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Abstract

Background: 3D imaging, such as X-ray CT and MRI, has been widely deployed to study plant root structures. Many
computational tools exist to extract coarse-grained features from 3D root images, such as total volume, root number
and total root length. However, methods that can accurately and efficiently compute fine-grained root traits, such as
root number and geometry at each hierarchy level, are still lacking. These traits would allow biologists to gain deeper
insights into the root system architecture.

Results: We present TopoRoot, a high-throughput computational method that computes fine-grained architectural
traits from 3D images of maize root crowns or root systems. These traits include the number, length, thickness, angle,
tortuosity, and number of children for the roots at each level of the hierarchy. TopoRoot combines state-of-the-art
algorithms in computer graphics, such as topological simplification and geometric skeletonization, with customized
heuristics for robustly obtaining the branching structure and hierarchical information. TopoRoot is validated on both
CT scans of excavated field-grown root crowns and simulated images of root systems, and in both cases, it was shown
to improve the accuracy of traits over existing methods. TopoRoot runs within a few minutes on a desktop worksta-
tion for images at the resolution range of 40013, with minimal need for human intervention in the form of setting
three intensity thresholds per image.

Conclusions: TopoRoot improves the state-of-the-art methods in obtaining more accurate and comprehensive
fine-grained traits of maize roots from 3D imaging. The automation and efficiency make TopoRoot suitable for batch
processing on large numbers of root images. Our method is thus useful for phenomic studies aimed at finding the
genetic basis behind root system architecture and the subsequent development of more productive crops.

Keywords: Root system architecture, Phenotyping, 3D Imaging, Topology, Computer Graphics

Introduction

Roots are the primary means by which the plant absorbs
water and nutrients, and they provide anchorage to the
plant. These functions are largely determined by the root
system architecture (RSA) [1-3], which describes both
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the geometry of individual roots and their hierarchical
relationships. Quantifying RSA enables efforts to dis-
cover the genetic control of root traits, which can lead
to improved crop productivity while minimizing adverse
environmental effects [2, 4]. However, RSA is difficult
to study owing to roots’ poor accessibility as the “hid-
den half” of the plant. Traditionally, roots are excavated
from the soil, washed, and then measured by hand using
devices such as rulers, calipers, and protractors. This pro-
cess is not only labor-intensive but also prone to human
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errors. More importantly, many aspects of RSA, particu-
larly those pertaining to lateral roots of higher order, are
almost impossible to measure by hand.

Advances in 3D imaging, including X-ray CT, MRI,
and optical imaging [5-7], have allowed root shapes to
be captured digitally either after excavation or in situ.
The availability of such imaging data has paved the way
for recent efforts towards computational quantifica-
tion of root system architecture [8—10]. However, most
image-based root phenotyping methods only compute
overall traits such as the volume, depth, convex hull vol-
ume, total root length, and root number [11-14]. Though
useful, these traits which are aggregated over the whole
root system do not capture the branching structure or
the hierarchical organization of individual roots, which
provide a much more comprehensive description of RSA.
Recently, a system for multi-view scanning and subse-
quent computational analysis, known as DIRT/3D [15],
was proposed to measure detailed traits of maize root
crowns. The system can report 18 traits that concern
the geometry of the stem (e.g., diameter and depth), the
upper whorls (e.g., inter-whorl distance) and their indi-
vidual nodal roots (e.g., length, angle and diameter). An
inherent challenge for multi-view reconstruction, due to
occlusion, is resolving densely packed roots. As a result,
DIRT/3D does not provide a full root hierarchy beyond
the nodal roots.

To our knowledge, DynamicRoots [16] is the only
published and validated root phenotyping method
that produces a full branching hierarchy and root traits
associated with each hierarchy level in 3-dimensions.
DynamicRoots is designed for a time-series of root sys-
tems grown in transparent gel [17]. These seedling-stage
root systems tend to have a relatively simple geometry
and structure, which makes it possible to obtain high
quality 3D voxelized reconstructions using multi-view
imaging [18]. DynamicRoots first employs graph analy-
sis on the voxelized root system at each time-point to
identify the root branches. Hierarchical relations among
the branches are first determined by the length of the
branches and then refined by the time function obtained
by aligning root architectures across time. While, in the-
ory, DynamicRoots can process any segmented 3D root
image, its accuracy can be significantly affected by the
number of topological errors in the segmentation, such
as disconnected root components and root branches
forming loops due to touchings. Although such errors are
scarce in the multi-review reconstruction of simple seed-
ling-stage roots, they can be abundant in 3D images of
more complex root systems. In addition, DynamicRoots
requires a time series to obtain the correct root hierarchy.

In this work, we present TopoRoot, a method for
obtaining the complete root hierarchy and associated
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fine-grained traits of a mature maize root system (or
crown) from a single 3D image. Compared with Dynami-
cRoots, TopoRoot is designed to deal with topological
errors, which are common in images of complex root
systems, and to infer the hierarchy without the need
for a time series. TopoRoot builds on several state-of-
the-art algorithms from computer graphics, including
topological simplification and 3D skeletonization, and
introduces customized heuristics tailored to the maize
root structure.

TopoRoot is validated on both real and simulated data.
On a set of 45 X-ray CT scans of excavated maize root
crowns, TopoRoot shows dramatic improvements in
accuracy over DynamicRoots in counting the number of
nodal roots. On another set of 495 synthetically gener-
ated images of maize root systems simulated by Open-
SimRoot [19] with varying age, complexity, and noise
level, TopoRoot exhibits improved accuracy in a variety
of coarse-grained and fine-grained traits over Dynamic-
Roots and GiaRoots [14].

TopoRoot is completely automated and requires set-
ting only three thresholds for each image. On a standard
desktop computer, TopoRoot runs within a few minutes
for images at the resolution range of 40073. This makes
TopoRoot suited for batch processing a large set of
images in a high-throughput analysis pipeline. The soft-
ware package is freely distributed on GitHub with our
X-ray CT dataset.

Methods

Overview

The input to the TopoRoot pipeline is a 3D grayscale
image, I, of a maize root crown or root system, repre-
sented as a stack of 2D image slices. The pipeline assumes
that I has sufficient contrast between the roots and their
surroundings (e.g., soil), so that intensity thresholding
can be used to segment the roots. If this assumption does
not hold, such as when large chunks of soil are attached
to the roots or in the case of in situ imaging in soil, Topo-
Root may still be applied if the roots can be segmented by
a third-party segmentation algorithm (see "Discussions"
section). TopoRoot produces a root hierarchy and fine-
grained root traits in four steps (see Fig. 1).

1. Segmentation: This step produces a binary segmen-
tation, B, from image I that captures the root shape
with few topological errors. It does so by combin-
ing a recently developed topological simplification
algorithm [20] with a new algorithm that ensures the
solidity of the root stem

2. Skeletonization: This step computes a skeleton, S,
from the binary segmentation B such that S has the
correct topology of a tree (that is, being connected
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Input: 3D grayscale image (/)

A)

Topologically simplified
segmentation (B)

(B)

Skeleton representing
branching structure ()

©

Hierarchy (H)

D)

Fig. 1 The pipeline of TopoRoot for computing fine-grained traits from a 3D image. Beginning from a 3D grayscale image / represented as a
stack of image slices (A), TopoRoot first computes a topologically simple segmentation B (B), then it creates a geometric skeleton S capturing the
branching structure (C), from which a hierarchy H is obtained (D) and the traits are subsequently computed. This example and the ones in Figs. 2, 3,

4 are taken from our CT scans of root crowns; see details in "Results" section

and free of cycles). This is done by employing an
existing skeletonization algorithm [21, 22] followed
by a novel heuristic to remove cycles.

3. Inferring hierarchy: A hierarchy, H, is obtained from
the skeleton S so that each edge of S is given an inte-
ger indicating its level in the hierarchy (e.g., 0 means
the stem, 1 means the nodal roots, 2 means the lat-
eral roots of first order, etc.). The hierarchy algorithm
minimizes the depth of the hierarchy while favoring
longer branches at lower levels.

4. Computing traits: Finally, a suite of root traits, such
as the count, lengths, angles, thickness, and tortuos-
ity, are computed from the skeleton S at each level of
the hierarchy H.

These steps are detailed in the next few sections.

