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METHODOLOGY

Estimation of nitrate nitrogen content 
in cotton petioles under drip irrigation based 
on wavelet neural network approach using 
spectral indices
Zhiqiang Dong1,2, Yang Liu1,2*, Baoxia Ci1,2, Ming Wen1,2, Minghua Li1,2, Xi Lu1,2, Xiaokang Feng1,2, 
Shuai Wen1,2 and Fuyu Ma1,2* 

Abstract 

Background:  Estimation of nitrate nitrogen (NO3
−–N) content in petioles is one of the key approaches for monitor-

ing nitrogen (N) nutrition in crops. Rapid, non-destructive, and accurate evaluation of NO3
−–N contents in cotton 

petioles under drip irrigation is of great significance.

Methods:  In this study, we discussed the use of hyperspectral data to estimate NO3
−–N contents in cotton petioles 

under drip irrigation at different N treatments and growth stages. The correlations among trilateral parameters and 
six vegetation indices and petiole NO3

−–N contents were first investigated, after which a traditional regression model 
for petioles NO3

−–N content was established. A wavelet neural network (WNN) model for estimating petiole NO3
−–N 

content was also established. In addition, the performance of WNN was compared to those of random forest (RF), 
radial basis function neural network (RBF) and back propagation neural network (BP).

Results:  Between the blue edge amplitude (Db) and blue edge area (SDb) of the blue edge parameters was the opti-
mal index for the estimation model of petiole NO3

−–N content. We found that the prediction results of the blue edge 
parameters and WNN were 7.3% higher than the coefficient of determination (R2) of the first derivative vegetation 
index and WNN. Root mean square error (RMSE) and mean absolute error (MAE) were 25.2% and 30.9% lower than 
first derivative vegetation, respectively, and the performance was better than that of RF, RBF and BP.

Conclusions:  An inexpensive approach consisting of the WNN algorithm and blue edge parameters can be used to 
enhance the accuracy of NO3

−–N content estimation in cotton petioles under drip irrigation.
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Background
Optimal management of nitrogen (N) fertilizer is impor-
tant to in the improvement of cotton yield and quality [1], 
as well as in the reduction of waste and environmental 

problems associated with excess N fertilizer input [2]. 
A reasonable amount of N fertilizer is conducive for the 
balance between vegetative growth in cotton, and pro-
motion of N absorption as well as utilization [3, 4]. The 
N fertilizer is generally stored and assimilated by cot-
ton plants in the form of nitrate nitrogen (NO3

−–N). 
NO3

−–N contents vary in different parts of the cotton 
plant in the order of petioles > stems > leaves [5, 6]. There-
fore, petiole NO3

−–N content is an effective parameter 
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that reflects overall N nutrition status of cotton, and pet-
ioles can be used as primary plant parts for diagnosing 
N nutrition [7–9]. Petioles also facilitate rapid determi-
nation of N nutrition status of plants to guide rational N 
fertilizer application [10, 11].

The traditional methods for evaluating cotton N 
nutrition include soil mineral N determination, labora-
tory analysis of the plant and determination of petiole 
NO3

−–N levels among others [12, 13]. However, these 
methods are associated with certain limitations such 
as cumbersome procedures, that are time consuming, 
poor timing of analyses results, and they also involve 
destructive sampling of many plants [14, 15]. Due to its 
non-destructive, cheap, and efficient characteristics, 
hyperspectral remote sensing technology has been used 
to estimate physiological parameters during crop growth 
and development [16]. Diagnosis of N nutrition in crops 
based on spectral data has made considerable progress 
[17]. The technique has been applied in several crops to 
obtain crop N nutrition status spectral indices [18–20]. 
Based on spectral indices, various crop N nutrition 
monitoring models have been established, and they have 
achieved a high accuracy. Abulaiti et  al. [21] proposed 
a novel approach for characterizing the Total Nitrogen 
Content (TNC) by canopy spectral reflectance through 
a fractional order derivative (FOD) and optimized spec-
tral indices (NDSI, RSI). Rao et  al. [22] confirmed the 
potential of the EO-1 Hyperion hyperspectral sensor for 
the estimation of total chlorophyll and nitrogen concen-
trations in cotton crops by developing regression models 
between hyperspectral reflectance and laboratory meas-
urements of leaf total chlorophyll and nitrogen concen-
trations. Studies on hyperspectral estimation of NO3

−–N 
content are limited and most of which focus on plant 
N content. Gautam et  al. [23] used two neural network 
architectures (Back Propagation and Radial Basis Func-
tion) were used to develop twenty different models to 
predict corn crop NO3

−–N content. They found that 
radial basis function model based on green vegetation 
index textural features provided the best performance 
with an average accuracy of 92.1%.

