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Raman spectroscopy enables phenotyping 
and assessment of nutrition values of plants: 
a review
William Z. Payne1 and Dmitry Kurouski1,2*   

Abstract 

Our civilization has to enhance food production to feed world’s expected population of 9.7 billion by 2050. These food 
demands can be met by implementation of innovative technologies in agriculture. This transformative agricultural 
concept, also known as digital farming, aims to maximize the crop yield without an increase in the field footprint 
while simultaneously minimizing environmental impact of farming. There is a growing body of evidence that Raman 
spectroscopy, a non-invasive, non-destructive, and laser-based analytical approach, can be used to: (i) detect plant 
diseases, (ii) abiotic stresses, and (iii) enable label-free phenotyping and digital selection of plants in breeding pro-
grams. In this review, we critically discuss the most recent reports on the use of Raman spectroscopy for confirmatory 
identification of plant species and their varieties, as well as Raman-based analysis of the nutrition value of seeds. We 
show that high selectivity and specificity of Raman makes this technique ideal for optical surveillance of fields, which 
can be used to improve agriculture around the world. We also discuss potential advances in synergetic use of RS and 
already established imaging and molecular techniques. This combinatorial approach can be used to reduce associ-
ated time and cost, as well as enhance the accuracy of diagnostics of biotic and abiotic stresses.
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Introduction
Malnutrition due to a lack of nutritious food is an issue 
that over a billion people around the world face daily [1]. 
This problem can be solved by continuous expansion of 
farm land or by development of innovative agricultural 
approaches. One can envision that the first strategy is 
destructive and unlikely can be inefficient in the long 
term. The alternative strategy is focused on the enhance-
ment of farming efficiency. This innovative agricultural 
philosophy is known as digital farming or precision agri-
culture. Digital Farming aims to develop innovative tech-
nological approaches that can be used to maximize the 

crop yield with minimal environmental impact [2, 3]. 
Efficient digital farming requires sensing methods that 
can deliver information about the plant health from a 
field to the farmer. Sensing methods are also essential for 
plant breeding. Currently, plant crosses are performed by 
visual analysis of plants, as well as by laboratory-based 
analysis of their nutrients (micro and macro elements) 
and nutritional values (levels of protein, starch, fiber, 
etc.). Such analyses require labor and time-consuming 
wet-laboratory techniques, such as Dumas combustion 
method [4] and Megazyme Total Starch Content assay 
(subsequently megazyme assay) [5]. This substantially 
decelerates the speed and confidence level of plant breed-
ing. Timely access to the information about plant health 
allows for detection and identification of pests and plant 
diseases in the field. Such information can be used for a 
precise and site-specific administration of the chemical 
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treatment that could prevent the spread of such biotic 
stresses and save up to 30% of the crop yield [6, 7]. Crop 
losses from abiotic stresses, such as drought and nutrient 
deficiency, are far more significant and can reach up to 
70% worldwide [6, 7]. One can expect that timely sens-
ing of plant deficiency in macro and micro elements can 
be used for site-specific spread of fertilizers in the field. 
Timely provided nutrients will mitigate the decrease in 
the crop yield. Moreover, such a dose-dependent admin-
istration of fertilizers can be done on the level of indi-
vidual plants [8]. This will also minimize the health and 
environmental impacts of pollution from fertilizers.

An alternative strategy to address the issue with the 
crop yield losses due to drought and salinity stress can 
involve a development of the germplasm that has higher 
drought or soil salinity tolerance. However, conventional 
phenotyping techniques are time and labor consuming [9, 
10]. Some of the currently used biophysical approaches 
are capable of probing physiological changes or plant 
chlorophyll contents. However, information provided by 
those methods are not directly related to stress response 
and so require many experiments to draw useful conclu-
sions. The alternative biochemical approaches are more 
relevant but are extremely laborious [11–13]. It should 
be noted that experimental conditions in field experi-
ments are very difficult to control, which further com-
plicates elucidation of potential plant resistance to biotic 
and abiotic stresses that has to be determined upon plant 
crossings [14]. Therefore, there is a strong demand for 
the robust phenotyping techniques that could be used for 
non-destructive, accurate, and rapid assessment of breed-
ing populations for drought related responses, especially 
at early seedling stages with short periods of withholding 
water. Such techniques ideally should identify biomarkers 
associated with drought resistance, as well as biochemi-
cal changes in plants associated with drought. One can 
expect that methodology that will enable identification 
of drought stress on very early (pre-symptomatic) stages 
could be used to differentiate between drought resistant 
and susceptible plants with high accuracy. This catalyzes 
the search for a non-invasive, non-destructive, portable, 
and confirmatory approaches that could be used for on-
site assessment of nutrients and nutritional values of live 
plants and their seeds.

Recently reported research findings show that Raman 
spectroscopy (RS) can be used for diagnostics of biotic 
and abiotic stresses [15–18]. RS is a label-free laser-based 
technique that requires no chemicals for analysis of the 
plant material. This lowers the reagent cost-per-analysis 
value of such tests to zero [19], whereas the cost of alter-
native molecular methods of analysis remain high (PCR 
and ELISA analyses are around $25 and $13 per sam-
ple, respectively). Moreover, it takes only one second to 

perform the analysis of a plant to detect the presence of 
pathogens or reveal the origin of abiotic stresses. Con-
sidering the portable nature of RS, one can expect that 
ultimately Raman spectrometers will be installed on 
combines and grain elevators, as well as on unmanned 
aerial vehicle (UAVs) enabling continuous surveillance 
of agricultural territories. We also expect that RS can be 
used in concert with molecular methods of analyses. In 
this case, RS can be used for quick screening of the plant 
health; if more accurate identification of the pathogen is 
needed, qPCR, PCR or ELISA can be used.

When the sample is illuminated by electromagnetic 
radiation, the vast majority of photons that scatter back 
will have the same energy as the incident photons. An 
Indian scientist, C. V. Raman experimentally demon-
strated that a very small fraction of photons (only one 
photon in 10 million) that hit the sample will scatter back 
with a different energy. These inelastically scattered pho-
tons interacted with molecules in the sample. As a result, 
the molecules were advanced to higher energy states. 
Next, molecules relax to a vibrational energy level that is 
different from the original molecular energy state. As a 
result, photons with a different (higher or lower) than the 
incident photon are produced. The difference in energy 
between the incident and inelastically scattered photon is 
the called Raman shift.

A Raman spectrometer is composed of a laser source 
that is used to generate a photon flux. Next, the light is 
directed by a beam splitter and is focused by a lens onto 
the sample, Fig. 1A. Scattered light is collected typically 
using the same optics and directed into the spectrometer. 
Prior to entering the spectrometer, elastically scattered 
photons are cut off using long-pass filters. After in-elas-
tically scattered photons (Raman photons) are dispersed 
on the spectrometer gratings according to their energies, 
they are captured using CCDs.

Although RS was implemented first as a bench-top 
technique, currently, there are several commercially 
available hand-held spectrometers, Fig.  1B. These 
instruments typically have laser excitation in the 
green (λ = 532  nm), red (λ = 785 or 830  nm) or infra-
red (λ = 1064  nm) parts of the electromagnetic spec-
trum [15–17, 20–22], Table  1. Beam diameter or laser 
spot size on such devises range from several dozens 
of microns to a few millimeters. This is an impor-
tant instrumental parameter that has to be taken into 
consideration for spectroscopic analysis of biologi-
cal specimens. Plants are highly heterogeneous from 
perspective of their structure and composition. Hand-
held spectrometers with ~ 25  microns’ beam spot, 
such as Rigaku Progeny, offer high spatial resolution 
that can be used to investigate the structural fine ele-
ments of plant leaves, such as veins and midribs. Also, 



Page 3 of 20Payne and Kurouski ﻿Plant Methods           (2021) 17:78 	

an analysis with a small laser spot size requires sub-
stantially less amount of material. At the same time, 
if high throughput in sample analysis is necessary, the 
small laser spot may become disadvantageous because 
it will require more precise beam focusing on the plant 

surface. In such cases, the use of large beam diameters 
(a few millimeters) that are offered by Agilent Resolve 
can be preferred.