Segmentation

Each maize root system has a simple topology: it is
connected, free of handles (“loops”) or voids (“air bub-
bles”). However, due to limits in imaging resolution,
contrast, and/or noise level, simple thresholding of
the input grayscale image often yields a segmentation
with numerous disconnected components, handles
and voids (see Fig. 2A). These erroneous topological
features pose significant challenges for the subsequent
hierarchy inference. Another issue with simple thresh-
olding is that due to the relatively low intensity in the
interior of thick roots (e.g., the stem), only the outer
shell of these roots is included in the segmentation (see
Fig. 2A). These hollow shells would lead to complex
skeletons that do not accurately capture the tubular
shape of the roots. Given an input image I, the first step

extracts a segmentation B that fills the hollow root inte-
rior and has minimal topological errors.

We start by filling the hollow interior of roots using
an erosion approach. The observation is that these hol-
low spaces become voids (i.e., closed off by the root’s
shell) when the image I is thresholded by a sufficiently
low value. Our heuristic identifies these voids at a low
threshold and fills them in after “growing” them back to
the normal threshold. The heuristic takes in two user-
specified thresholds, t,,,; and £, such that ¢,,; best
captures of the shape of the root while t;,,, < t,,;; closes
off most of the hollow spaces within roots. We denote
the segmented, voxelized shapes at these two thresh-
olds as B,,;; and By, respectively (see Fig. 3A). To grow
the voids in By, back to the hollow spaces in B,,;;, we
maximally erode the voxels in By,, while maintaining
its topology and preventing voxels in B,,;; from being
eroded. This results in another shape, denoted as B;m.d,
which is a minimal superset of B,,;; with its hollow
spaces closed off (see Fig. 3B). We then take all vox-
els in the voids of B;m.d, together with those voxels in
B} .. \Bmia adjacent to the voids, and “fill” them by set-
ting their intensity values to be t,,,; (see Fig. 3C). We
denote the resulting image as I’.

Next, we compute a segmentation of the hollow-
space-filled image I’ using the algorithm of [20]. This
algorithm uses global optimization to extract a seg-
mentation bounded between two intensity thresh-
olds that has the least number of topological features.
It takes three thresholds with increasing values,
tow < tmid < tnigh» Where ty,y,, 1,yiq are the same as in the
filling algorithm above. Let the segmented shapes of I’
at these thresholds be By, Byids Bhigh- The algorithm of
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A)

Fig. 2 Segmenting a root image. A Thresholding the image / yields numerous topological errors such as disconnections (red box) and handles
(cyan and purple boxes), and the stem has a hollow interior (green box). B Applying our filling heuristic followed by the algorithm of [20] yields a
segmentation B with these topological errors removed and the stem filled

B)

(A)
Fig. 3 Filling the hollow space inside the stem and thick roots. A A slice of / showing the cross-section of the stem with the outline of
segmentations B4, Biow (red and blue) at thresholds t,q, to,,- The hollow space within the stem is connected to the outside in B4 but is closed

inB/,4\Bmig adjacent to the void to Byq4. This creates a new image /'

(B)

off by the stem’s shell in By, B Eroding By,,, onto Byig, while preserving its topology, results in the shape B
voxels to Bpyg to “close off”the hollow space. C The hollow space is filled by raising the intensity value of the voxels in the void of 8/, and the voxels

©

/

| ig(green), which adds a minimal set of

[20] computes a shape B such that By;s; € B € B,y and
the following vector energy is minimal in lexicographi-
cal order,

{Bo(B) + B1(B) + B2(B), diff (B, Bia) } (1)

Here, By, B1, B2 counts the number of connected com-
ponents, handles and voids of B, and diff is a difference
measure between two voxel sets that considers both the
number and intensity of voxels that are in one of the sets
but not the other. Intuitively, B makes the least change to
the shape B,,;; (in terms of diff) to remove as many top-
ological features on B,,;; as possible while sandwiched
between By;g;, and By,

An example result of this step (filling hollow spaces
and then applying the algorithm of [20]) is shown in
Fig. 2B. The three thresholds ¢y, tyia, thigh control the
trade-off between topological simplicity and geomet-
ric fidelity of the segmentation B. A larger gap between
tmid and. tloy, tpign gives the algorithm [20] more room
to remove topological features, and hence the result has
fewer topological errors. But this comes at the cost of
possibly large and undesirable geometric changes; for
example, a root may be broken in the middle to remove
a topological handle. We found that the best results are
obtained by setting ;,,, to be the highest value such that
thin roots remain connected in By,,, and setting ¢;g; to be



Zeng et al. Plant Methods (2021) 17:127

the lowest value before roots start to merge in By;g;,. The
resulting segmentation B will not be completely free of
topological errors but fixing these remaining errors in a
geometrically correct way requires a more global context
of the root shape. This will be addressed in the next step
and with the help of a geometric skeleton.

Skeletonization

The tubular shape of roots makes them representable by
curve skeletons. The graph structure of a skeleton is the
key that enables subsequent analysis of branching hierar-
chy and traits. Given the segmentation B produced by the
previous step, this step produces a geometric skeleton S
capturing the shape and branching structure of the roots.
We will utilize the structural information provided by
the skeleton to resolve the topological errors that remain
from the previous step, so that S is connected and free of
cycles.

We first compute an initial curve skeleton Sy from the
voxel shape B using the algorithms described in [21, 22,
34]. These methods have been recently used in skeleton-
based phenotyping of sorghum panicles [23]. Specifically,
the Voxel Core method of [22] extracts an approximate
medial axis of B, which is a triangulated 2-dimensional
non-manifold that lies at the center of B. Taking the
medial axis as the input, the Erosion Thickness method
of [21] reduces it to a polygonal 1-dimensional skeleton
So. Compared with other means for computing skeletons,
this approach has several features important for root
analysis. Both methods [21, 22] are robust to irregular
shape boundaries, and hence spurious skeleton branches
are minimized. Both methods also preserve the topol-
ogy of B exactly, and hence Sy carries the same set of
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topological features as B without adding new features.
Both methods are highly optimized and capable of pro-
cessing large 3D images. Unlike methods that produce
skeletons made up of voxels, Sy is made up of vertices
and edges, and hence it can be conveniently processed by
graph algorithms. Finally, the method of [21] also outputs
a “thickness” measure for each edge of Sy, which will be
utilized later. An example of this initial skeleton is shown
in Fig. 4A (also in Fig. 1C).

The remaining topological features on the segmenta-
tion B manifest as disconnected components and cycles
on the initial skeleton Sy. Figure 4B shows an example of
a cycle caused by two touching roots. To remove these
features, we take the largest component of Sy, denoted by
S1, and remove cycles in S; using a graph-based approach.
We first construct a graph G = {N, A} with nodes N and
arcs A as follows: each node represents either a junction
(a vertex incident to three or more skeleton edges) or a
branch (a sequence of skeleton edges between two junc-
tions or between a junction and an end vertex) on S,
and each arc connects two nodes representing a junc-
tion and a branch at that junction (see Fig. 5A, B). Next,
we extract a spanning tree of G, which is a subset of arcs
A’ C A that connect all nodes in N and have no cycles
(see Fig. 5C). The final skeleton, S, is then obtained from
A’ as follows: for each arc a € A that does not exist in A’,
the pair of skeleton branch and junction presented by a is
“detached” from each other (see Fig. 5D). Note that cycle-
removal using this approach prevents a skeleton branch
from being broken in the middle.

To find a spanning tree that best captures the struc-
ture of the root, we associate each arc a € A with a posi-
tive weight w(a) and compute the spanning tree A’ with

(A) (B)

algorithm

©

Fig. 4 Computing a cycle-free skeleton. A An initial curve skeleton So computed by the methods of [21, 22], where color indicates the thickness of
the roots (redder curves lie in thicker roots). B A skeleton junction (in the boxed region in (A)) caused by two roots touching in the segmentation,
which leads to a cycle in the skeleton. C The same region on the final skeleton S where the cycles have been removed using a graph-based
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A) (B)

just an example and not necessarily the optimal one

Fig. 5 lllustration of the graph-based algorithm for cycle removal. A A synthetic segmentation (gray) and its skeleton with two cycles (red).