In addition, parameters associated with spectral loca-
tion characteristics, trilateral parameters reflect spec-
tral characteristics of vegetation and are also sensitive 
to variations in N content [24]. The red edge parameter, 
which is one of the trilateral parameters has been used 
to estimate N nutrition various crops with satisfactory 
outcomes [25, 26]. The red edge blue shift phenomenon 
exists in reflectance spectra of numerous crops. Railyan 
[27] and Gilbert [28] established that the position and 
red edge slope in triticale and maize constantly varied 
during the entire growing season, and were closely asso-
ciated with the phonological period of crops. The red 

edge shifted to the long wave direction in the vegetative 
growth stage, and shifted to the short wave direction in 
the reproductive growth stage.

Spectral indices of crops can be obtained by develop-
ing linear or non-linear relationships or by the learning 
method of artificial neural networks. Spectral indices 
combined with artificial neural network algorithms have 
been used to estimate N contents. Based on adaptive dif-
ferential optimization extreme learning machine, radial 
basis function (RBF) and particle swarm optimization 
BP, Feng et  al. [29] established quantitative estimation 
models for N content estimation in rice canopy leaves. 
To rapidly and accurately estimate N contents in maize in 
natural environments, Xiu et al. [30] proposed a method 
for measuring maize N content based on wavelet energy 
coefficient and back propagation neural network (BP). 
Compared to the regression analysis model, the method 
improved the accuracy of corn N content estimation. 
Wavelet neural network (WNN) [31] is a type of artifi-
cial neural network, that is generated by applying wavelet 
analysis theory to neural network theory. This network 
exhibits strong non-linear mapping and learning abili-
ties [31]. Current studies on WNN traverse several fields, 
including medicine [32], industry [33], and finance [34] 
and has achieved satisfactory results.

Determination of NO3
−–N content in plants during the 

growing season for N nutrition monitoring is common 
in Europe [35]. In China, there are related applications in 
wheat [36] and corn [37], but less in cotton. Few studies 
have evaluated the efficacy of the hyperspectral technol-
ogy to monitor NO3

−–N contents in cotton petioles. A 
combined WNN model, which has strong adaptive and 
fault tolerant abilities, can effectively estimate the advan-
tages of linear and nonlinear functions, and facilitate the 
estimation of petiole NO3

−–N contents in cotton under 
drip irrigation to provide technical references for cot-
ton growth and N nutrition diagnosis under drip irriga-
tion. Therefore, in this study, we selected spectral indices 
and trilateral parameters that are sensitive to N and used 
them to estimate the NO3

−–N content of cotton petioles 
based on experimental cotton conditions such as drip 
irrigation, and various N application levels in Xinjiang.

Methods
Experimental design
The field experiment was performed in 2019 at the teach-
ing experiment farm of Shihezi University, Shihezi City, 
Xinjiang Uygur Autonomous Region (86° 02′ E, 44° 18′ N) 
(Fig. 1a, b). Soil fertility of the 0–20 cm soil layer in the 
experimental plots was determined; total N was 1.13  g/
kg, alkali-hydro N was 44.26 mg/kg, available phosphorus 
content was 19  mg/kg, available potassium content was 
486 mg/kg, organic matter content was 15.50 g/kg, while 
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the pH was 8.17. The Lumianyan 24 cotton variety, which 
is a middle-late maturing variety, with a growth period 
of approximately 130  days was used as the experiment 
material. Lumianyan 24 was planted on 23rd April and 
was harvested on 5th October in 2019.

Five N rates were designed as follows: 0  kg/ha (N0), 
195.5 kg/ha (N1), 299 kg/ha (N2), 402.5 kg/ha (N3) and 
506 kg/ha (N4). Total amounts of phosphate (P2O5) and 
potassium (K2O) fertilizers were 109.8 kg/ha and 91.8 kg/
ha, respectively. One film, three rows, and three belts 
were used in the experiment. Row spacing was 76  cm 
while plant spacing was 10 cm. Each treatment was per-
formed in triplicate and arranged in completely rand-
omized blocks covering a plot area of 2.25  m × 15  m. 
Cotton was first grown in the experimental field after 
which protective rows were set around the cotton plants. 
Other field management measures were in accordance 
with the requirements of high-yield cultivation. Fertiliz-
ers were applied with irrigation water during the cotton 
growth period under drip irrigation with film.