The beam size of the spectrometer is also linked to 
the intensity of the laser light. For instance, the use of 
495 mW of red laser (λ = 830 nm) with 2 mm beam waist 
causes no thermal/photodegradation of plant leaves. 
However, the equivalent laser power (λ = 1064 nm) com-
pressed to 25 microns causes instant burning of the same 
plant leaf. Therefore, in certain instances, it might be 
more appropriate to indicate power density rather than 
laser power for the reported studies. This observation 
also suggests that it is highly important to demonstrate 
the absence of laser-induced thermal/photodegradation 
of plant material in the reported experiments [23].

Most of recently developed hand-held spectrometers 
weigh only 2–5  lb and can work without charging for 
5–8 h. This allows for their direct utilization in the field 
upon spectroscopic analysis of plants. They also require 
either direct contact with or a close proximity (0.5–1″) 
to an analyzed plant. This limits RS to a scout-based 
approach preventing surveillance of large agricultural 
territories. One can expect that this problem can be 
overcome with the use of Raman telescopes. It has been 
previously shown that the use of telescope reflectors for 
light collection allows for spectroscopic analysis of sam-
ples located ~ 160  ft away from the instrument [24, 25]. 
Such Raman telescopes can be installed either on motor-
ized vehicles or portable towers in the field to achieve 
continuous automated surveillance of the agricultural 
territories.

Excitation wavelength is another important instrumen-
tal parameter that has to be considered in spectroscopic 
studies of plants. Our own findings and results reported 
by other groups [26] show that the use of radiation in the 
blue and green parts of the electromagnetic spectrum 
primarily enables visualization of carotenoid signals, 
Fig.  1C. This can be explained by strong absorption of 
carotenoids in this part of the electromagnetic spectrum 
[27]. We also found that lasers with wavelength above 561 
and below 700 nm unlikely will suit for structural analy-
sis of life plants due to extremely strong fluorescence of 
chlorophyll. This fluorescence exponentially decreases at 
wavelength above 700 nm. Therefore, 785–830 nm laser 
excitations provide sufficient signal-to-noise spectra of 
plant leaves, Fig. 1C. For instance, the Ram group recently 
reported an elegant Raman-based leaf-clip sensor that 
is based on 830  nm laser excitation [28]. The research-
ers demonstrated an outstanding potential of this unit 
for non-invasive diagnostics of the nitrogen deficiency 
in plants. Several groups demonstrated the possibility of 
utilization of 1064 nm excitation for Raman-based analy-
sis of maize, wheat, and sorghum grain [15, 16], as well 

Raman Shift (cm-1)
1000 1200 1400 1600 

ytisnetnI

λ=458 nm 

λ=488 nm 

λ=514 nm
λ=561 nm

λ=785 nm

λ=830 nm

91
7 

10
05

 

11
55

11
84

 

12
25

 
12

66
 

12
88

 
13

28
 

13
82

 

14
40

 

14
90

 
15

25
 

16
10

 

10
46

 
10

70
11

15

15
53

 

11
45

98
8 

96
2 

12
15

 

13
52

 

B

C

Laser

Spectrometer

CCD

Focusing lens

Beam 
splitter

Sample

Long-
pass 
filter

A

Fig. 1  Schematic representation of a Raman spectrometer (A); 
commercially available hand-held Raman spectrometers with 
1064 nm (left) and 830 nm (right) excitations (B). Raman spectra 
collected from a rose leaf with 458, 488, 514, 561, 785 and 830 nm 
excitations (C)



Page 4 of 20Payne and Kurouski ﻿Plant Methods           (2021) 17:78 

Ta
bl

e 
1 

Su
m

m
ar

y 
ta

bl
e 

of
 re

po
rt

ed
 to

 d
at

e 
Ra

m
an

 s
tu

di
es

 o
n 

bo
ta

ni
ca

ls
 

Ta
rg

et
O

bj
ec

tiv
e

In
st

ru
m

en
ta

tio
n/

pa
ra

m
et

er
s

Pe
ak

s 
w

ith
 in

cr
ea

se
 in

 
in

te
ns

it
y

Pe
ak

s 
w

ith
 d

ec
re

as
e 

in
 

in
te

ns
it

y
Co

nc
lu

si
on

D
is

ea
se

 d
ia

gn
os

tic
s

 T
om

at
o,

 le
af

Li
be

rib
ac

te
r d

is
ea

se
 in

 to
m

a-
to

es
 [8

]
H

an
dh

el
d 

sp
ec

tr
om

et
er

 
(λ

 =
 8

30
 n

m
; P

 =
 4

95
 m

W
; 

T 
=

 1
 s

)

–
74

7 
cm

−
1  (p

ec
tin

); 
10

00
, 

11
15

, 1
15

5,
 1

18
4,

 1
21

8 
an

d 
15

25
 c

m
−

1  (c
ar

ot
en

oi
ds

)

Li
be

rib
ac

te
r d

is
ea

se
 in

 to
m

at
oe

s 
is

 a
ss

oc
ia

te
d 

w
ith

 d
eg

ra
da

tio
n 

an
d 

fra
gm

en
ta

tio
n 

of
 h

os
t 

ca
ro

te
no

id
s 

an
d 

pe
ct

in

 O
ra

ng
e 

an
d 

gr
ap

ef
ru

it,
 le

av
es

H
ua

ng
lo

ng
bi

ng
 (H

LB
) o

r c
itr

us
 

gr
ee

ni
ng

 [2
3]

H
an

dh
el

d 
sp

ec
tr

om
et

er
 

(λ
 =

 8
30

 n
m

; P
 =

 4
95

 m
W

; 
T 
=

 1
 s

)

16
01

–1
63

0 
cm

−
1  (p

he
ny

lp
ro

-
pa

no
id

s; 
14

40
–1

45
5 

cm
−

1  
(a

lip
ha

tic
)

11
84

 a
nd

 1
21

8 
cm

−
1  (x

yl
an

, 
ca

ro
te

no
id

s)
; 1

52
5 

cm
−

1  
(c

ar
ot

en
oi

ds
), 

as
 w

el
l a

s 
12

88
 c

m
−

1  (a
lip

ha
tic

); 
11

55
 

an
d 

13
26

 c
m

−
1  (c

el
lu

lo
se

)

H
LB

 is
 a

ss
oc

ia
te

d 
w

ith
 a

n 
in

cr
ea

se
 in

 p
he

ny
lp

ro
pa

no
id

s 
an

d 
de

cr
ea

se
 in

 x
yl

an
, c

ar
ot

-
en

oi
ds

 a
nd

 c
el

lu
lo

se

 O
ra

ng
e 

an
d 

gr
ap

ef
ru

it,
 le

av
es

N
ut

rie
nt

 d
efi

ci
en

cy
 in

 c
itr

us
 

tr
ee

s 
[2

3]
H

an
dh

el
d 

sp
ec

tr
om

et
er

 
(λ

 =
 8

30
 n

m
; P

 =
 4

95
 m

W
; 

T 
=

 1
 s

)

12
47

, 1
60

1–
16

30
 c

m
−

1  (p
he

-
ny

lp
ro

pa
no

id
s; 

14
40

–
14

55
 c

m
−

1  (a
lip

ha
tic

)

11
84

 a
nd

 1
21

8 
cm

−
1  (x

yl
an

, 
ca

ro
te

no
id

s)
N

D
 is

 a
ss

oc
ia

te
d 

w
ith

 a
n 

in
cr

ea
se

 
in

 p
he

ny
lp

ro
pa

no
id

s

 O
ra

ng
e,

 le
af

Ca
nk

er
 [2

2]
H

an
dh

el
d 

sp
ec

tr
om

et
er

 
(λ

 =
 8

30
 n

m
; P

 =
 4

95
 m

W
; 

T 
=

 1
 s

)

–
16

01
–1

63
0 

cm
−

1  (p
he

ny
lp

ro
-

pa
no

id
s)