B A graph G where each node represents either a skeleton junction (blue) or a skeleton branch (yellow) and each arc (black) connects two

nodes representing a junction and an adjacent branch. C A spanning tree of G excludes two arcs. D The resulting skeleton after detaching two
junction-branch pairs (dashed boxes) corresponding to the excluded arcs in C. Note that the spanning tree is not unique, and the one shown in Cis

©

(D)

the minimal total arc weights. A’ is known as the mini-
mal spanning tree (MST) of G, and it can be computed
efficiently using standard algorithms such as Prim’s or
Kruskal’s. The weight w(a) measures the likelihood that
the pair of skeleton junction and branch represented by a
should be detached. It is defined as:

w(a) = Wapgie(a) + IWgis(a) (2)

The first term w4, () measures the continuity of skel-
eton orientation at the junction. Let j, b be the skeleton
junction and branch represented by the arc a, 2 be the set
of all branches at j, and b be the unit vector representing
the tangent direction of the branch b oriented towards ;.
The angle term is defined as:

- =
Wange(@) = min (145 ) 3)

This term reaches the minimum of 0 if there is some
other branch &’ at junction j that has the same tangent
direction as b. The second term wg(a) measures the
distance from the junction j represented by the arc a to
the root stem. This term exists to discourage detaching
branches representing nodal roots from the stem, which
would have a great impact on the branching hierarchy.
We use the algorithm reported in [23] to identify the
stem as the longest non-branching sequence of skeleton
edges on the skeleton S; whose thickness measure is
above a given threshold €, which was set in our experi-
ments to be 0.15 multiplied by the maximum thickness

among any vertex in S;. We then compute wy;;(a) as the
shortest distance on the skeleton between junction j and
any vertex on the stem. Finally, 4 is a balancing parameter
between the angle and distance terms. We found that a
small value such as 0.05 best satisfies the need for avoid-
ing detachment of nodal roots without overpowering
the angle term w,,q,(a). Figure 4C shows the skeleton
obtained from the MST of the weighted graph. Observe
that the touching between two roots in the highlighted
view are correctly detached.

Inferring hierarchy

Given the cycle-free skeleton S obtained from the pre-
vious step, we next label each vertex of the skeleton as
either part of the stem, a nodal root, or a lateral root of
a specific order. This results in a branching hierarchy
denoted as H. The hierarchy plays a key role in the final
step to obtain traits concerning each type of roots.

We first identify the path of skeleton edges capturing
the stem using the heuristic of [23], as already done in the
previous step. This path is called a stem path. We then
consider all skeleton edges within a cylindrical region
around the stem path, where the radius of the cylinder
varies along the stem path and is set to be 1.6 times the
thickness measure stored on the skeleton vertices on the
path. These skeleton edges make up the stem region. The
factor 1.6 was chosen empirically to ensure that all skel-
eton junctions representing the beginning of nodal roots
are included in the stem region. Both stem path and stem
region are labelled as hierarchy level 0.
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To identify nodal roots and lateral roots of different
orders, we make the following two assumptions, which
are shared by DynamicRoots and have been supported by
studies of root systems [7, 19, 24]. First, roots higher up
in the hierarchy are generally longer. For example, nodal
roots are generally longer than 1st-order lateral roots,
which in turn are generally longer than 2nd-order lateral
roots, and so on. Second, the maximum number of hier-
archy levels in a root system is generally kept low. With
these assumptions, we developed a heuristic that mini-
mizes the depth of the hierarchy while favoring longer
roots higher up in the hierarchy.

Our heuristic proceeds in two stages, a bottom-up
traversal of the skeleton and then a top-down traversal.
They are illustrated in Fig. 6 using a cartoon example. We
start with a skeleton S labelled only by the stem region
(Fig. 6A). Recall that a branch is a sequence of skeleton
edges between two junctions or between a junction and
an end vertex. Since S has no cycles, it is a “tree”. We con-
sider the stem region as the “root” of this tree, and this
induces a partial ordering on the skeleton such that each
junction (outside the stem region) is incident to exactly
one parent branch and two or more children branches.
The first stage of the heuristic computes, at each skeleton
junction, the association between the parent branch with
one of the children branches as the continuation of the
same root (see arrows in Fig. 6B). The association is com-
puted by visiting the skeleton branches from the leaves of
the skeleton tree towards the stem and updating a depth
d(b) (numbers in Fig. 6B) and a distance /(b) at each vis-
ited branch b, as follows. First, for each branch 4 incident
to an end vertex, we set d(b)=0 and /(b) as the length of
b. We then iteratively visit parent branches whose chil-
dren branches have already been visited. For a parent
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branch b whose children are b, ..., b,, we associate b
with the child b; that has the maximal depth d(b;). If mul-
tiple children have the same maximal depth, b is associ-
ated with the b; with maximal length /(;). We then set
d(b)=d(b;)+ 1 and [(b) to be I(b,) plus the length of b. In
the second stage, we visit all branches from the stem to
the leaves and assign the hierarchy levels. We assign each
branch attached to the stem region a hierarchy level of 1
(i.e., nodal roots). For each parent branch assigned with
level k, we assign level k to the child branch associated
with the parent (computed from the first stage) and level
k + 1to all other children branches. The resulting hierar-
chy labelling is shown in Fig. 6C.

Computing traits

Given the skeleton S and the hierarchy labelling H,
TopoRoot computes a suite of coarse-grained and fine-
grained traits. Like existing works (e.g. [14]), we com-
pute global traits which are aggregated over all roots
regardless of their location in the hierarchy, including
the total root length, number of roots, and average root
length. For fine-grained traits, for each hierarchy level
(e.g., nodal roots, 1lst-order lateral roots, 2nd-order
lateral roots, etc.), we compute the root count, aver-
age and total root length, average root tortuosity, aver-
age root thickness, average number of children, and
the average emergence, midpoint, and tip angle. We
also report the length and thickness of the stem. Some
of these traits, such as stem length and per-level angle
traits, have not been previously reported by existing
tools (including DynamicRoots [16]). Details on how
each of these traits is computed can be found in Addi-
tional file 1: Table S1.

Stem region

S
c“ \ /‘
|
2| 2

A) ©

(B)

Fig. 6 lllustration of the heuristic for inferring hierarchy. A The input skeleton S with only the stem region labelled (blue). B The first stage
associates each parent branch with one of its children branches (indicated by arrows). The numbers are the depth d(b) stored at each branch b,
an intermediate quantity used to determine the parent-child association. C The second stage assigns hierarchy levels (shown as numbers and
grouped by colors) to each skeleton branch segment based on the parent—child association. These level labels make up the hierarchy H
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Results

Data preparation

TopoRoot is tested on two sets of maize root images,
one consisting of 45 X-ray CT scans of excavated root
crowns, and another consisting of 495 synthetic images
of simulated maize root systems. For validation, we col-
lected ground truth data of nodal root counts for the CT
data set and a variety of fine-grained traits for the syn-
thetic data set.

A cohort of 59 maize seeds were planted in June 2020
at Planthaven Farms in O’Fallon, Missouri (latitude
38.84871204483824, longitude -90.68711352048403) in
silt loam soil. The cohort consists of both wild-types (Rt1-
2.4 WT) and mutants (Rt1-2.4 MUT) with mutation on
the Rootlessl gene, which are known to have decreased
nodal root counts [25]. Seeds were planted using jabtype
planters into 3.65-m long rows (~25.4-cm within row
spacing) on 0.9144-m row-to-row spacing. Fields received
fertilization with ammonium nitrate. After 54—57 days of
growth, the roots were excavated using the Shovelomics
protocol [26] in September 2020 and washed to remove
large soil chunks (the impact of soil on our method is
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discussed in the Discussion section). An X5000 X-ray
imaging system and efX-DR software (NSI, Rogers, MN)
were used to collect X-ray computed tomography (XRT)
data (see in Fig. 7). The X-ray source was set to a volt-
age of 70 kV, current of 1700pA, and focal spot length of
119 pum. Samples were clamped and placed on a turnta-
ble for imaging at a magnification of 1.17X and 10 frames
per second (fps), collecting 1800 16-bit digital radio-
graphs over a 3 min scan time. efX-CT software was used
to reconstruct the scan into a 3D image at 109 pm voxel
resolution. This 3D image was exported as a 16-bit RAW
file, then Image] was used to store the RAW file as a stack
of 2D image slices perpendicular to the z-axis. Finally, 14
3D images were removed from the analysis due to exces-
sive soil present in the imaging or missing whorls, result-
ing in a total of 45 3D images or validating TopoRoot. We
performed manual counting of nodal roots for each of
the 45 root crowns. Each sample was dissected starting
at the highest node (stalk end) moving downward to the
root tips. Only attached roots were counted towards the
total number of developed roots at each node.

