [132]. 
In this controlled environment experiment, leaf tem-
perature was measured with a top-view thermal cam-
era (FLIR A615) and differed between healthy plants, 
plants infected with SPFMV, and plants co-infected 
with both viruses. Higher temperatures were associated 
with higher disease severity scores [132].

Sensing structural changes
Preliminary studies using tomographic sensors for phe-
notyping PPI have been performed in various plant-
pathosystems. As these sensors measure spatially 
resolved attenuation, refractive index variation and 
scattering strength inside tissue, they can be useful to 
non-invasively study internal structural changes which 
can allow for early detection and potentially identi-
fication of disease [113, 114, 133, 134]. Besides meas-
uring internal plant and pathogen structure, X-ray CT 
scanning also provides the option to measure through 
substrate and was used to study changes in root mor-
phology of potato affected by Streptomyces scabies 
[135].

Synchrotron‐based phase contrast X-ray CT was used 
to measure differences in tissue degradation in wheat 
caused by Fusarium graminearum [114]. A known resist-
ance mechanism to this fungus is the inhibition of fungal 
colonization from spikelet to spikelet inside the rachis 
internode. Traditional histological studies to quantify 
this type of resistance require destructive sampling. The 
tissue degradation leads to increased tissue porosity, 
which makes it possible to sense the pathogen spread by 
changes in X-ray attenuation.

Leaves of apple trees infected with Marssonina coro-
naria were measured with a custom-built backpack-
based OCT sensor in the field [133]. Disease progression 
causes an enlarged gap between epidermis and palisade 
parenchyma that could be sensed by a reduction in back-
scattering. The presence of infection was confirmed using 
Loop-mediated isothermal amplification, a nucleic-acid 
based technique [133]. Authors from the same group 
applied similar techniques in leaves of Capsicum annuum 
infected with Stemphylium lycopersici [134].

These studies show the potential of tomographic sen-
sors for early detection of disease as well as phenotyping 
of below ground structures.

Discussion
Phenotyping plant-pathogen interactions 
in the field is limited by specificity, canopy structure, 
and environmental conditions
Signs and symptoms are easier to measure in a controlled 
environment where plant material can be accessed from 
multiple angles at close proximity and under optimal 
illumination. Yet field phenotyping is a requirement for 
most disease resistance breeding programs and precision 
agriculture.

Traits identified in controlled environments at small 
scales such as lesion size or sporulation, may, in some 
cases, be transferrable to the field [7, 136, 137]. For exam-
ple, Northern corn leaf blight causes large and obvious 
lesions on maize plants, a symptom that was measured 
on RGB images taken from a UAV at 6 m altitude [118, 
120]. This way, the relative area of necrotic maize tissue 
could be measured with high throughput.

However, it is technically more demanding to meas-
ure signs and symptoms under field conditions. Multiple 
biotic and abiotic stresses can affect plants simultane-
ously and lead to a loss of specificity. For example, chlo-
rosis may be caused both by a pathogen or abiotic stress. 
In a canopy, plants or plant parts can shade each other 
from the sensors, especially in tall growing crops where 
lower plant parts are covered. Applying sensors from a 
distance, e.g. when mounted on UAVs, can result in a lack 
of spatial resolution. Also, natural radiation influences 
sensor-based measurements and can confound the meas-
urement of signs and symptoms.

The effect of natural radiation can be controlled either 
by numerical correction during the data analysis, or by 
shading during the data acquisition, but both approaches 
are difficult due to the spatial and temporal variation of 
natural radiation. The technical limitations involving 
spatial resolution and natural radiation could be over-
come partly by ground-based phenotyping platforms 
that carry sensors close to the canopy and offer a com-
promise between throughput and accuracy. For example, 
ground-based RGB imaging outperformed aerial RGB 
imaging for assessing Cercospora leaf spot in a sugar 
beet field trial [119]. The ground-based platform offered 
higher spatial resolution and artificial illumination which 
enabled measuring necrotic spot size and density, traits 
that could not be measured with the aerial platform. The 
specificity of measurements could potentially be further 
improved by sensor fusion, the integration of data from 
multiple sources [138, 139]. A combination of functional 
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plant traits derived from hyperspectral imaging (400–
885  nm) and a thermal imaging sensor mounted on an 
aircraft enabled early detection of Xylella fastidiosa, a 
xylem-bound bacterial pathogen of olive trees [48].

These examples illustrate that it is feasible to increase 
throughput while maintaining accuracy also under field 
conditions. But it is critical that the challenges of speci-
ficity, canopy architecture, spatial resolution and natural 
radiation are considered and addressed with new solu-
tions like improved sensor and vector technology or sen-
sor fusion.

Non-invasive phenotyping of below-ground 
plant-pathogen interactions remains a challenge
Phenotyping of PPI below ground is still in an early stage 
of development as in-soil non-invasive phenotyping is 
difficult. Using invasive sampling and RGB imaging, 
changes of morphological root characteristics could be 
detected on soybean infected with Fusarium species and 
on alfalfa affected by Phymatotrichopsis root rot [140, 
141]. Tomographic sensors are an option to measure 
PPI on roots growing in substrate in pots non-invasively 
[135]. With new X-ray CT scanners that are installed 
in automated phenotyping facilities, this method may 
become more accessible [142–144].

Sensor data helps to understand plant-pathogen 
interactions in more detail
Sensor-based phenotyping is commonly deployed to sub-
stitute traditional visual disease scores, for example to 
rank a genotype on a spectrum from resistant to suscep-
tible in comparison with other genotypes [12]. Yet sen-
sor-based phenotyping can capture the sum of processes 
that underlie PPI in more detail than what is reflected in 
traditional disease severity scores. To understand which 
specific PPI related changes influence the detected sig-
nals, sensor data needs to be linked with in situ measure-
ments, particularly in the case of advanced sensors. This 
has been shown successfully in two studies that linked 
disease induced accumulation of phenolic compounds 
to specific Raman bands in Raman spectroscopy [90] and 
flavonoids to UV absorption features in spectral imaging 
[81]. Establishing and confirming such links will allow to 
non-invasively measure diverse aspects of PPI simultane-
ously and to transfer those findings between pathosys-
tems and environments.

Advanced sensors expand the range of perceivable signs 
and symptoms but require complementary technologies
Implementation of sensor technology for phenotyping of 
PPI allows for measurement of a wide range of signs and 
symptoms (Table  2). Plant metabolites may be detected 

with spectroscopic methods, and internal plant and 
pathogen structures can be detected with tomographic 
methods [15, 18]. Fluorescence imaging, possibly with 
tagged pathogens, and chlorophyll fluorescence imaging 
are other promising approaches for measuring pathogen 
growth and photosynthetic parameters. To build useful 
phenotyping systems, any improvements and innovation 
in sensor technology need to be matched with appropri-
ate facilities, vector technology, data management and 
data analysis methods. In those fields, constant improve-
ment is pivotal, such as increased payload of UAVs, addi-
tion of active illumination to ground-based phenotyping 
platforms, automation of indoor phenotyping systems, 
implementation of FAIR data standards and new machine 
learning methods for analysis [11, 145–148]. Integration 
of the resulting phenotypes with other-omics data can 
enable a more comprehensive interpretation of sensor 
data and will eventually lead to a deeper understanding of 
plant-pathogen interactions.
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