Ca
nk

er
 is

 a
ss

oc
ia

te
d 

w
ith

 a
 

de
cr

ea
se

 in
 p

he
ny

lp
ro

pa
no

id
s 

co
nt

en
t

 O
ra

ng
e,

 le
af

H
LB

 a
nd

 b
lig

ht
 [2

2]
H

an
dh

el
d 

sp
ec

tr
om

et
er

 
(λ

 =
 8

30
 n

m
; P

 =
 4

95
 m

W
; 

T 
=

 1
 s

)

–
–

D
ia

gn
os

tic
s 

w
as

 a
ch

ie
ve

d 
vi

a 
th

e 
us

e 
of

 P
LS

-D
A

 W
he

at
, g

ra
in

Er
go

t [
15

]
H

an
dh

el
d 

sp
ec

tr
om

et
er

 
(λ

 =
 1

06
4 

nm
; P

 =
 2

00
 m

W
; 

T 
=

 3
0 

s)

16
50

 a
nd

 1
66

7 
cm

−
1  (p

ro
te

in
s)

–
er

go
t i

nf
ec

tio
n 

m
ay

 b
e 

as
so

ci
-

at
ed

 w
ith

 e
xp

re
ss

io
n 

an
d 

de
po

si
tio

n 
of

 a
lp

ha
-h

el
ic

al
 a

nd
 

be
ta

-s
he

et
 p

ro
te

in
s

 W
he

at
, g

ra
in

Bl
ac

k 
tip

 [1
5]

H
an

dh
el

d 
sp

ec
tr

om
et

er
 

(λ
 =

 1
06

4 
nm

; P
 =

 2
00

 m
W

; 
T 
=

 3
0 

s)

13
48

 c
m

−
1  (m

on
om

er
ic

 s
ug

ar
s)

 
an

d 
16

00
 c

m
−

1  (l
ig

ni
n)

; s
hi

ft
 

of
 8

62
 p

ea
k 

to
 8

56
 c

m
−

1  
(p

ec
tin

)

86
2 

an
d 

93
7 

cm
−

1  (s
ta

rc
h)

bl
ac

k 
tip

 m
ay

 d
eg

ra
de

 li
gn

in
 a

nd
 

fe
rm

en
t s

ta
rc

h 
in

to
 m

on
o-

m
er

ic
 s

ug
ar

s; 
es

te
rifi

ca
tio

n 
of

 
pe

ct
in

 S
or

gh
um

, g
ra

in
M

ol
d 

[1
5]

H
an

dh
el

d 
sp

ec
tr

om
et

er
 

(λ
 =

 1
06

4 
nm

; P
 =

 2
00

 m
W

; 
T 
=

 3
0 

s)

sh
ift

 o
f 8

56
 p

ea
k 

to
 8

62
 c

m
−

1  
(p

ec
tin

); 
ch

an
ge

 in
 ra

tio
 

be
tw

ee
n 

15
18

 c
m

−
1  a

nd
 

15
41

 c
m

−
1  p

ea
ks

 (c
ar

ot
-

en
oi

ds
)

16
00

 a
nd

 1
63

0 
cm

−
1  (p

he
ny

l-
pr

op
an

oi
ds

)
D

eg
ra

da
tio

n 
of

 p
he

ny
lp

ro
pa

-
no

id
s; 

a 
de

cr
ea

se
 in

 m
et

hy
l-

es
te

rfi
ca

tio
n 

of
 p

ec
tin

 c
au

se
d 

by
 th

e 
in

fe
ct

io
ns

; s
ug

ge
st

 
a 

de
cr

ea
se

 in
 th

e 
le

ng
th

 o
f 

co
nj

ug
at

ed
 d

ou
bl

e 
bo

nd
s 

of
 

ca
ro

te
no

id
s

 S
or

gh
um

, g
ra

in
Er

go
t [

15
]

H
an

dh
el

d 
sp

ec
tr

om
et

er
 

(λ
 =

 1
06

4 
nm

; P
 =

 2
00

 m
W

; 
T 
=

 3
0 

s)

11
50

, 9
40

, 1
12

4 
an

d 
10

83
 c

m
−

1  
(m

on
om

er
ic

 s
ug

ar
s)

; s
hi

ft
 o

f 
85

6 
pe

ak
 to

 8
62

 c
m

−
1  (p

ec
-

tin
); 

ch
an

ge
 in

 ra
tio

 b
et

w
ee

n 
15

18
 c

m
−

1  a
nd

 1
54

1 
cm

−
1  

pe
ak

s 
(c

ar
ot

en
oi

ds
)

16
00

 a
nd

 1
63

0 
cm

−
1  (p

he
ny

l-
pr

op
an

oi
ds

)
er

go
t h

yd
ro

ly
ze

s 
st

ar
ch

es
 to

 
pr

od
uc

e 
m

on
om

er
ic

 s
ug

ar
s; 

a 
de

cr
ea

se
 in

 m
et

hy
le

st
er

fic
a-

tio
n 

of
 p

ec
tin

 c
au

se
d 

by
 th

e 
in

fe
ct

io
ns

; s
ug

ge
st

 a
 d

ec
re

as
e 

in
 th

e 
le

ng
th

 o
f c

on
ju

ga
te

d 
do

ub
le

 b
on

ds
 o

f c
ar

ot
en

e



Page 5 of 20Payne and Kurouski ﻿Plant Methods           (2021) 17:78 	

Ta
bl

e 
1 

(c
on

tin
ue

d)

Ta
rg

et
O

bj
ec

tiv
e

In
st

ru
m

en
ta

tio
n/

pa
ra

m
et

er
s

Pe
ak

s 
w

ith
 in

cr
ea

se
 in

 
in

te
ns

it
y

Pe
ak

s 
w

ith
 d

ec
re

as
e 

in
 

in
te

ns
it

y
Co

nc
lu

si
on

 M
ai

ze
, g

ra
in

Fu
sa

riu
m

 sp
p 

[1
6]

H
an

dh
el

d 
sp

ec
tr

om
et

er
 

(λ
 =

 1
06

4 
nm

; P
 =

 2
00

 m
W

; 
T 
=

 3
0 

s)

16
58

 c
m

−
1  (p

ro
te

in
); 

11
53

 c
m

−
1  (s

ta
rc

h)
16

00
 a

nd
 1

63
3 

cm
−

1  (p
he

-
ny

lp
ro

pa
no

id
s)

; 1
54

7 
cm

−
1  

(s
hi

ft
ed

 fr
om

 1
52

3 
cm

−
1  in

 
he

al
th

y)
 s

pe
ci

es
 (c

ar
ot

-
en

oi
ds

)

Fu
sa

riu
m

 in
fe

ct
io

n 
is 

as
so

ci
at

ed
 

w
ith

 d
eg

ra
da

tio
n 

of
 p

he
ny

l-
pr

op
an

oi
ds

 a
nd

 d
ep

os
iti

on
 

of
 p

ro
te

in
 in

 m
ai

ze
 k

er
ne

ls
; 

pa
th

og
en

 c
on

ve
rt

s 
m

on
o-

m
er

ic
 s

ug
ar

s 
po

ly
m

er
ic

 c
ar

bo
-

hy
dr

at
es

 M
ai

ze
, g

ra
in

As
pe

rg
ill

us
 fl

av
us

 [1
6]

H
an

dh
el

d 
sp

ec
tr

om
et

er
 

(λ
 =

 1
06

4 
nm

; P
 =

 2
00

 m
W

; 
T 
=

 3
0 

s)

10
03

–1
11

5 
cm

−
1  (m

on
om

er
ic

 
su

ga
rs

); 
16

00
–1

63
3 

(p
he

ny
l-

pr
op

an
oi

ds
)

16
00

 a
nd

 1
63

3 
cm

−
1  (p

he
-

ny
lp

ro
pa

no
id

s)
; 1

54
7 

cm
−

1  
(s

hi
ft

ed
 fr

om
 1

52
3 

cm
−

1  in
 

he
al

th
y)

 s
pe

ci
es

 (c
ar

ot
-

en
oi

ds
); 