(A)

is represented as a stack of image slices perpendicular to the z-axis

(B)

Fig. 7 X-ray CTimaging of root crowns. A Each maize root crown was clamped and placed on a turntable, which was rotated for 3 min while
radiographs were collected at a rate of 10 frames per second. B efX-CT software was used to reconstruct a 3D grayscale image from the scan, which
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It is generally difficult to obtain manual measurement
of fine-grained root traits beyond counting the nodal
roots. To validate other fine-grained traits produced
by our method, we supplement the CT data set with a
large benchmark of synthetically generated root images.
We adopt OpenSimRoot [19], a highly customizable 3D
root growth simulation software that has been widely
used in modeling and visualizing root growth [27, 28].
We used OpenSimRoot to create 55 maize root systems
ranging in days of growth from 30 to 40 days, numbers
of nodal roots ranging from 31 to 69, number of whorls
from 5 to 6, and lateral root branching frequency from
0.3 to 0.7 cm / branch. The diameter of the stem was set
to be 2 cm, starting diameter for nodal roots is 0.3 cm
(gradually decreasing to 0.1 cm after 10 days of growth),
lateral roots is 0.04 cm, and fine lateral roots is 0.02 cm.
OpenSimRoot provides a detailed hierarchy for each of
the simulated roots, from which we obtain the ground-
truth traits (roots less than one voxel long in the ground
truth model were excluded). For each simulated root
system, we synthesize a 5123 image by computing the
signed distance field from the surface of the root using
the method of [29] with the inside of the surface having
positive values and the outside having negative values. To
mimic various levels of image noise, we randomly per-
turb the distance value at each voxel, with the amount
of perturbation ranging from 0 to 0.08 cm in 0.01 incre-
ments. This results in 9 images at increasing noise levels
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for each of the 55 roots, and thus 495 images in total. Fig-
ure 8 shows images of one simulated root (at day 40) syn-
thesized at different noise levels. Note that the amount of
geometric irregularity and topological noise (e.g., discon-
nected components and loops) increase with the noise
level.

Experiment settings

The only parameters of TopoRoot that need to be indi-
vidually tuned for each input image are the three thresh-
olds (Ziow» tmid> thign) used in the segmentation step. As
explained earlier, £,,;; should be chosen to best capture
the overall root shape, t;,,, should be low enough to con-
nect most of the roots, and £y, should be high enough
to prevent roots from touching. Due to the varying
contrast in the CT images, the thresholds tend to vary
as well (the values are included in our online data dis-
tribution). For the synthetic images, we found that set-
ting Zjp = —0.15, i = 0, ;9. = 0.03 works well on
all images. TopoRoot is implemented in C+ +, and all
experiments were run on a Windows 10 machine with an
Intel(R) Core (TM) i9-10900X Processor @ 3.70 GHz and
64.0 GB of memory (RAM).

We compared TopoRoot with two previous tools,
DynamicRoots [16] (for both global and fine-grained
traits) and a 3D version of GiaRoots [30] first published
in [14] (for global traits only). We used default param-
eters for both tools. Since both tools take in a binary

No Noise (e = 0 cm)

e=0.04 cm

e=0.08 cm

Fig. 8 Synthetic maize root images with increasing amounts of noise (e) generated from a simulated root system at 40 days of growth. The
closeups show fine lateral roots. With increased noise, the roots exhibit less regular geometry and more topological errors (e.g., disconnections and
loops)
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segmentation, we ran them after thresholding each image
at the threshold ¢,,;;. To study the impact of topological
errors on these tools, we also experimented with first
performing the segmentation step of TopoRoot and then
running DynamicRoots or GiaRoots on the topologically
simplified segmentation (instead of naive thresholding
at t,,;,4). We call the new protocols DynamicRoots +and
GiaRoots + respectively.

Experimental results: excavated root crowns
Figure 9 visually compares the root hierarchies computed
by TopoRoot, DynamicRoots, and DynamicRoots+ on
an example root crown. DynamicRoots produces a point
cloud where each point represents an input voxel and
is labelled by its hierarchy level (0, 1, 2, etc.). Observe
DynamicRoots mis-labelled many roots, such as those
highlighted in the black boxes. This is primarily since the
methodology of DynamicRoots is designed for much less
complex, seedling-stage roots. In addition, a significant
portion of the root is missing, as highlighted by the red
box. This is because DynamicRoots takes in the naively
thresholded image, which has many disconnected parts.
Although performing the topological simplification step
in TopoRoot allows DynamicRoots+to recover a more
complete root shape, mislabelling of hierarchy levels
remains (black boxes). In contrast, TopoRoot produces
a more visually plausible hierarchy separating the stem
(region), nodal roots, and lateral roots.

We next compare the nodal root count obtained by
various tools and by hand measurement. Figure 9 plots
the per-sample hand-measured nodal root counts and
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those computed by TopoRoot (A), DynamicRoots (B)
and DynamicRoots + (C) for all 45 samples. The plots
also report Pearson’s correlation coefficients (p) and the
normalized root mean squared errors (RMSEn). Topo-
Root exhibits a much higher correlation (p = 0.951)
and lower error (RMSEn=0.141) than either Dynami-
cRoots (p = —0.0452, RMSEn=2.637) or Dynami-
cRoots+ (p = —0.160, RMSEn=3.090). We also
computed the per-sample relative error of a tool as the
ratio of the difference between the tool’s and the hand
measurements over the hand measurement, and found
that TopoRoot exhibits a much lower mean and stand-
ard deviation (o) of the relative error (mean=8.3%,
o = 5.6%) than either DynamicRoots (mean=159.5%,
o = 190.0%) or DynamicRoots + (mean=235.4%, o =
244.4%). The significant over-counting of Dynamic-
Roots+is mostly caused by the mislabeling of nodal
roots as level-0 roots, as shown in Fig. 10, which leads
to many lateral roots being labelled as level-1 roots.
Furthermore, both the nodal root counts computed by
TopoRoot and the hand measurements exhibited a sig-
nificant difference between the mutant and wild type
samples, as measured by the independent two-sided
Wilcoxon rank sum test (p=0.00013 for TopoRoot,
p =0.00349 for hand measurements). Neither Dynami-
cRoots (p=0.126) nor DynamicRoots+ (p=0.0199)
showed a significant difference between the mutant and
wild-type. This shows that TopoRoot can be useful for
differentiating the root system architecture between
these two varieties.

RMSEn: 0.141 / RMSEn: 2.637

TopoRoot

DynamicRoots

' 10
Hand Measurements

(A)

/ 200 P————— > = . ’ p -(7).—“);(5;"‘““»»,‘;;7 b .
p=-0.0452 T: v T ‘ i $rr——"

Hand Measurements

RMSEn: 3.090

DynamicRoots

e Ol

Hand Measurements

(B) ©

Wild-type @ Mutant

Fig.9 Correlation plots of nodal root count between hand measurements and those obtained by TopoRoot (A), DynamicRoots (B), and
DynamicRoots + (C). Blue and red dots indicate wild type and mutant samples. The regression line is in red, and the dashed green line indicates
the ideal correspondence between the two measurements. Also reported are Pearson'’s correlation coefficients (p) and the normalized root mean
squared errors (RMSEn)
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TopoRoot

DynamicRoots

Fig. 10 Visual comparison of root hierarchies computed by TopoRoot, DynamicRoots and DynamicRoots 4 from the X-ray CT scan of an excavated
maize root crown. Hierarchy levels are colored as follows: O (stem): dark blue, 1 (nodal roots): light blue, 2 (1st-order lateral roots): green, 3
(2nd-order lateral roots): orange, 4 (3rd-order lateral roots): red, > 5: dark red. Black boxes highlight incorrect levels obtained by DynamicRoots and
DynamicRoots +, and the red box highlights a missing component in DynamicRoots

DynamicRoots+

Experimental results: simulated roots

Figure 11 visually compares the root hierarchies pro-
duced by TopoRoot and DynamicRoots/Dynamic-
Roots+as well as the voxelized skeletons produced by
GiaRoots/GiaRoots+on three synthetic root images
at different noise levels (0, 0.04 cm, 0.08 cm). This root
system is simulated to be 34 days old, with five whorls,
34 nodal roots, and a lateral root branching frequency
between 0.3 and 0.7 cm / branch. As the noise level
increases, DynamicRoots and GiaRoots miss more root
parts, whereas TopoRoot as well as the extended pro-
tocols, DynamicRoots+and GiaRoots+, retain much
of the root shape. Observe that, like the CT dataset, the
hierarchies produced by DynamicRoots+ incorrectly
label many nodal roots as level 0 (black boxes). In con-
trast, the hierarchies produced by TopoRoot are more
visually plausible.