Validation test data were obtained from a high-yield 
cotton field in Shihezi university teaching experimen-
tal field (Fig.  1c). The independent test cotton field was 
divided into 15 plots. The total amounts of N fertilizer 
applied was 300  kg/ha, while total amount of P2O5 and 
K2O fertilizers applied were 109.8 kg/ha and 91.8 kg/ha, 
respectively.

Spectral data acquisition
Key growth periods of cotton were defined as follows: full 
bud period (65 days after sowing), initial flowering period 
(77 days after sowing), full flowering period (88 days after 
sowing), and initial boll stage (107 days after sowing). The 

analytical spectral devices (ASD) FieldSpec 3 portable 
spectrometer (Analytical Spectral Devices Inc., Boulder, 
CO, Colorado, USA) was used to obtain spectral data of 
the cotton canopy. The band range was 350–1075  nm 
while the field of view was 25°. Three rows of cotton 
plants with uniform growth in different treatment plots 
were randomly selected. The spectrometric probe was 
vertically placed downward at 25  cm above the canopy. 
The trigger was pulled during scanning and the obtained 
spectral data automatically saved. Spectral data acquisi-
tion time was three hours. Average values of the three 
curves were calculated using the Viewspec software 
(Analytical Spectral Devices, Inc., Boulder, CO, Colo-
rado, USA) as reflectance values of cell spectra.

Determination of NO3
−–N content in cotton petioles

After the collection of canopy spectral data, 20 cot-
ton plants with petioles (10 days after topping) and two 
leaves (10  days after topping) were randomly selected 
from the experimental plots. Cotton petioles and leaves 
were separated. Petioles were cut and pressed, and the 
sap was immediately measured using the LAQUA twin 
NO3

− meter (HORIBA Inc., Japan), The LAQUA twin 
NO3

− meter is a rapid and effective method for evaluat-
ing nitrogen levels. The test process, which is widely used 
in crops nitrogen diagnosis, is simple and accurate [35, 
37]. A brief description of NO3

− meter is presented in 
Table 1.

Spectral parameter selection
Spectral indices were associated with cotton photo-
synthesis, soil fertility level, and nutrient manage-
ment among others. Six spectral indices and trilateral 

Fig. 1  Study area location. a Location of the study area; b field experiment; c high yield verification cotton field photographed by unmanned aerial 
vehicle (UAV)
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parameters that are sensitive to N nutrition in cotton 
under drip irrigation were selected based on spectral 
response characteristics of cotton canopy under drip irri-
gation and previous studies, as shown in Table 2.

WNN was used to establish the estimation model of 
cotton petiole NO3

−–N contents. Two spectral charac-
teristic indices and two trilateral parameters with strong 
correlations between critical growth period and petiole 
NO3

−–N content were selected as independent vari-
ables to develop a cotton petiole NO3

−–N content model. 
Independent validation samples were used to test the 
regression model. The coefficient of determination (R2), 
root mean square error (RMSE), and mean absolute error 
(MAE) were used to enhance the accuracy of the model 
to develop the best estimation model (Eqs.  1–3). Mean 

relative error (MRE) was used to determine the number 
of hidden nodes in WNN (Eq. 4).

whereby, Fi and Ti are the predicted and true values, 
respectively, while n is the number of samples.

Modeling methods
WNN [46] is an artificial neural network that is based 
on wavelet analysis. The S-type activation function of 
the hidden node in the neural network is replaced with 
the wavelet function. The corresponding weight from the 
input layer to the hidden layer, and the threshold value 
of the hidden layer are replaced with scale expansion and 
time shift factors of wavelet function, respectively.

Determination of the number of hidden layer nodes is 
a key factor influencing the accuracy of the WNN pre-
diction model. Therefore, the number of hidden layer 
nodes is determined under the condition of meeting 
model accuracy while the compactness of the model 
structure is ensured to avoid redundancy. In the present 
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Table 1  LAQUA twin NO3
−–N instrument profile

Instruments name LAQUA twin NO3
−

Measuring principles Ion electrode

 
Volume of samples required 0.3–2.0 mL

Scope of measurement 2–9900 mg/L

Table 2  Calculation methods and reflectance of spectral indices

Spectral index Abbreviation Formula References

Trilateral parameters Red edge amplitude Dr Maximum first derivative within 680–760 [38]

Red edge area SDr Sum of first derivative values in red edge [38]

Yellow edge amplitude Dy Maximum first derivative within 560–640 [39]

Yellow edge area SDy Sum of first derivative values in yellow edge [39]

Blue edge amplitude Db Maximum first derivative within 490–530 [39]

Blue edge area SDb Sum of first derivative values in blue edge [39]

Vegetation index Red edge ratio spectral index RD R740/R720 [40]