11
53

 c
m

−
1  (s

ta
rc

h)

A
. fl

av
us

 is
 a

ss
oc

ia
te

d 
w

ith
 a

 
br

ea
kd

ow
n 

m
ai

ze
 s

ta
rc

h 
in

to
 

m
on

om
er

ic
 s

ug
ar

s

 M
ai

ze
, g

ra
in

A.
 n

ig
er

 [1
6]

H
an

dh
el

d 
sp

ec
tr

om
et

er
 

(λ
 =

 1
06

4 
nm

; P
 =

 2
00

 m
W

; 
T 
=

 3
0 

s)

11
53

 c
m

−
1  (s

ta
rc

h)
; 1

60
0–

16
33

 
(p

he
ny

lp
ro

pa
no

id
s)

16
00

 a
nd

 1
63

3 
cm

−
1  (p

he
-

ny
lp

ro
pa

no
id

s)
; 1

54
7 

cm
−

1  
(s

hi
ft

ed
 fr

om
 1

52
3 

cm
−

1  in
 

he
al

th
y)

 s
pe

ci
es

 (c
ar

ot
-

en
oi

ds
)

A.
 n

ig
er

 c
on

ve
rt

s 
m

on
om

er
ic

 
su

ga
rs

 p
ol

ym
er

ic
 c

ar
bo

hy
-

dr
at

es

 M
ai

ze
, g

ra
in

D
ip

lo
di

a 
sp

p.
 [1

6]
H

an
dh

el
d 

sp
ec

tr
om

et
er

 
(λ

 =
 1

06
4 

nm
; P

 =
 2

00
 m

W
; 

T 
=

 3
0 

s)

10
03

–1
11

5 
cm

−
1  (m

on
om

er
ic

 
su

ga
rs

)
11

53
 c

m
−

1  (s
ta

rc
h)

D
ip

lo
di

a 
is

 a
ss

oc
ia

te
d 

w
ith

 a
 

br
ea

kd
ow

n 
m

ai
ze

 s
ta

rc
h 

in
to

 
m

on
om

er
ic

 s
ug

ar
s

 A
bu

til
on

 h
yb

rid
um

, l
ea

f
Ab

ut
ilo

n 
m

os
ai

c 
vi

ru
s [

29
]

H
an

dh
el

d 
sp

ec
tr

om
et

er
 

(λ
 =

 1
06

4 
nm

; P
 =

 2
00

 m
W

; 
T 
=

 8
 s

)

16
05

–1
62

9 
(p

he
ny

lp
ro

pa
-

no
id

s)
; 1

44
0–

14
60

 c
m

−
1  

(a
lip

ha
tic

)

–
Ab

ut
ilo

n 
m

os
ai

c 
vi

ru
s i

s a
ss

oc
ia

te
d 

w
ith

 a
n 

in
cr

ea
se

 in
 p

he
ny

lp
ro

-
pa

no
id

s 
in

 A
bu

til
on

 h
yb

rid
um

 T
om

at
oe

s, 
le

af
To

m
at

o 
ye

llo
w

 le
af

 c
ur

l S
ar

di
ni

a 
vi

ru
s 

(T
YC

LS
V

) [
45

]
Be

nc
ht

op
 s

pe
ct

ro
m

-
et

er
 (λ

 =
 7

80
 n

m
; P

 =
 2

m
W

; 
T 
=

 5
–1

0 
s)

16
08

 c
m

−
1  (p

he
no

lic
); 

14
83

 c
m

−
1  (a

lip
ha

tic
)

15
26

 c
m

−
1  (c

ar
ot

en
oi

ds
); 

14
20

, 1
48

3 
cm

−
1  (a

lip
ha

tic
), 

15
00

, 1
60

8 
cm

−
1  (p

he
no

lic
); 

13
53

 c
m

−
1  (u

ni
de

nt
ifi

ed
);

Sm
al

l c
ha

ng
es

 in
 p

la
nt

 b
io

ch
em

-
is

tr
y

 T
om

at
oe

s, 
le

af
To

m
at

o 
sp

ot
te

d 
w

ilt
 v

iru
s 

(T
SW

V
) [

45
]

Be
nc

ht
op

 s
pe

ct
ro

m
-

et
er

 (λ
 =

 7
80

 n
m

; P
 =

 2
m

W
; 

T 
=

 5
–1

0 
s)

16
08

 c
m

−
1  (p

he
no

lic
); 

14
38

 c
m

−
1  (a

lip
ha

tic
); 

13
53

 c
m

−
1  (u

ni
de

nt
ifi

ed
);

14
83

 c
m

−
1  (a

lip
ha

tic
)

Sm
al

l c
ha

ng
es

 in
 p

la
nt

 b
io

ch
em

-
is

tr
y

 W
he

at
, l

ea
f

Ba
rle

y 
ye

llo
w

 d
w

ar
f v

iru
s 

(B
YD

V
) [

36
]

H
an

dh
el

d 
sp

ec
tr

om
et

er
 

(λ
 =

 8
30

 n
m

; P
 =

 4
95

 m
W

; 
T 
=

 1
 s

)

16
01

–1
63

0 
cm

−
1  (p

he
ny

lp
ro

-
pa

no
id

s)
10

00
, 1

11
5,

 1
15

6,
 1

18
6,

 1
21

8 
an

d 
15

25
 c

m
−

1  (c
ar

ot
en

oi
ds

)
BY

D
V 

is
 a

ss
oc

ia
te

d 
w

ith
 a

n 
in

cr
ea

se
 in

 p
he

ny
lp

ro
pa

no
id

s 
an

d 
de

cr
ea

se
 in

 c
ar

ot
en

oi
ds

 W
he

at
, l

ea
f

W
he

at
 s

tr
ea

k 
m

os
ai

c 
vi

ru
s 

(W
SM

V
) [

36
]

H
an

dh
el

d 
sp

ec
tr

om
et

er
 

(λ
 =

 8
30

 n
m

; P
 =

 4
95

 m
W

; 
T 
=

 1
 s

)

16
01

–1
63

0 
cm

−
1  (p

he
ny

lp
ro

-
pa

no
id

s)
10

00
, 1

11
5,

 1
15

6,
 1

18
6 

an
d 

12
18

 c
m

−
1  (c

ar
ot

en
oi

ds
)

W
SM

V 
is

 a
ss

oc
ia

te
d 

w
ith

 a
n 

in
cr

ea
se

 in
 p

he
ny

lp
ro

pa
no

id
s 

an
d 

de
cr

ea
se

 in
 c

ar
ot

en
oi

ds

 P
ot

at
o,

 tu
be

rs
Ze

br
a 

ch
ip

 [1
12

]
H

an
dh

el
d 

sp
ec

tr
om

et
er

 
(λ

 =
 8

30
 n

m
; P

 =
 4

95
 m

W
; 

T 
=

 1
 s

)

–
11

53
 (c

ar
bo

hy
dr

at
es

)
Ze

br
a 

ch
ip

 is
 a

ss
oc

ia
te

d 
w

ith
 

de
gr

ad
at

io
n 

of
 c

ar
bo

hy
dr

at
es

 
in

 tu
be

rs



Page 6 of 20Payne and Kurouski ﻿Plant Methods           (2021) 17:78 

Ta
bl

e 
1 

(c
on

tin
ue

d)

Ta
rg

et
O

bj
ec

tiv
e

In
st

ru
m

en
ta

tio
n/

pa
ra

m
et

er
s

Pe
ak

s 
w

ith
 in

cr
ea

se
 in

 
in

te
ns

it
y

Pe
ak

s 
w

ith
 d

ec
re

as
e 

in
 

in
te

ns
it

y
Co

nc
lu

si
on

 P
ot

at
o,

 tu
be

rs
Vi

ru
s Y

 [1
12

]
H

an
dh

el
d 

sp
ec

tr
om

et
er

 
(λ

 =
 8

30
 n

m
; P

 =
 4

95
 m

W
; 

T 
=

 1
 s

)