We report the mean and deviation of the relative errors
of these tools for each fine-grained or coarse-grained trait
in Tables 1, 2, 3, 4 (GiaRoots/GiaRoots are considered for
global traits only). In Additional file 1: Figures S1-S4, we
take a closer look at the accuracy of TopoRoot and the

other tools as a function of the noise level of the input
images. In general, we observe that higher image noise
leads to larger mean errors and/or greater variance by
TopoRoot. For most of the traits, TopoRoot maintains a
lower error than other tools across all noise levels. We
next discuss the accuracy of various traits in detail.

As the base of the hierarchy, the stem traits are among
the most accurate (Table 1). As the noise increases, por-
tions of the stem region are lost, resulting in a thinner
stem (Additional file 1: Figure S1). Increased noise also
causes the stem to wiggle more in the direction perpen-
dicular to its main path, resulting in an increased stem
length.

Among the nodal root traits (Table 2), the most accu-
rate ones are the root count (mean error 8.3% up to
noise level e=0.04, 10.3% up to e=0.08) and emergence/
midpoint angles (mean error 5.7/7.1% up to e=0.04,
9.1/9.5% up to e=0.08). The lowest accuracy is seen for
the number of children (mean error 40.0% up to e=0.04,
48.6% up to e=0.08) and thickness (mean error 39.2%
up to e=0.04, and 38.2% up to e=0.08). These errors are
due to misclassifications when the nodal root becomes
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Noise level (cm):  TopoRoot DynamicRoots

o A

0.04

0.08

level 0 roots by DynamicRoots and DynamicRoots +

GiaRoots+

GiaRoots

N

DynamicRoots+

Fig. 11 Comparing hierarchies and skeletons computed by different tools from images synthesized at increasing noise levels from a simulated
maize root. Hierarchy levels 0, 1, 2, 3 and 4 produced by TopoRoot and DynamicRoots/DynamicRoots + are colored dark blue, light blue, green,
orange, and red. The voxelized skeletons produced by GiaRoots/GiaRoots + are colored brown. Black boxes highlight mislabeling of nodal roots as

entangled with higher-order lateral roots. TopoRoot
slightly underestimates the average and total length due
to faulty cycle breaking and misclassification errors in
portions of nodal roots further away from the stem.
TopoRoot’s error in nodal root tortuosity is higher than
that of DynamicRoots for two reasons. First, the ground
truth tortuosity is close to 1 (only for the simulated data,
but not for the real maize roots), and DynamicRoots
coincidentally produces values close to this because it
mistakes many shorter lateral roots as nodal roots, as evi-
denced by its much shorter average nodal root length and
the black boxes of Fig. 12. Second, nodal roots sometimes
are misclassified by TopoRoot closer to their tips due to
the large number of intersections between roots of differ-
ent hierarchy levels, resulting in excessive winding. Topo-
Root slightly overestimates angle measurements due
to misclassification errors further away from the stem
which bend the detected paths sideways; these explain
the errors in the tip angle measurements.

The errors for the lateral root traits (Table 3) are gen-
erally larger than nodal root traits, primarily because
the imaging noise has a greater impact on the thinner
roots more than the thicker ones. There is a greater
underestimation of both the total first-order lateral
roots and their total length (Additional file 1: Figure
S3), due to both the misclassification of the hierarchy
levels and the loss of many thin roots in the distance

field. On the other hand, the misclassified first-order
lateral roots are counted as lateral roots of higher
orders, and hence less errors lie in the total lateral root
count (mean error 22.2% up to e=0.04 and 37.0% up to
e=0.08) and lengths (mean error 24.3% up to e=0.04
and 24.4% up to e=0.08) over all orders. All methods
significantly overestimate the first-order lateral root
thickness due to limits in the resolution, but Topo-
Root produces the lowest error. The lowest errors are
seen in the first-order lateral emergence/midpoint/tip
angles (mean error 3.4%/4.1%/5.4% up to e =0.04 and
3.0%/4.0%/5.9% up to e=0.08) and tortuosity (mean
error 4.6% up to e =0.04 and 4.5% up to e =0.08).
Finally, combining nodal and lateral roots, Topo-
Root produces on average 35.4% relative error (21.5%
up to e=0.04) in the total root count and 25.4% rela-
tive error (25.0% up to e =0.04) in the total root length,

Table 1 Accuracy of TopoRoot for stem traits

Trait <e TopoRoot (%)

Stem length 0.04 6.9 (0=6.9)
0.08 77(0=73)

Stem thickness 0.04 119 (0=423)
0.08 153 (0=59)

Each entry gives the mean relative error and standard deviation (o) for our
method across all simulated models and across all noise levels up to e=0.04 cm
and e=0.08 cm
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Table 2 Accuracy of TopoRoot, DynamicRoots and DynamicRoots + for nodal root traits
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Trait <e TopoRoot (%) DynamicRoots (%) DynamicRoots + (%)
Nodal root count 0.04 8.3 (0=82) 3929 (0=4235) 486.2 (0=426.6)
0.08 10.3 (c0=10.9) 2639 (0=367.0) 455.2 (0=400.0)
Nodal root total length 0.04 224 (0c=13.1) 464 (0=17.7) 383(0=143)
0.08 239 (0=13.7) 56.9 (0=19.7) 40.7 (0=14.6)
Nodal root average length 0.04 17.8(c=112) 766 (0=18.8) 809( =16.1)
0.08 19.9 (0=13.1) 740 (0=174) 0(0=154)
Nodal root thickness 0.04 392 (0=276) 36.6 (0=33.8) 462 (0=115.0)
0.08 38.2 (0=2638) 50.1 (0=150.3) 48.2 (0=109.6)
Nodal root number of children 0.04 36.4 (0=21.6) 877 (0=13.7) 8945 (0=125)
0.08 45.6 (0=41.0) 87.0(c=13.1) 89.2 (0=124)
Nodal root tortuosity 0.04 326 (0=13.0) 23(0=25) 2.0(0=18)
0.08 373(0=1338) 45 (0=44) 29(0=23)
Nodal root emergence angle 0.04 5.7(0=119) N/A N/A
0.08 73(0=119) N/A N/A
Nodal root midpoint angle 0.04 7.1 (0=14.0) N/A N/A
0.08 9.1 (0=13.8) N/A N/A
Nodal root tip angle 0.04 183 (0=17.7) N/A N/A
0.08 22.7 (0=22.8) N/A N/A

Each entry gives the mean relative error and standard deviation (o) for a method across all simulated models and across all noise levels up to e=0.04 cm and

e=0.08 cm. For each trait, the method with the lowest mean error is bold-faced

which are much lower than DynamicRoots/Dynamic-
Roots +and GiaRoots/GiaRoots + (Table 4). Note that
both DynamicRoots and GiaRoots significantly under-
estimate the root count and total length, even after
topological simplification, and the amount of under-
estimation generally increases with the level of noise
(Additional file 1: Figure S4). The only global trait that
TopoRoot does not have the lowest error is the average
length, due to a combination of DynamicRoots being
coincidentally closer due to its underestimation of both
the total length and number of roots, and TopoRoot
counting an excessive number of roots at higher noise
levels. These are the same reasons why the two meth-
ods have similar lateral root average length errors.