Red edge model index CIred-edge (R780/R710) − 1 [41]

Normalized difference red edge index NDRE (R790R720)/(R790 + R720) [42]

Normalized difference spectral index ND705 (R750 − R705)/(R750 + R705) [43]

Near infrared ratio spectral index NIR R780/R740 [44]

Red edge ratio spectral index RI-1 dB R735/R720 [45]
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study, the number of hidden layer nodes was set to five, 
and the model was trained with five, eight, 10, 12, 16, and 
20 hidden layer nodes. The training error is presented in 
Table  3. Prediction MRE is considered minimum when 
the number of hidden nodes is 10. Therefore, the num-
ber of hidden nodes was set to 10, the learning rate was 
0.01, the number of iterations was 1000, and the maxi-
mum allowable error was 0.001. WNN was created using 
the MATLAB R2019b software (MathWorks, Inc. Natick, 
Massachusetts, USA).

According to the WNN theory, through repeated train-
ings and iteration, a WNN estimation model for petiole 
NO3

−–N content in cotton under drip irrigation was 
developed based on spectral indices as shown in Fig. 2.

Random forest (RF) [46] is an algorithm that integrates 
multiple trees through ensemble learning and its basic 
unit is a decision tree. RF is commonly used in high-
dimensional data classification and regression. The RF 
algorithm was developed using the MATLAB R2019b 
software. The number of classification trees in the RF 
algorithm was 1070.

The RBF neural network [46] can fit continuous non-
linear functions, and its hidden layer adopts RBF, which 

locally responds to input signals. In this study, the RBF 
neural network was developed using the MATLAB 
R2019b software. The variance parameter of RBF kernel 
function was set to 0.3.

The BP neural network [46] is a learning algorithm 
of feedback networks, that reflects input–output rela-
tionships of samples, and has a strong non-linear fuzzy 
approximation ability. In this study, a BP neural network 
was developed using the MATLAB R2019b software. The 
BP neural network adopts a three-layer structure, with 
10 hidden layer nodes, 1000 iterations, and 0.01 learning 
rate.

Results
The relationship between NO3

−–N contents in petioles 
and trilateral parameters
Table  4 shows that the correlation between NO3

−–N 
content in petioles and blue edge parameters was 
stronger than that of red edge and yellow edge param-
eters. Although the correlations were significant; a nega-
tive correlation was observed among red edge amplitude 
(Dr), red edge area (SDr), yellow edge amplitude (Dy), 
and yellow edge area (SDy), while a positive correlation 

Table 3  Influence of the number of nodes in different hidden 
layers on network prediction error

Learning rate Number of 
iterations

Maximum 
allowable 
error

Number of 
hidden layer 
nodes

MRE%

0.01 1000 0.001 5 7.14

0.01 1000 0.001 8 5.86

0.01 1000 0.001 10 5.82

0.01 1000 0.001 12 6.92

0.01 1000 0.001 16 6.35

0.01 1000 0.001 20 5.92

Training sample Calculation 
error

Wavelet basis 
function

Wavelet basis 
function

Trained neural 
network

Estimated 
results

Test data
Adjust weight

Output

Output

Input

Input

Training process of WNN Estimation process of WNN
Fig. 2  Operation of WNN

Table 4  Correlation coefficient between NO3
−–N content of 

petioles and trilateral parameters

**Means significant at the level of p < 0.01

Trilateral parameters Correlation 
coefficients

Dr − 0.80**

SDr − 0.72**

Dy − 0.85**

SDy − 0.59**

Db 0.90**

SDb 0.90**
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was observed between blue edge amplitude (Db) and blue 
edge area (SDb). Correlation coefficient of Db and SDb 
was 0.90.

From the regression analysis, Table  5 shows that blue 
edge parameters and petiole NO3

−–N content R2 was 
higher while RMSE was lower when compared to those 
of red edge and yellow edge parameters. The polynomial 
regression equation of Db exhibited the highest coef-
ficient of determination (R2 = 0.89), while the RMSE 
value of Db linear regression equation was the lowest 
(RMSE = 1.04 g/L). Based on linear regression equations 
of blue edge, red edge and yellow edge parameters, the R2 
value of Db in blue edge parameters increased by 25.0% 
and 11.1%, respectively, when compared to Dr in red edge 
parameters and Dy in yellow edge parameters. Moreover, 
the R2 value of SDb in blue edge parameters increased by 
55.8% and 11.0%, respectively, when compared to SDr in 
red edge parameters and SDy in yellow edge parameters.