11
53

 c
m

−
1  (c

ar
bo

hy
dr

at
es

)
Vi

ru
s Y

 is
 a

ss
oc

ia
te

d 
w

ith
 a

n 
in

cr
ea

se
 in

 c
ar

bo
hy

dr
at

es
 in

 
tu

be
rs

A
bi

ot
ic

 s
tr

es
se

s

 C
ol

eu
s 

lim
e 

(P
le

ct
ra

nt
hu

s 
sc

ut
el

la
rio

id
es

), 
le

av
es

Sa
lin

e,
 li

gh
t, 

dr
ou

gh
t a

nd
 c

ol
d 

[2
6]

Be
nc

ht
op

 s
pe

ct
ro

m
et

er
 

(λ
 =

 5
32

 n
m

; P
 =

 1
0 

m
W

; 
T 
=

 1
0 

s)

62
0 

an
d 

74
0 

cm
−

1  (a
nt

ho
cy

a-
ni

ns
)

10
00

 a
nd

 1
17

0 
cm

−
1  (c

ar
ot

-
en

oi
ds

)
Sa

lin
e,

 li
gh

t, 
dr

ou
gh

t a
nd

 c
ol

d 
st

re
ss

es
 c

au
se

 a
n 

in
cr

ea
se

 in
 

an
th

oc
ya

ni
ns

 a
nd

 a
 d

ec
re

as
e 

in
 c

ar
ot

en
oi

ds

 A
ra

bi
do

ps
is 

th
al

ia
na

, l
ea

ve
s

N
itr

og
en

 d
efi

ci
en

cy
 [1

0]
Po

st
ab

le
 s

pe
ct

ro
m

et
er

 
(λ

 =
 8

30
 n

m
; P

 =
 1

00
 m

W
; 

T 
=

 1
0 

s)

–
10

64
 c

m
−

1  (n
itr

at
e)

10
46

 c
m

–1
 p

ea
k 

in
te

ns
ity

 c
or

-
re

la
te

s 
w

ith
 th

e 
ni

tr
at

e 
co

nt
en

t 
in

 A
ra

bi
do

ps
is 

pl
an

ts

 R
ic

e,
 le

av
es

N
itr

og
en

 d
efi

ci
en

cy
 [8

]
H

an
dh

el
d 

sp
ec

tr
om

et
er

 
(λ

 =
 8

30
 n

m
; P

 =
 4

95
 m

W
; 

T 
=

 1
 s

)

16
00

–1
63

0 
cm

−
1  (p

he
ny

lp
ro

-
pa

no
id

s)
11

15
–1

21
8 

cm
−

1  (c
ar

ot
en

oi
ds

)
N

itr
og

en
 d

efi
ci

en
cy

 is
 a

ss
oc

ia
te

d 
w

ith
 a

 d
ec

re
as

e 
in

 c
ar

ot
en

oi
ds

 
an

d 
in

cr
ea

se
 in

 p
he

ny
lp

ro
pa

-
no

id
s

 R
ic

e,
 le

av
es

Ph
os

ph
or

us
 a

nd
 p

ot
as

si
um

 
de

fic
ie

nc
ie

s 
[8

]
H

an
dh

el
d 

sp
ec

tr
om

et
er

 
λ 
=

 8
30

 n
m

; P
 =

 4
95

 m
W

; 
T 
=

 1
 s

)

Sm
al

l c
ha

ng
es

 in
 1

60
0–

16
30

 c
m

−
1  (p

he
ny

lp
ro

pa
-

no
id

s)

Sm
al

l c
ha

ng
es

 in
 1

11
5–

12
18

 c
m

−
1  (c

ar
ot

en
oi

ds
)

Ph
os

ph
or

us
 a

nd
 p

ot
as

si
um

 d
efi

-
ci

en
ci

es
 a

re
 a

ss
oc

ia
te

d 
w

ith
 a

 
de

cr
ea

se
 in

 c
ar

ot
en

oi
ds

 a
nd

 
in

cr
ea

se
 in

 p
he

ny
lp

ro
pa

no
id

s

Id
en

tifi
ca

tio
n 

of
 p

la
nt

 s
pe

ci
es

 a
nd

 th
ei

r v
ar

ie
tie

s; 
nu

tr
iti

on
al

 a
na

ly
si

s

 P
oi

so
n 

iv
y,

 le
av

es
Fa

rb
er

 e
t a

l. 
[3

6]
H

an
dh

el
d 

sp
ec

tr
om

et
er

 
(λ

 =
 8

30
 n

m
; P

 =
 4

95
 m

W
; 

T 
=

 1
 s

)

17
17

 c
m

−
1  (c

ar
bo

xy
l o

r e
st

er
 g

ro
up

s)
17

17
 c

m
−

1  b
an

d 
ca

n 
be

 u
se

d 
to

 
id

en
tif

y 
po

is
on

 iv
y

 P
ea

nu
ts

, l
ea

ve
s 

an
d 

se
ed

s
Fa

rb
er

 e
t a

l. 
[3

6]
H

an
dh

el
d 

sp
ec

tr
om

et
er

 
(λ

 =
 8

30
 n

m
; P

 =
 4

95
 m

W
; 

T 
=

 1
 s

)

Id
en

tifi
ca

tio
n:

 a
ll 

ba
nd

s
N

ut
rit

io
na

l a
na

ly
si

s: 
10

05
 c

m
−

1  (p
ro

te
in

s)
, 1

30
1 

cm
−

1  (c
ar

bo
-

hy
dr

at
es

), 
14

43
 c

m
−

1  (o
ils

), 
16

06
 c

m
−

1  (fi
be

r),
 1

65
6 

cm
−

1  
(u

ns
at

ur
at

ed
 fa

tt
y 

ac
id

s)
, a

nd
 1

74
8 

cm
−

1  (e
st

er
s)

Id
en

tifi
ca

tio
n 

of
 p

ea
nu

t v
ar

ie
-

tie
s 

ca
n 

be
 a

ch
ie

ve
d 

th
ou

gh
 

sp
ec

tr
os

co
pi

c 
an

al
ys

is
 o

f 
le

av
es

 a
nd

 s
ee

ds
 w

ith
 8

0%
 a

nd
 

95
%

 a
cc

ur
ac

y,
 re

sp
ec

tiv
el

y.
 R

S 
ca

n 
be

 u
se

d 
to

 p
re

di
ct

 re
la

tiv
e 

co
nc

en
tr

at
io

n 
of

 p
ro

te
in

s, 
ca

rb
oh

yd
ra

te
s, 

oi
ls

, fi
be

r, 
un

sa
tu

ra
te

d 
fa

tt
y 

ac
id

s 
an

d 
es

te
rs

 in
 p

ea
nu

t s
ee

ds

 P
ot

at
o,

 tu
be

rs
M

or
ey

 e
t a

l. 
[3

4]
H

an
dh

el
d 

sp
ec

tr
om

et
er

 
(λ

 =
 8

30
 n

m
; P

 =
 4

95
 m

W
; 

T 
=

 1
 s

)

Id
en

tifi
ca

tio
n:

 a
ll 

ba
nd

s
N

ut
rit

io
na

l a
na

ly
si

s: 
11

26
 c

m
−

1  (s
ta

rc
h)

, 1
52

7 
cm

−
1  (c

ar
ot

en
oi

ds
), 

16
00

 c
m

−
1  (p

he
ny

lp
ro

pa
no

id
s)

, 1
66

0 
cm

−
1  (p

ro
te

in
s)

Id
en

tifi
ca

tio
n 

of
 p

ot
at

o 
va

rie
-

tie
s 

ca
n 

be
 a

ch
ie

ve
d 

th
ou

gh
 

sp
ec

tr
os

co
pi

c 
an

al
ys

is
 o

f 
tu

be
rs

 w
ith

 7
7.

5%
 a

cc
ur

ac
y.