Discussion

A gap exists in the phenotypic measure of root system
architecture between fine-grained analyses that can be
conducted on entire seedling root systems in labora-
tory settings, and much coarser global analyses available
to field researchers. Since root systems are an emergent
property of their many hundreds, thousands, or tens of
thousands of constituent roots, this gap is a major hin-
drance to a comprehensive understanding of root system
development, environmental interaction, and the genet-
ics that influence these processes. In previous work, we
showed that when global 3D analysis of field excavated
maize root crowns was compared to 3D seedling analysis

in gellan gum, genetically encoded differences were con-
sistent despite major differences in developmental stage
and the growth environment. Whereas DynamicRoots
was previously developed for fine scale measurements
of 3D seedling root systems containing dozens to hun-
dreds of roots, no similar tool existed for more complex
mature root crowns, containing hundreds to thousands
of roots. The orders of magnitude of increased complex-
ity motivated unique solutions using both state-of-the-
art techniques in computer graphics [20-22] and novel
algorithms which eventually led to the development of
TopoRoot. While we consider this first version as the
foundation of several future planned advancements,
discussed below, we were able to present here unprece-
dented fine-grained analysis of complex, field-excavated
3D root crowns (on average containing 943 total roots
[maximum of 2514], 78 nodal roots [maximum of 126],
865 lateral roots [maximum of 2414]) that facilitates
“apples to apples” comparisons with existing seedling
phenotyping pipelines.

Error analysis

The steps of our pipeline that are most prone to errors
are segmentation and skeletonization. While the algo-
rithm of [20] is very effective in reducing the topological
complexity, it may occasionally do so at the cost of alter-
ing the structure of the roots (e.g., by breaking a thin root
or merging two nearby roots), thereby introducing errors
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Table 3 Accuracy of TopoRoot, DynamicRoots and DynamicRoots + for lateral root traits

Trait <e TopoRoot (%) DynamicRoots (%) DynamicRoots + (%)
1st-order lateral root count 0.04 414 (0:23 4) 756 (0=113) 715(0=107)
0.08 49.0 (0=415) 80.7(c=112) 719 (0=10.3)
1st-order lateral root total length 0.04 445 (0 —150) 719 (0=139) 66.9 (0=154)
0.08 47.0 (0=15.9) 76.7 (0=149) 674 (0=14.9)
1st-order lateral root avg. length 0.04 20.4 (0=15.0) 38.1 (0=746) 26.5 (0=54.0)
0.08 25.6 (0=19.2) 532 (0=982) 26.0 (0=523)
1st-order lateral root thickness 0.04 355.0 (0=285.8) 4246 (0=101.7) 4392 (0=104.2)
0.08 342.8 (0=853) 4277 (0=112.0) 450.1 (0=102.2)
1st-order lateral root number of children 0.04 68.3 (0=347) 1529 (0=301.1) 1156 (0=192.7)
0.08 807(0 50.0) 1809 (0=319.7) 1156 (0=1826)
1st-order lateral root tortuosity 0.04 6 (0=32) 119 (0=21) 12.1(0=1.8)
0.08 5(0=32) 10.2 (0=3.0) 11.3(0=20)
1st-order lateral root emergence angle 0.04 (o 24) N/A N/A
0.08 0(c=22) N/A N/A
1st-order lateral root midpoint angle 0.04 1(0=27) N/A N/A
0.08 (o 2.7) N/A N/A
1st-order lateral root tip angle 0.04 4 (0=64) N/A N/A
0.08 (o 7. 3) N/A N/A
Lateral root count 0.04 22.2 (0=19.5) 60.6 (0=13.0) 58.0(0=14.8)
0.08 37. 0(0:56 1) 668 (0=124) 58.1(0=144)
Total lateral root length 0.04 243 (0=923) 523(0=19.6) 509 (0=19.0)
0.08 244 (o: 4) 59.1 (0=18.38) 56.0(0=17.8)
Average lateral root length 0.04 20.2 (0=14.3) 212 (0=224) 220(0=216)
0.08 259 (o=19. O) 214 (0=229) 20.6 (o:202)

Each entry gives the mean relative error and standard deviation (o) for a method across all simulated models and across all noise levels up to e=0.04 cm and

e=0.08 cm. For each trait, the method with the lowest mean error is bold-faced

Table 4 Accuracy of TopoRoot, DynamicRoots, DynamicRoots +, GiaRoots, and GiaRoots + for global traits

Trait <e TopoRoot (%) DynamicRoots (%) DynamicRoots + (%) GiARoots (%) GiARoots + (%)
Total root count 0.04 21.5(0c=184) 53.7(c=11.1) 493 (0=113) 579(0=13.7) 56.8(0=137)
0.08 35.4 (0=51.8) 60.8 (0=12.7) 49.7 (0=11.3) 457 (0=21.1) 575(0=132
Average root length 0.04 184 (0=13.5) 9.1(0=11.8) 9.7 (0=9.8) 426 (0=33.5) 50.2 (0=35.3)
0.08 24.7(0=18.8) 9.9 (0=125) 133(0=122) 408 (0=274) 556 (0=342)
Total length 0.04 25.0 (0=85) 522 (0=139) 487 (0=13.1) 460 (0=12.1) 1 (o=12.1)
0.08 25.4 (0=97) 59.6 (0=14.5) 528(0=124) 457 (0=19.6) 382( =13.1)

Each entry gives the mean relative error and standard deviation (o) for a method across all simulated models and across all noise levels up to e=0.04 cm and

e=0.08 cm. For each trait, the method with the lowest mean error is bold-faced

in the hierarchy and fine-grained traits. The problem can
be alleviated by pushing thresholds T}, Thg closer to
Tid» thus limiting the amount of changes that the algo-
rithm can make. This solution, however, will increase the
number of topological errors in the segmentation that
need to be resolved in the skeletonization stage. On the
other hand, our method for extracting a connected and
cycle-free skeleton has several limitations itself. First, we
only consider the largest connected component of the

skeleton and hence would miss any root parts that are not
connected to the main roots in the segmentation stage.
Second, our hand-crafted weights (w(a)) on the graph
arcs in the cycle-removal algorithm may not correctly
distinguish between real and false junctions, and as a
result the algorithm may detach branches from junctions
in the wrong places. Third, the MST formulation of cycle
removal cannot recover branches that are already broken
in the segmentation stage. These and other limitations all
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4 are colored dark blue, light blue, green, orange, and red.

Fig. 12 Hierarchies of sorghum roots computed by TopoRoot, showing one tiller (A), two tillers (B), and four tillers (C). Hierarchy levels 0, 1, 2, 3 and

(B) ©

lead to downstream errors in hierarchy and trait analy-
sis. Improving the accuracy of these two steps calls for
development of more robust and shape-aware algorithms
for topological simplification and tree extraction from a
skeleton.

Our method can be sensitive to the amount of soil
attached to the roots being imaged. The method works
well when the roots are reasonably clean and free of large
dirt chunks. Small dirt particles are expected to remain
after washing, and our method is designed to handle
images containing localized topological noise caused by
the dirt particles. If the root contains large chunks of dirt,
and due to the similarity in intensity between the dirt
and roots, a naive segmentation method (such as thresh-
olding) may create many false and/or cluttered roots.
Our method cannot fix these large-scale errors and will
produce incorrect hierarchies and traits. Besides more
thorough cleaning, an alternative solution is to employ
advanced image segmentation methods that are capa-
ble of separating soil from roots prior to the application
of our method (see more discussions in "Extensions”
section).

Running time

On average, TopoRoot completes in 7 min and 13 s for
each sample in the CT scan dataset (downsampled by a
factor of 4 to the resolution of 369 x 369 x 465). Since
this is much shorter than the time spent imaging and
reconstructing one sample, TopoRoot is well suited
for high-throughput analysis. The computation time is
dominated by the first two steps, topological simplifica-
tion (3 min and 6 s) and skeletonization (3 min and 44 s).
The time complexity of both these steps may increase

quickly with the image resolution. For example, running
TopoRoot on the original CT images downsampled by
a factor of 2, which results in 3D images of resolution
737 x 737 x 931, would take 63 min and 39 s, with 32 min
and 25 s spent on topological simplification and 29 min
and 9 s on skeletonization. On the other hand, we have
not observed a notable improvement in the accuracy of
the nodal root count for this data set with the increased
image resolution.