Relationship between NO3
−–N content in petioles 

and vegetation indices
Correlation analysis (Table 6) revealed a significant nega-
tive correlation between vegetation index red edge (RD) 
and NO3

−–N content in petioles, with a correlation coef-
ficient of − 0.81, followed by near infrared ratio spectral 
index (NIR), with a correlation coefficient of − 0.79, and 
other vegetation indices that reached significant corre-
lation levels (Table  6). Correlation analyses of NO3

−–N 
content in cotton petioles under drip irrigation and 

vegetation indices developed based on the first six sets of 
derivative spectral data revealed that ND705 was signifi-
cantly negatively correlated with NO3

−–N content in pet-
ioles, and the correlation coefficient was − 0.90, followed 
by red edge model index (CIred-edge), with a correlation 
coefficient of − 0.89 (Table 6). Correlation coefficients of 
ND705 and NO3

−–N contents in petioles were signifi-
cantly increased by 18.4% and 20.3%, respectively except 
for NIR based on ND705 and CIred-edge.

Table 5  Quantitative relationship between trilateral parameters and NO3
−–N content in petioles

E stands for scientific counting; e is the base of natural logarithm

Trilateral parameters Functional model Regression equation R2 RMSE (g/L)

Dr Linear y = − 1E + 06x + 21,084 0.64 1.40

Exponential y = 59,355e−160.9x 0.61 1.45

Quadratic y = − 2E + 08x2 + 6E + 06x − 23990 0.67 2.93

SDr Linear y = − 12,321x + 13,673 0.52 2.28

Exponential y = 18,355e−1.876x 0.47 2.59

Quadratic y = − 58,926x2 + 48,072x − 895.38 0.60 2.53

Dy Linear y = − 1E + 08x + 1114.1 0.72 1.08

Exponential y = 2691.4e−17931x 0.67 1.82

Quadratic y = − 4E + 12x2 − 5E + 08x − 9212.4 0.84 2.73

SDy Linear y = − 193,244x − 1139.4 0.73 2.91

Exponential y = 1924.3e−29.42x 0.67 2.54

Quadratic y = − 8E + 06x2 − 905,730x − 16273 0.79 2.51

Db Linear y = 4E + 06x − 836.47 0.80 1.04

Exponential y = 2036.5e619.48x 0.72 1.50

Quadratic y = − 3E + 09x2 + 2E + 07x − 14359 0.89 1.64

SDb Linear y = 498,071x − 9405.9 0.81 1.45

Exponential y = 492.37e78.986x 0.80 1.53

Quadratic y = 9E + 06x2 − 84,605x − 199.84 0.82 1.98

Table 6  Correlation coefficient between NO3
−–N content of 

petioles and vegetation indices

**Means significant at the level of p < 0.01

Type of reflectivity Vegetation indices Correlation 
coefficients

First derivative RD − 0.85**

CIred-edge − 0.89**

NDRE − 0.80**

ND705 − 0.90**

NIR − 0.62**

RI-1 dB − 0.72**

Original RD − 0.81**

CIred-edge − 0.74**

NDRE − 0.77**

ND705 − 0.76**

NIR − 0.79**

RI-1 dB − 0.77**
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Regression analyses (Table  7) between NO3
−–N 

contents in petioles and six vegetation indices during 
the key growth period of cotton under drip irrigation 
revealed that R2 values of the first derivative vegetation 
indices, RD, CIred-edge, normalized difference red edge 
index (NDRE), and normalized difference spectral index 
(ND705) were higher than those of the original vegeta-
tion indices, and that RMSE values were lower than those 
of original vegetation indices. Among the three regres-
sion models, the R2 value of the polynomial regression 

equation for the first derivative vegetation index, ND705 
was the highest (R2 = 0.83), while the linear regression 
equation of the first derivative vegetation index, CIred-edge 
had the lowest RMSE (0.92 g/L). In conclusion, the first 
derivative vegetation index, ND705 and CIred-edge exhib-
ited a higher predictive ability. The R2 value of the poly-
nomial regression equation between ND705 and petiole 
NO3

−–N content was 53.4% higher than that of ND705. 
The RMSE value of the linear regression equation of the 
first derivative vegetation index and petiole NO3

−–N 

Table 7  Quantitative relationship between spectral indices and NO3
−–N content

E stands for scientific counting; e is the base of natural logarithm

Type of reflectivity Vegetation indices Functional model Regression equation R2 RMSE (g/L)