 R
S 

ca
n 

be
 u

se
d 

to
 p

re
di

ct
 re

la
tiv

e 
co

nc
en

tr
at

io
n 

of
 p

ro
te

in
s, 

ca
ro

te
no

id
s, 

st
ar

ch
 a

nd
 p

he
-

ny
lp

ro
pa

no
id

s 
in

 p
ot

at
o 

tu
be

rs



Page 7 of 20Payne and Kurouski ﻿Plant Methods           (2021) 17:78 	

Ta
bl

e 
1 

(c
on

tin
ue

d)

Ta
rg

et
O

bj
ec

tiv
e

In
st

ru
m

en
ta

tio
n/

pa
ra

m
et

er
s

Pe
ak

s 
w

ith
 in

cr
ea

se
 in

 
in

te
ns

it
y

Pe
ak

s 
w

ith
 d

ec
re

as
e 

in
 

in
te

ns
it

y
Co

nc
lu

si
on

 C
or

n,
 k

er
ne

ls
Kr

im
m

er
 e

t a
l. 

[2
1]

H
an

dh
el

d 
sp

ec
tr

om
et

er
 

(λ
 =

 8
30

 n
m

; P
 =

 4
95

 m
W

; 
T 
=

 1
 s

)

Id
en

tifi
ca

tio
n:

 a
ll 

ba
nd

s
N

ut
rit

io
na

l a
na

ly
si

s: 
47

9 
cm

−
1  (s

ta
rc

h)
, 1

52
7 

cm
−

1  (c
ar

ot
en

oi
ds

), 
16

00
/1

63
2 

cm
−

1  (p
he

ny
lp

ro
pa

no
id

s)
, 1

00
0/

16
60

 c
m

−
1  (p

ro
-

te
in

s)

Id
en

tifi
ca

tio
n 

of
 c

or
n 

va
rie

-
tie

s 
ca

n 
be

 a
ch

ie
ve

d 
th

ou
gh

 
sp

ec
tr

os
co

pi
c 

an
al

ys
is

 o
f 

ke
rn

el
s 

w
ith

 9
5%

 a
cc

ur
ac

y.
 R

S 
ca

n 
be

 u
se

d 
to

 p
re

di
ct

 re
la

tiv
e 

co
nc

en
tr

at
io

n 
of

 p
ro

te
in

s, 
ca

ro
te

no
id

s, 
an

d 
st

ar
ch

 in
 c

or
n 

ke
rn

el
s

 C
itr

us
, f

ru
its

Fe
ng

 e
t a

l. 
[7

4]
Be

nc
ht

op
 s

pe
ct

ro
m

et
er

 
(λ

 =
 5

14
 n

m
; P

 =
 2

0 
m

W
; 

T 
=

 1
0 

s)

A
ll 

ba
nd

s
RS

 c
an

 b
e 

us
ed

 to
 id

en
tif

y 
ci

tr
us

 
fru

its

 L
oq

ua
t, 

fru
its

Zh
u 

et
 a

l. 
[4

7]
Be

nc
ht

op
 s

pe
ct

ro
m

et
er

 
(λ

 =
 5

32
 n

m
; P

 =
 2

5 
m

W
; 

T 
=

 1
 s

)

16
02

 c
m

−
1  (l

ig
ni

n)
RS

 c
an

 b
e 

us
ed

 to
 d

et
er

m
in

e 
fru

it 
rip

en
in

g

 T
om

at
oe

s, 
fru

its
M

ar
tin

 e
t a

l. 
[7

7]
Be

nc
ht

op
 s

pe
ct

ro
m

et
er

 
(λ

 =
 5

32
 n

m
; P

 =
 4

6–
50

 m
W

; 
T 
=

 1
0 

s)

11
50

, 1
25

7 
cm

−
1  (c

ar
ot

en
oi

ds
)

RS
 c

an
 b

e 
us

ed
 to

 p
re

di
ct

 
to

m
at

o 
rip

en
es

s

 M
an

da
rin

 o
ra

ng
es

, f
ru

its
N

ek
va

pi
l e

t a
l. 

[7
9]

Be
nc

ht
op

 s
pe

ct
ro

m
et

er
 

(λ
 =

 5
32

 n
m

; P
 =

 2
00

 m
W

; 
T 
=

 1
0 

s)

11
00

–1
25

0,
 1

52
7 

cm
−

1  (c
ar

ot
en

oi
ds

)
RS

 c
an

 b
e 

us
ed

 to
 p

re
di

ct
 fr

ui
t 

fre
sh

ne
ss

 W
he

at
, g

ra
in

Pi
ot

 e
t a

l. 
[8

0]
Be

nc
ht

op
 s

pe
ct

ro
m

et
er

 
(λ

 =
 ’re

d 
lig

ht
’; 

P 
=

 8
 m

W
)

47
1–

48
5 

cm
−

1  (s
ta

rc
h)

, 1
06

5–
11

40
 c

m
−

1  (l
ip

id
s)

, 1
63

0–
16

70
 c

m
−

1  (p
ro

te
in

)
RS

 c
an

 b
e 

us
ed

 to
 p

ro
be

 c
on

-
ce

nt
ra

tio
n 

of
 s

ta
rc

h,
 li

pi
ds

 a
nd

 
pr

ot
ei

ns
 in

 th
e 

gr
ai

n

 C
off

ee
, b

ea
ns

Ke
id

el
 e

t a
l. 

[8
1]

Be
nc

ht
op

 s
pe

ct
ro

m
et

er
 

(λ
 =

 1
06

4 
nm

; P
 =

 3
00

 m
W

)
Id

en
tifi

ca
tio

n:
 a

ll 
ba

nd
s

Ka
hw

eo
l c

on
ce

nt
ra

tio
n:

 1
47

9 
an

d 
15

67
 c

m
−

1
RS

 c
an

 b
e 

us
ed

 to
 p

re
di

ct
 th

e 
ge

og
ra

ph
ic

al
 o

rig
in

s 
of

 c
off

ee
 

be
an

s

 H
em

p 
an

d 
ca

nn
ab

is
Sa

nc
he

z 
et

 a
l. 

[8
]

H
an

dh
el

d 
sp

ec
tr

om
et

er
 

(λ
 =

 8
30

 n
m

; P
 =

 4
95

 m
W

; 
T 
=

 1
 s

)

Id
en

tifi
ca

tio
n:

 a
ll 

ba
nd

s
Ca

nn
ab

in
oi

d 
co

nt
en

t: 
78

0,
 1

29
5,

 1
62

3,
 a

nd
 1

66
6 

cm
−

1
RS

 c
an

 b
e 

us
ed

 to
 id

en
tif

y 
ca

n-
na

bi
s 

va
rie

tie
s 

an
d 

de
te

rm
in

e 
co

nc
en

tr
at

io
ns

 o
f c

an
na

bi
-

no
id

s 
in

 th
e 

pl
an

t



Page 8 of 20Payne and Kurouski ﻿Plant Methods           (2021) 17:78 

as plant leaves [29]. Although the use of 1064  nm exci-
tation allows for moving even further away from chlo-
rophyll fluorescence, silicon CCDs, which are used for 
collection of scattered photons in the visible part of the 
electromagnetic spectrum, have extremely poor photon-
to-electron conversion efficiency in Infrared. Therefore, 
instead of silicon-based CCDs, heterostructure CCDs are 
used in 1064  nm spectrometers [20]. Such CCDs (typi-
cally based on Indium-Gallium-Arsenide (InGaAs)) have 
much lower photon-to-electron conversion efficiency 
than silicon CCDs. Therefore, despite no plant fluores-
cence is present in the IR part of the spectrum, the use 
of 1064 nm excitation in Raman spectrometers typically 
results in lower signal-to-noise ratios of collected spectra 
comparing to the spectra collected using light in the vis-
ible part of the electromagnetic spectrum, Fig. 2.