Extensions

In addition to the per-level traits reported in this work,
the hierarchy obtained by TopoRoot potentially ena-
bles computation of other fine-grained traits. For exam-
ple, we are currently exploring the use of the hierarchy
for computing whorls and the soil plane, which would
in turn enable computation of traits such as inter-whorl
distances, per-whorl measurements, and the numbers of
nodal roots above and below the soil. Preliminary experi-
ments show promising results of whorl detection by clus-
tering the nodal roots branches along the stem path of
the skeleton. The soil plane can be potentially identified
by the emergence of a large cluster of 1st-order lateral
roots along the direction of the stem.

While TopoRoot is designed for high-contrast images
(e.g., CT scans) of maize roots, it can be adapted to other
types of root systems and images. For root crowns with
multiple tillers (e.g., sorghum), we offer a mode of Topo-
Root which extends the stem-detection heuristic (dur-
ing the skeletonization step) by producing a stem path
within each region of the skeleton above a given thick-
ness threshold. Preliminary visual experiments show
that TopoRoot’s multiple-tiller mode produces plausible
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hierarchies at a quality like that seen in the single-tiller
mode (Fig. 12). Further expanding the stem-detection
heuristic to identify the primary root would make the
pipeline applicable to taprooted systems as well. Finally,
TopoRoot can be extended to work on 3D images that
lack a sufficiently high contrast between the roots and the
surroundings (e.g., soil), such as in situ imaging of grow-
ing roots, provided that the roots can be segmented from
its surroundings using a third-party image segmentation
algorithm. Examples of such algorithms include region-
growing [1], tracking tubular features [31, 32], deep
learning [33, 34], and semi-automatic annotation [12,
35]. Some of these methods (e.g., deep learning) produce
a probability density field, which can be fed into Topo-
Root as the input 3D grayscale image. Others (e.g., region
growing) produce a binary 3D image, and TopoRoot can
be applied after converting the binary 3D image into a
Euclidean distance field (e.g., using [29]).

Software availability
TopoRoot is available for free at: https://github.com/
danzeng8/TopoRoot.

Included in the page are instructions to run the soft-
ware, and details on the formats of the input and output
files. Currently, the accepted inputs are either image slices
(suffixed with.png) or.raw files, with a.dat accompanying
the.raw file to specify the dimensions. The output con-
sists of a skeleton, a hierarchy annotation of the skeleton,
and a spreadsheet of root traits. TopoRoot is currently
configured to build and run on Windows 10 machines. A
graphical user interface is also available in that repository
for visualizing the skeleton and the hierarchy.

Conclusions

We introduced TopoRoot, a high-throughput method
for computing the hierarchies and fine-grained traits
from 3D images of maize roots. TopoRoot specifically
addresses topological errors, which are common in
segmenting 3D images and are barriers for obtaining
accurate root hierarchies. Our method combines state-
of-the-art methods developed in computer graphics
with customized heuristics to compute a wide variety
of traits at each level of the root hierarchy. When tested
on both 3D scans of excavated maize root crowns and
synthetic images of simulated root systems with arti-
ficially added noise, TopoRoot exhibits superior accu-
racy over existing tools (DynamicRoots and GiaRoots)
in both coarse-grained and fine-grained traits. Fur-
thermore, the efficiency and automation of TopoRoot
makes it suited for a high-throughput analysis pipeline.
The results are readily compatible with the Root Sys-
tem Markup Language (RSML; [36]), and major plant
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structural-functional modelling frameworks such as
CRootBox [37] and OpenSimRoot [19].

Abbreviations
RSA: Root system architecture; CT: Computed Tomography.
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Additional file1: Table S1. TopoRoot's computed traits. Fig. S1. Box plots
of relative errors in stem traits computed by TopoRoot. Each box shows
the quantiles of relative errors over all 55 synthetic samples at each noise
level. Fig. S2. Box plots of relative errors in nodal root traits computed by
TopoRoot, DynamicRoots and DynamicRoots+. Each box shows the quan-
tiles of relative errors over all 55 synthetic samples at each noise level. Fig.
S3. Box plots of relative errors in lateral root traits computed by TopoRoot,
DynamicRoots and DynamicRoots+. Each box shows the quantiles of
relative errors over all 55 synthetic samples at each noise level. Fig. S4.
Box plots of relative errors in global root traits computed by TopoRoot,
DynamicRoots, DynamicRoots+, GiaRoots and GiaRoots+. Each box
shows the quantiles of relative errors over all 55 synthetic samples at each
noise level.

Acknowledgements

We would like to thank Tiffany Hopkins, Dhineshkumar Thiruppathi, Elisa
Morales, Mitchell Sellers, Shayla Gunn, August (Gus) Thies, Keith Duncan, and
Tim Parker (Donald Danforth Plant Science Center) for the planting, harvesting,
imaging, and collection of hand measurements on maize roots, and Gustavo
Gratacos (Washington University) and Yajie Yan (Meta) for their valuable
insights on the cycle breaking algorithm and geometric skeleton computa-
tion. We thank Mon-Ray Shao (Donald Danforth Plant Science Center) for the
discussion on future applications to sorghum and other species.

Authors’ contributions

DZ was the primary developer and coder of TopoRoot. DZ wrote the manu-
script with contributions from TJ, CNT, NJ, ML, EC, DL, YJ, and HS. DZ, TJ, and
CNT designed the study and experiments. DZ performed experiments and

analyzed the data. YJ developed the graphical user interface with contribu-
tions from DZ. All authors have read and approved the final manuscript.

Funding

This material is based upon work supported by the National Science
Foundation under award numbers DBI-1759836, DBI-1759807, DBI-1759796,
EF-1971728, CCF-1907612, CCF-2106672, and 10S-1638507. DZ is funded in
part by an Imaging Sciences Pathway Fellowship from Washington University
in St. Louis.

Availability of data and materials

The X-ray CT scans of all 45 root crowns, along with the threshold values
(tow, tmid, quh) and hand measurements of nodal roots for each sample, are
available in the TopoRoot Github repository: https://github.com/danzeng8/
TopoRoot. The synthetic images of simulated roots and associated ground
truth trait measurements are available from the corresponding author upon
request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.


https://github.com/danzeng8/TopoRoot
https://github.com/danzeng8/TopoRoot
https://doi.org/10.1186/s13007-021-00829-z
https://doi.org/10.1186/s13007-021-00829-z
https://github.com/danzeng8/TopoRoot
https://github.com/danzeng8/TopoRoot

Zeng et al. Plant Methods (2021) 17:127

Competing interests
The authors declare that they have no competing interests.

Author details

'Department of Computer Science and Engineering, Washington University
in St. Louis, Saint Louis, MO 63130, USA. “Donald Danforth Plant Science
Center, Saint Louis, MO 63132, USA. *Department of Computer Science, Saint
Louis University, Saint Louis, MO 63103, USA.

Received: 24 August 2021 Accepted: 30 November 2021
Published online: 13 December 2021

References

1. Dorlodot SD, Forster B, Pages L, Price A, Tuberosa R, Draye X. Root system
architecture: opportunities and constraints for genetic improvement of
crops. Trends Plant Sci. 2007;12(10):474-81.

2. Koevoets [T, Venema JH, Elzenga JTM, Testerink C. Roots withstanding their
environment: exploiting root system architecture responses to abiotic stress
to improve crop tolerance. Trends in plant science. 2016;7:1335.

3. Lynch J. Root architecture and plant productivity. Plant physiology. 1995;
109(1):7-13.

4. Siddiqui MN, Leon Jens, Naz AA, Ballvora A. Genetics and genomics of root
system variation in adaptation to drought stress in cereal crops. Journal of
Experimental Botany. Feb 2021;4;,1007-19.

5. Mooney SJ, Pridmore TP, Helliwell J. Developing X-ray Computed Tomogra-
phy to non- invasively image 3-D root systems architecture in soil. Plant Soil.
2012;352:1-22.

6. Perret JS, Al-Belushi ME, Deadman M. Non-destructive visualization and
quantification of roots using computed tomography. Soil Biology and
Biochemistry. 2007;39(2):391-9.

7. Schulz H, Postma JA, van Dusschoten D, Scharr H, Behnke S. Plant Root
System Analysis from MRI Images. In: Csurka G, Kraus M, Laramee RS,
Richard P, Braz J, editors. Computer Vision, Imaging and Computer Graphics.
Theory and Application. Berlin, Heidelberg: Springer Berlin Heidelberg;
2013;411-25.