First derivative RD Linear y = − 8116.9x + 13,150 0.71 1.77

Exponential y = 17,860e−1.306x 0.73 2.01

Quadratic y = 3178.2x2 − 13,332x + 15,120 0.72 1.88

CIred-edge Linear y = − 76,288x − 66,089 0.80 0.92

Exponential y = 0.067e−12.01x 0.78 0.98

Quadratic y = − 169,389x2 − 400,646x − 221,261 0.80 0.93

NDRE Linear y = − 27,424x − 18,368 0.63 1.14

Exponential y = 147.75e−4.115x 0.56 1.23

Quadratic y = 126,872x2 + 207,536x + 89,944 0.67 1.18

ND705 Linear y = − 18,527x + 3265 0.82 1.52

Exponential y = 3707.4e−2.893x 0.78 1.35

Quadratic y = − 29,935x2 − 30,687x + 2342.8 0.83 1.69

NIR Linear y = − 85,125x + 10,408 0.39 1.45

Exponential y = 11,137e−12.9x 0.35 1.55

Quadratic y = − 2E + 06x2 + 47,910x + 8644.1 0.44 1.44

RI-1 dB Linear y = − 19,373x + 22,583 0.52 2.37

Exponential y = 78,853e−3.076x 0.52 2.91

Quadratic y = 126,872x2 + 207,536x + 89,944 0.59 2.83

Original RD Linear y = − 8564.7x + 25,826 0.65 1.50

Exponential y = 131,902e−1.36x 0.65 1.57

Quadratic y = − 10,788x2 + 39,287x − 26,804 0.67 1.47

CIred-edge Linear y = − 3415.6x + 14,222 0.54 1.69

Exponential y = 19,774e−0.516x 0.49 1.81

Quadratic y = − 357.75x2 − 1914.2x + 12,720 0.54 1.67

NDRE Linear y = − 28,351x + 17,684 0.59 1.70

Exponential y = 34,790e−4.394x 0.56 1.81

Quadratic y = − 202,849x2 + 124,311x − 10,381 0.63 1.60

ND705 Linear y = − 2745.6x + 16,233 0.58 2.38

Exponential y = 29,232e−0.441x 0.59 2.41

Quadratic y = − 35.761x2 − 2493x + 15,800 0.58 2.34

NIR Linear y = − 28,744x + 38,765 0.62 1.66

Exponential y = 946,939e−4.488x 0.60 1.81

Quadratic y = − 180,524x2 + 369,826x − 180,634 0.66 1.53

RI-1 dB Linear y = − 10,960x + 28,560 0.59 1.58

Exponential y = 199,238e−1.729x 0.58 1.67

Quadratic y = − 26,273x2 + 92,468x − 72,663 0.64 1.52
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content was 45.6% lower than that of the original vegeta-
tion index, CIred-edge.

Development and verification of the estimation models
In this study, we used two stable and representative first 
derivative vegetation indices (ND705, CIred-edge) and Db 
as well as SDb (blue edge parameters) to develop the peti-
ole NO3

−–N content estimation model WNN. Simulated 
and measured values were fitted and analyzed using an 
independent validation test data. Results are presented in 
Table 8. The R2, RMSE, and MAE values of the WNN esti-
mation model based on first derivative vegetation indices 
were 0.81, 0.91 g/L, and 0.73 g/L, respectively, while the 
R2, RMSE, and MAE values of the validation model were 
0.82, 0.87 g/L, and 0.68 g/L, respectively. The R2, RMSE, 
and MAE values of the WNN estimation model based on 
blue edge parameters were 0.88, 0.74  g/L and 0.58  g/L, 
respectively. The R2, RMSE, and MAE values of the vali-
dation model based on blue edge parameters were 0.88, 
0.65 g/L, and 0.47 g/L, respectively. The R2 value of WNN 
based on blue edge parameters was increased by 8.6%, 
whereas RMSE and MAE values were reduced by 18.7% 
and 20.5%, respectively, when compared to the estima-
tion model based on first derivative vegetation indices. 
The R2 value of the validation model based on blue edge 
parameters was increased by 7.3%, whereas RMSE and 
MAE values were reduced by 25.2% and 30.9%, respec-
tively, when compared to the estimation model based on 
first derivative vegetation indices. Generally, the R2 value 
of the validation model was higher than that of the esti-
mation model, while RMSE and MAE values were lower 

than those of the estimation model, implying that the val-
idation model is stable.