The Raman-based analysis of seeds has its own com-
plications. Phenolic compounds present in seeds may 
provide strong fluorescence that can obscure Raman 
readings. Low water content in seeds may also cause 
photo or thermal degradation of the plant material if 
high laser power is used. Lastly, the intensity of collected 
Raman spectra will directly depend on the coloration of 
the seed. Since Raman is a scattering phenomenon, dark 
color seeds will scatter less and absorb more photons 
than light color seeds. This results in overall lower inten-
sity of Raman spectra collected from dark color seeds 
[21]. In this case, spectra have to be normalized prior to 
their use for an assessment of the nutrient content based 
on intensity of corresponding protein or carbohydrate 
vibrations. Spectral normalization without an internal 
standard is a challenging task. Kurouski group proposed 

to use 1460  cm−1 band that corresponds to CH2 vibra-
tion for such normalization [21]. This vibration present 
in nearly all classes of biological molecules which makes 
such normalization maximally unbiased.

Electromagnetic radiation in blue-green part of the 
spectrum does not penetrate as deep in biological tis-
sues as red-near-infrared light. This phenomenon is 
known as ‘biological window’. Therefore, the wavelength 
of choice shall be considered accordingly to this opti-
cal phenomenon if deeper-lying layers of plant material 
have to be accessed. It should be noted that this problem 
can be overcome by spatially-offset Raman spectroscopy 
(SORS). First introduced by Matousek group [30–32], 
this technique became broadly used in various research 
fields ranging from neuroscience [33] to explosive detec-
tion [30–32]. Recently, the potential of SORS in digital 
farming was highlighted by Kurouski group [34]. Morey 
and co-workers demonstrated that the use of SORS is 
critically important for non-invasive assessment of nutri-
ent content of potato tubers that otherwise cannot be 
achieved using normal RS [34].

One may wonder about the extent to which hand-held 
spectrometers can eliminate the need for the bench-top 
Raman instruments. We find that bench-top confocal 
Raman microscopes can be advantageous in two cases: 
(1) if a very small amount of material is available (below 
100 μL); (2) if more fine spectral resolution is required. 
While the first directly relates to the laser beam size 
(discussed above), the second aspect is attributed to 
the spectral resolution of gratings used in hand-held 
instruments. Most of the commercially available hand-
held spectrometers have 8–15 cm−1 spectral resolution, 
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Fig. 2  Raman spectra collected form a rose leaf (left) and corn kernel (right) with 830 nm excitation Agilent Resolve (red) (laser power 495 mW, 
acquisition time 1 s) and 1064 nm excitation Rigaku Progeny (blue) (laser power 350 mW, acquisition time 40 s). Spectral resolution of Agilent 
Resolve is 15 cm−1 and Rigaku Progeny is 8 cm−1. Spectral intensity is reported in counts (cts) per milliwatt (mW) per second (s) (cts/mW*s or 
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whereas the spectral resolution of bench-top instru-
ments reaches 1–2  cm−1. Although Raman spectra of 
plants do not have closely located vibrational bands 
that may not be resolved with a hand-held instrument 
(Fig.  1C, 2), 8–15  cm−1 spectral resolution might pre-
clude observation of small shifts in vibrational bands. 
Such shifts provide information about changes in the 
chemical structure of analyzed specimens. It should 
be also noted that spectral region in bench-top instru-
ments can be selected by altering a position of the 
grating. The grating position is not adjustable in the 
hand-held instruments. These spectrometers typi-
cally cover 300–2500  cm−1. Although this is sufficient 
for extensive spectroscopic analysis of plants, high 
frequency spectral region (2600–4000  cm−1), which 
contains important CH, CH2, and OH vibrations, is 
inaccessible in the hand-held spectrometers.

The research articles discussed in this review will dis-
cuss the quantitative nature of RS, which is achieved 
by the use of advanced statistical analysis, also known 
as chemometrics. All chemometric methods can be 
divided into two groups: supervised (methods that 
require assignments of spectra to groups or classes) 
and unsupervised (methods that do not require such 
spectral pre-assignments). There are numerous super-
vised chemometric methods, including: soft independ-
ent modelling of class analogies (SIMCA), partial least 
squares discriminant analysis (PLS-DA), partial least 
squares regression (PLSR), and linear discriminant 
analysis (LDA). Recently reported review by Shashilov 
and Lednev suggest that all supervised methods per-
form equivalently well in prediction of the spectral 
classes [35].

Among all supervised methods, PLS-DA is one of the 
most commonly used chemometric method in spec-
troscopy allowing for distinguishing between different 
groups of spectra [8, 17, 21–23, 36–44]. In each spectral 
group, the method identifies the most important spectral 
variables, also known as principal components that can 
be used to discriminate the assigned groups. PLS-DA 
outcomes are confusion matrix and principal component 
spectra. The former demonstrates the accuracy of spec-
tral assignment to the particular group. It also reflects 
how many spectra were miss-assigned and demonstrates 
groups to which the model miss-assigned the spectra. 
The latter can be used to identify vibrational bands that 
contribute the most to the spectral assignment. Typically, 
researchers report both confusion matrix and principal 
component spectra.

In PLS-DA, as well as in other chemometric methods, 
the prediction accuracy is typically cross-validated using 
the same set of spectra that were used to develop the 
model. In some cases, the researchers used a new spectral 

set to do such validation. In this case, it is described as 
external validation.

The growing body of evidence demonstrates the use of 
hand-held Raman spectrometers directly in the field for 
non-invasive and non-destructive diagnostics of biotic 
and abiotic stresses [18, 36, 38, 40, 44]. This information 
can be used for precise, site-specific administration of 
water, fertilizers, pesticides, and fungicides to a certain 
field area rather than supplying these valuable resources 
to the entire field. This allows for fast suppression of 
pathogen proliferation, as well as reduction of costs 
associated with these supplies. The impact of Raman-
empowered agriculture stretches far beyond diagnostics 
of biotic and abiotic stresses [8, 18, 26, 29, 36, 39, 40, 42, 
45]. Recently reported results show that Raman can be 
used for non-invasive phenotyping of plant species and 
their varieties [21, 39]. This allows for development of 
Raman-based breeding, as RS can be used by farmers and 
plant biologists working on basic research to reveal infor-
mation about the species or variety resistance to specific 
biotic or abiotic stresses [19]. Together with the hand-
held nature of RS, this sensitivity of RS can be used for 
direct in-field screening of plants at early stages of their 
vegetation. This can drastically reduce time required for 
plant breeding.

RS also allows for non-invasive assessment of the 
nutritional values of seeds, which makes it ideal for digi-
tal agronomy [46, 47]. It should be noted that RS can be 
used to unravel the structure of the plant and elucidate 
plant biochemistry, Table 2. Such information cannot be 
achieved using conventional imaging techniques such 
as reflectance spectroscopy, Red, Green and Blue (RGB) 
and thermography [48–50]. For more detailed discus-
sion of fundamental physical differences between RS and 
imaging techniques, the reader is advised to visit recently 
published review by Farber and co-authors [19]. In this 
review, we critically discuss the most recent progress in 
Raman-based identification of plant species and their 
varieties, as well as Raman-based analysis of the nutrition 
value of seeds. This review aims to attract attention of 
plant breeders, geneticists, farmers, and engineers to the 
growing potential of RS in agriculture.

Raman‑based identification of plant species 
and their varieties
The infamous poison ivy causes allergic reactions due 
to a mixture of pentadecylcatechols forming urushiol 
oils [70]. Common symptoms of the victims who come 
into contact with poison ivy include skin inflammation, 
uncolored bumps, severe rashes, and blistering [71–73]. 
It is difficult, however, to differentiate poison ivy from 
other plants without botanical experience. The Kurouski 
group helped to overcome this problem by developing 
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non-invasive, non-destructive, confirmatory, and label 
free approach for detection of poison ivy [38]. Using a 
hand-held spectrometer, Farber and co-workers found 
that vibrations of cellulose, carotenoids, phenylpropa-
noids, pectin, xylan, protein, aliphatic, and carbonyl/
ester groups dominated in the Raman spectra collected 
from poison ivy leaves, Table  2. The researchers also 
found that Raman spectra collected from other plants 
exhibited similar bands as the spectrum collected from 
poison ivy. However, a unique band at 1717 cm−1, which 
can be assigned to carboxyl or ester groups, was not evi-
dent in the spectra of other plants. Next, the researchers 
used partial least square discriminant analysis (PLS-DA) 
to determine prediction accuracy of different plant spe-
cies. It has been found that poison ivy could be identified 
with 100% accuracy. The authors also demonstrated that 
most of the analyzed plant species could be identified 
with 100% accuracies. From 10 analyzed plant species, 
only roses (97.7%), orange (97.7%), grapefruit (97.9%), 

buckbrush (98.2%), and corn (98.4%) were analyzed with 
less than 100% accuracy. This work also demonstrated an 
outstanding sensitivity in RS identification of plant spe-
cies based on their unique biochemistry.