8. Paez-Garcia A, Motes CM, Scheible WR, Chen R, Blancaflor EB, Monteros
MJ. Root Traits and Phenotyping Strategies for Plant Improvement. Plants.
2015;4(2):334-55.

9. Piferos MA, Larson BG, Shaff JE, Schneider DJ, Falcdo AX, Yuan L, Clark RT,
Craft EJ, Davis TW, Pradier PL, Shaw NM, Assaranurak |, McCouch SR, Sturrock
C, Bennett M, Kochian LV. Evolving technologies for growing, imaging and
analyzing 3D root system architecture of crop plants. J Integr Plant Biol.
2016,58(3):230-41

10. Shao MR, Jiang N, Li M, Howard A, Lehner K, Mullen JL, Gunn SL, McKay JK,
Topp CN. Complementary Phenotyping of Maize Root Architecture by Root
Pulling Force and X-Ray Computed Tomography. bioRxiv 2021. https://doi.
0rg/10.1101/2021.03.03.433776.

11. Gao W, Schiuter S, Blaser SRGA, Shen J, Vetterlein D. A shape-based method
for automatic and rapid segmentation of roots in soil from X-ray computed
tomography images: Rootine. Plant and Soil. 2019;441:643-655.

12. Gerth S, Clauben J, Eggert A, Worlein N, Waininger M, Wittenberg T, Uhl-
mann N. Semiautomated 3D Root Segmentation and Evaluation Based on
X-Ray CT Imagery. Plant Phenomics. 2021.

13. Mairhofer S, Zappala S, Tracy SR, Sturrock C, Bennett M, Mooney SJ, et al.
RooTrak:Automated Recovery of Three-Dimensional Plant Root Architecture
in Soil from X-Ray Microcomputed Tomography Images Using Visual Track-
ing. Plant Physiol. 2012;158(2):561-9.

14. Topp CN, et al. 3D phenotyping and quantitative trait locus mapping
identify core regions of the rice genome controlling root architecture. Proc
Natl Acad Sci USA. 2013;110:E1695-704. https://doi.org/10.1073/pnas.13043
54110.

15. Liu S, Barrow CS, Hanlon M, Lynch JB, Buksch A. DIRT/3D: 3D root phenotyp-
ing for field-grown maize (Zea mays). Plant Physiol. 2021;69:1199. https://
doi.org/10.1093/plphys/kiab311

16.  Symonova O, Topp CN, Edelsbrunner H. DynamicRoots: a software platform
for the reconstruction and analysis of growing plant roots. PLoS ONE.
2015;10(6):€0127657.

17. Jiang N, Floro E, Bray AL, Laws B, Duncan KE, Topp CN. Three-dimensional
time-lapse analysis reveals multiscale relationships in maize root systems

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

Page 17 of 17

with contrasting architectures. Plant Cell. 2019;31(8):1708-22. https://doi.
org/10.1105/tpc.19.00015

Zheng, Gu S, Edelsbrunner H, Tomasi C, Benfey P. Detailed reconstruc-
tion of 3D plant root shape. In Proc. 13th Internat. Conf. Comput. Vision
2011,2026-2033.

Postma JA, Kuppe C, Owen MR, Mellor N, Griffiths M, Bennett MJ, Lynch JP,
Watt M. OpenSimRoot: widening the scope and application of root archi-
tectural models. New Phytol. 2017;215:1274-86. https://doi.org/10.1111/
nph.14641

Zeng D, Chambers E, Letscher D, Ju T.To cut or to fill: a global optimization
approach to topological simplification. ACM Trans Graph. 2020;39(6):1-18.

. YanY, Sykes K, Chambers E, Letscher D, JuT. Erosion thickness

on medial axes of 3D shapes. ACM Trans Graph. 2016;35(4):1-12.
10.1145/2897824.2925938

Yan', Letscher D, JuT. Voxel cores: efficient, robust, and provably good
approximation of 3D medial axes. ACM Trans Graph. 2018;37(4):1-13.
https://doi.org/10.1145/3197517.3201396

Li M, Shao MR, Zeng D, JuT, Kellogg EA, Topp CN. Comprehensive 3D
phenotyping reveals continuous morphological variation across genetically
diverse sorghum inflorescences. New Phytol. 2020,226:1873-85. https;//doi.
org/10.1111/nph.16533

Khan MA, Gemenet DC, Villordon A. Root system architecture and abiotic
stress tolerance: current knowledge in root and tuber crops. Front Plant Sci.
2016;7:1584

Jenkins MT. Heritable characters of maize XXXIV-rootless. J Hered.
1930;21:79-80

Trachsel S, Kaeppler SM, Brown KM, Lynch JP. Shovelomics: high throughput
phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil.
2011;341:75-87.

Gonzalez D, Postma J, Wissuwa M. Cost-benefit analysis of the upland-rice
root architecture in relation to phosphate: 3D simulations highlight the
importance of S-type lateral roots for reducing the pay-off time. Front Plant
Sci. 2021;12:359.

Lynch J. Rightsizing root phenotypes for drought resistance. J Exp Bot.
2018,69(13):3279-92.

Xu J, Barbic J. Signed distance fields for polygon soup meshes. In: Proceed-
ings of graphics interface. 2014.

Galkovskyi T, Mileyko Y, Bucksch A, Moore B, Symonova O, Price CA, et al.
GiA roots: software for the high throughput analysis of plant root system
architecture. BMC Plant Biol. 2012,69:237-43.

Phalempin M, Lippold E, Vetterlein D, Schliter S. An improved method for
the segmentation of roots from X-ray computed tomography 3D images:
Rootine v.2. Plant Methods. 2021;17(1):1-19.

Schulz, H, Postma JA, van Dusschoten D, Scharr H, Behnke S. 3D reconstruc-
tion of plant roots from MRIimages. In: Proceedings of the international
conference on computer vision theory and applications (VISAPP). 2012.
Soltaninejad M, Sturrock CJ, Griffiths M, Pridmore TP, Pound MP. Three
dimensional root CT segmentation using multi-resolution encoder-decoder
networks. IEEE Trans Image Process. 2020,29:6667-79.

Smith AG, Petersen J, Selvan R, et al. Segmentation of roots in soil with
U-Net. Plant Methods. 2020;16(1):1-15.

Flavel RJ, Guppy CN, Rabbi SMR, Young IM. An image processing and analy-
sis tool for identifying and analysing complex plant root systems in 3D soil
using non-destructive analysis: Root1. PLoS ONE. 2017;12(5):e0176433.
Lobet G, Pound MP, Diener J, Pradal C, Draye X, Godin C, Javaux M, Leitner D,
Meunier F, Nacry P, Pridmore TP, Schnepf A. Root system markup language:
toward a unified root architecture description language. Plant Physiol.
2015;,167:617-27.

Schnepf A, Leitner D, Landl M, Lobet G, Mai TH, Morandage S, Sheng C,
Z6rner M, Vanderborght J, Vereecken H. CRootBox: a structural-functional
modelling framework for root systems. Ann Bot. 2018.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


https://doi.org/10.1101/2021.03.03.433776
https://doi.org/10.1101/2021.03.03.433776
https://doi.org/10.1073/pnas.1304354110
https://doi.org/10.1073/pnas.1304354110
https://doi.org/10.1093/plphys/kiab311
https://doi.org/10.1093/plphys/kiab311
https://doi.org/10.1105/tpc.19.00015
https://doi.org/10.1105/tpc.19.00015
https://doi.org/10.1111/nph.14641
https://doi.org/10.1111/nph.14641
https://doi.org/10.1145/3197517.3201396
https://doi.org/10.1111/nph.16533
https://doi.org/10.1111/nph.16533

	TopoRoot: a method for computing hierarchy and fine-grained traits of maize roots from 3D imaging
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Introduction
	Methods
	Overview
	Segmentation
	Skeletonization
	Inferring hierarchy
	Computing traits

	Results
	Data preparation

	Experiment settings
	Experimental results: excavated root crowns
	Experimental results: simulated roots

	Discussion
	Error analysis
	Running time
	Extensions
	Software availability

	Conclusions
	Acknowledgements
	References