The verification model of NO3
−–N content in petioles 

was developed based on WNN, RF, RBF and BP (Table 9). 
The R2, RMSE and MAE values of the WNN validation 
model based on first derivative vegetation indices were 
0.82, 0.87 g/L, and 0.68 g/L. The R2 values of WNN, RF, 
and RBF were all 0.82. However, the RMSE and MAE val-
ues of WNN were 5.4% and 10.5% lower than those of RF, 
1.0% and 5.6% lower than those of RBF, and 17.2% and 
16.0% lower than those of BP, respectively. The R2, RMSE, 
and MAE values of the WNN validation model based on 
blue edge parameters were 0.88, 0.65 g/L, and 0.47 g/L, 
respectively. Compared to RF, the R2 value of WNN was 
increased by 7.3%, whereas RMSE and MAE values were 
decreased by 17.7% and 21.7%, respectively. Compared 
to RBF, the R2 of WNN was increased by 8.6%, whereas 
RMSE and MAE values were decreased by 18.8% and 
23.0%, respectively. Compared to BP, the R2 of WNN was 
increased by 14.3%, whereas RMSE and MAE values were 
decreased by 27.0% and 27.7%, respectively.

The R2 value of the WNN, based on blue edge param-
eters, increased by 7.3% while RMSE and MAE values 
reduced by 25.2% and 30.9%, respectively, when com-
pared to the model based on first derivative vegetation 
indices. The RMSE and MAE values of the RF based 
on blue edge parameter values were reduced by 14.1% 
and 21.1%, respectively, when compared to the model 
based on first derivative vegetation indices. The RMSE 
and MAE values of the RBF based on blue edge param-
eter values were reduced by 9.1% and 15.3%, respectively, 
when compared to the model based on first derivative 

Table 8  Modeling and validation of NO3
−–N content in petioles by wavelet neural network

Spectral index type Modeling Validation

Number of 
samples

R2 RSME (g/L) MAE (g/L) Number of 
samples

R2 RSME (g/L) MAE (g/L)

Vegetation indices 60 0.81 0.91 0.73 60 0.82 0.87 0.68

Blue edge parameters 60 0.88 0.74 0.58 60 0.88 0.65 0.47

Table 9  Validation between predicted and measured of NO3
−–N content in petioles based on different methods

Methods Blue edge parameters Vegetation indices

Number of 
samples

R2 RSME (g/L) MAE (g/L) Number of 
samples

R2 RSME (g/L) MAE (g/L)

WNN 60 0.88 0.65 0.47 60 0.82 0.87 0.68

RF 60 0.82 0.79 0.60 60 0.82 0.92 0.76

RBF 60 0.81 0.80 0.61 60 0.82 0.88 0.72

BP 60 0.77 0.89 0.65 60 0.74 1.02 0.81
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vegetation indices. The R2 value of BP based on blue edge 
parameters was increased by 4.1% while RMSE and MAE 
values were reduced by 12.7% and 19.8%, respectively, 
when compared to the model based on first derivative 
vegetation indices.

Discussion
Feasibility of remote sensing monitoring NO3

−–N content 
in cotton petioles under drip irrigation
Timely and accurate monitoring of N contents in crops is 
key to accurate application of N fertilizer [47]. Advances 
in remote sensing technology present a potential novel 
method for monitoring crop nutrition [48]. This tech-
nology has been used to monitor plant N contents and 
N accumulation, although studies on NO3

−–N contents 
in cotton petioles under drip irrigation are scarce [49]. 
Monitoring of petiole NO3

−–N contents is widely used to 
evaluate crop nutrition and to inform top-dressing [48]. 
In this study, the correlations among six trilateral param-
eters, six vegetation indices, and NO3

−–N contents in 
cotton petioles under drip irrigation was revealed that a 
large proportion of the spectral index was strongly cor-
related with NO3

−–N content in petioles. Among them, 
correlation coefficients of Db, SDb, and first derivative 
ND705 are all 0.90. These findings imply that estimation 
of NO3

−–N contents in cotton petioles under drip irriga-
tion using spectral indices is feasible.

Potential of blue edge parameters for the estimation 
of NO3

−–N content in petioles
Trilateral parameters, especially red edge parameters, 
effectively reflect the characteristics of crop N status 
[49, 50]. Studies on wheat, rice, and other crops devel-
oped N content estimation models based on red edge 
parameters, which achieved satisfactory results [51, 52]. 
In this study, we established that the correlation between 
blue edge parameters and petiole NO3

−–N contents 
was strong, and that the traditional regression model of 
blue edge parameters and petiole NO3

−–N content was 
superior to the red edge and yellow edge parameters. 
Estimation and validation models based on blue edge 
parameters and WNN exhibited a superior capacity to 
the vegetation index model based on the red edge band. 
This finding is relatively inconsistent with the findings 
of most previous studies, which focused on the correla-
tion between red edge parameters and crop N. Blue edge 
is sensitive to crop N. Li et al. [53] determined N levels 
in winter wheat by performing hyperspectral analyses, 
and established that blue-violet light was sensitive to N. 
Stroppiana et  al. [54] reported that the blue light is the 
ideal wave segment for N estimation in rice. Our findings 
could be attributed to variations in crop canopy structure 

and biomass, the unique climatic conditions in Xinjiang, 
drip irrigation fertilization methods, or to other factors.

When selecting spectral characteristic parameters, 
most of the studies have evaluated red edge parameters 
and paid less attention to the blue edge parameters, 
which cover wavelengths between 490 and 530  nm. 
Therefore, blue edge parameters should be considered 
when determining N levels based on spectral data. We 
also showed the potential of blue edge parameters in esti-
mating of N levels in crops.

Applications of neural networks in remote sensing 
monitoring
The R2 value of the WNN estimation and verification 
models were relatively high, while RMSE and MAE val-
ues were relatively low as shown in Tables 8, 9, implying 
that stability of the model is high while its, estimation 
capacity is superior. Combined WNN maintains the 
advantages of artificial neural networks and wavelet 
analysis, which accelerates network convergence, thereby 
preventing the algorithm from falling into local optimum 
and occasionally making local analysis more frequent 
[55, 56]. The RBF neural network [57] algorithm confers 
the advantages of rapid training and convergence speed, 
strong input–output mapping ability, and strong gener-
alization ability when compared to the BP neural network 
algorithm. Furthermore, our findings confirmed that the 
estimation model based on the RBF neural network is 
superior to that of the BP neural network model.

Neural networks [58, 59] exhibit a great potential in 
learning and developing non-linear complex relationship 
models, and they exhibit high tolerance for input objects. 
Wang et al. [60] constructed the Chinese cabbage popu-
lation quality BP neural network model which effectively 
monitors, N utilization of Chinese cabbage is monitored 
effectively. The constructed population quality evaluation 
model has a high R2 value and a comparatively low RMSE 
value for quality evaluation of Chinese cabbage in differ-
ent periods. Sabzi et al. [61] used the hyperspectral imag-
ing technology combined with artificial neural networks 
and imperialist competition algorithm (ANN-ICA) to 
detect early excessive N levels in cucumber leaves. They 
found that hyperspectral imaging technology combined 
with artificial neural networks can detect excess N in 
plants in near infrared band (NIR), and the correct clas-
sification rate is 96.11%. Neural networks can better 
simulate heteroscedasticity and have the ability to learn 
hidden relations in data without imposing any fixed rela-
tions [57, 64].

Studies on crop physiological parameter estimation 
have shown that the RF algorithm exhibits a high accu-
racy and estimation ability, and confers the advantages of 
strong stability and high efficiency when compared with 
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other modeling methods. Loozen et al. [62] used the RF 
technology estimate the N content of a European forest 
canopy, which exhibited a superior accuracy (R2 = 0.62, 
RMSE = 0.18). To establish an efficient method for esti-
mating winter wheat biomass, Yue et  al. [63] used RF 
algorithm to develop a regression model of winter wheat 
biomass by combining spectrum, radar backscatter-
ing, vegetation index, and radar vegetation index, they 
found that the stochastic forest algorithm can be applied 
in remote sensing to estimate the winter wheat biomass. 
The RF regression algorithm has been shown to result 
in over fitting and higher test errors when compared to 
the neural network algorithm [64, 65]. RMSE and MAE 
values of WNN and RBF models based on the vegetation 
indices were found to be lower than those of the RF dur-
ing model validation (Fig. 3). The R2 value of WNN based 
on blue edge parameters was higher than that of the RF, 
while RMSE and MAE values were lower than those of 
the RF (Fig. 4), consistent with previous findings that the 
RF method exhibits a weak predictive ability.

Conclusions
We analyzed and compared the performance of trilateral 
parameters and vegetation indices in estimating NO3

−–N 
contents in cotton petioles under drip irrigation, in addi-
tion to determining an effective method for estimating 
NO3

−–N contents in cotton petioles under drip irrigation 
using blue edge parameters and WNN. It was found that 
the correlation between blue edge parameters and petiole 
NO3

−–N content was 0.90, and the regression equation 
of blue edge parameters and petiole NO3

−–N content 
had a higher R2 and a lower RMSE. The validation model, 
which was based on blue edge parameters and WNN, 
exhibited the highest coefficient (R2 = 0.88), lowest root 
mean square error (RMSE = 0.65  g/L) and lowest mean 
absolute error (MAE = 0.47  g/L). Therefore, blue edge 
parameters and WNN can be used to estimate NO3

−–N 
contents in cotton petioles under drip irrigation.
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