Confirmatory identification of plant genotypes or 
varieties can be achieved only by visual recognition of 
distinct phenotypic appearance (if applicable) or by gen-
otype sequencing. There are many negative aspects with 
both of these methods. Visual recognition being used 
to identify genotypes can be difficult and substantial 
taxonomic expertise is often required. Genotyping by 
sequencing is time consuming, laborious, and destruc-
tive. Recently, Farber and co-authors demonstrated that 
RS can be used to solve these genotyping identification 
issues [39]. Chemometric analysis of peanut leaf spec-
tra performed by Farber and co-workers allowed for an 
accurate identification of both wild and cultivated varie-
ties of peanuts. On average, 80% accuracy was achieved 
based on collected by Raman spectra from plant leaflets. 

Table 2  Vibrational bands and their assignments for spectra collected from plant leaves and seeds

Band (cm-1) Vibrational mode Assignment

480 C–C–O and C–C–C Deformations; Related to glycosidic ring skeletal deformations
δ(C–C–C) + τ(C–O) Scissoring of C–C–C and out-of-plane bending of C–O

Carbohydrates [51]

520 ν(C–O–C) Glycosidic Cellulose [52, 53]

747 γ(C–O–H) of COOH Pectin [54]

849–853 (C6–C5–O5–C1–O1) Pectin [55]

917 ν(C–O–C) In plane, symmetric Cellulose, phenylpropanoids [52]

964–969 δ(CH2) Aliphatics [56, 57]

1000–1005 In-plane CH3 rocking of polyene
aromatic ring of phenylalanine

Carotenoids [58]; protein

1048 ν(C–O) + ν(C–C) + δ(C–O–H) Cellulose, phenylpropanoids [52]

1080 ν(C–O) + ν(C–C) + δ(C–O–H) Carbohydrates [51]

1115–1119 Sym ν(C–O–C), C–O–H bending Cellulose [52]

1155 C–C Stretching; v(C–O–C), v(C–C) in glycosidic linkages, asymmetric ring breathing Carotenoids [58],carbohydrates [59]

1185 ν(C–O–H) Next to aromatic ring + σ(CH) Carotenoids [58]

1218 δ(C–C–H) Carotenoids [58], xylan [60]

1265 Guaiacyl ring breathing, C–O stretching (aromatic); –C=C– Phenylpropanoids [61], unsaturated fatty acids [62]

1286 δ(C–C–H) Aliphatics [56]

1301 δ(C–C–H) + δ(O–C–H) + δ(C–O–H) Carbohydrates [51, 63]

1327 δCH2 Bending Aliphatics, cellulose, phenylpropanoids [52]

1339 ν(C–O); δ(C–O–H) Carbohydrates [51]

1387 δCH2 Bending Aliphatics [56]

1443–1446 δ(CH2) + δ(CH3) Aliphatics [56]

1515–1535 –C=C– (in plane) Carotenoids [64–66]

1606–1632 ν(C–C) Aromatic ring + σ(CH) Phenylpropanoids [67, 68]

1654–1660 –C=C–, C=O Stretching, amide I Unsaturated fatty acids [62], proteins [64]

1682 COOH Carboxylic acids [43]

1717–1748 C=O Stretching Esters, aldehydes, carboxylic acids and ketones [69]
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Peanut variety identification was achieved by spectro-
scopic identification of vibrational bands that originate 
from pectin, carotenoids, cellulose, phenylpropanoids, 
and proteins. The researchers also demonstrated that 
this approach could be used for prediction of nematode 
resistance and oleic-linoleic oil (O/L) ratio in peanuts 
[39]. Using RS analysis, accurate genotype identifica-
tion could be also achieved by spectroscopic analysis 
of peanut seeds. Additionally, quantitative information 
about the concentration of carbohydrates, proteins, 
fiber, and other nutrients can be determined based on 
the collected spectra. The same strategy simultaneously 
enables identification of peanut varieties based on the 
spectra of their seeds. The results of the scanned seeds 
showed that RS shows 95% accuracy in identification. It 
should be noted that both closely related cultivated and 
wild peanut varieties were used in this study. RS was 
able to provide accurate identification of both cultivated 
and wild varieties. Importantly, this accuracy of plant 
variety identification was achieved using a hand-held 
instrument.

Independently, Feng and co-workers investigated the 
accuracy of RS for identification of citrus varieties using 
RS [74]. The researchers showed that RS coupled to 
advanced statistical analysis could be used for the con-
firmatory identification of eight citrus varieties. Further 
expanding on these results, Zhu and co-workers investi-
gated whether RS could be used for quality assessment 
of fruit [47]. Optimizing postharvest fruit handling is 
important to lower quality deterioration. The researchers 
showed that an increased fruit firmness, known as lignifi-
cation, could be assessed via RS [47].

Raman‑based assessment of nutritional values 
of plant seeds
Tomatoes are a broadly cultivated crop that has con-
stantly increasing commercial value. Nikbakht and co-
workers used RS to determine the quality of tomatoes 
[75]. The researchers demonstrated that RS can be used 
to determine the important quality parameters of intact 
tomatoes such as soluble solid content (SSC), acidity 
(pH), and color. Further work was done by Martin and 
co-workers to expand the use of RS for the assessment of 
tomato ripening [76]. Carotenoid vibrational bands were 
used to create a model for tomato ripening. The onset of 
fruit ripening showed a rise in carotenoid signals after 
tomatoes were scanned post-harvest. The data collected 
was used to build a model and delineated ripening stages 
in tomatoes; the work accurately helps assess fruit quality 
post-harvest [77]. Zdunek group used Raman microscopy 
for visualization of the distribution of polysaccharides in 
cell wall of fruit. The researchers used both single band 
imaging and multivariate image analysis for the identifi-
cation and localization of cellulose and pectin in the cell 
wall in tomatoes [78]. Nekvapil and co-workers further 
expanded on these findings by investigating RS ability 
to be used for quality control of fruits [79]. It was shown 
that RS could be used for fruit freshness. Their results 
were focused on citrus such as mandarin oranges, tange-
rines, and clementine  (Fig.  3). The results revealed that 
the freshness of fruit can be determined by the inten-
sity of bands relating to carotenoids in fruit (See Fig. 3). 
Consumer safety, trust, and satisfaction when purchasing 
fruits such as citrus can all be improved by using a hand-
held Raman spectrometer for quality control [79].

Fig. 3  Raman spectra (left) collected from different citrus varieties show distinctly different fruit biochemistry that can be used for citrus variety 
identification. Primarily differences were found in carotenoids region (1520–1523 cm−1) and phenylpropanoid vibrations (1591–1627 cm−1). Raman 
can be also used to determine change in fruit freshness (right) based on changes in vibrational bands of carotenoids. The caption and figure 
reproduced with permission from Nekvapil et al. [79]
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By probing wheat grain with RS, Piot and co-workers 
followed the evolution of protein content and structure 
during grain development [80]. It was found that RS not 
only was able to give information about the structure 
and composition of grain, but RS was also able to detect 
molecular species present at low concentrations. One 
such example would be that of α-helical protein content 
which was found to increase during grain ripening when 
kernels harden.

A staple food all over the world, potatoes have a high 
starch content. Consisting of 83% water and 12% car-
bohydrates, the remaining 4% of content of potatoes 
includes proteins, vitamins, and other trace elements 
[34]. Proportions vary based on both the area of culti-
vation and potato type. Currently, the chemical meth-
ods used to investigate potato starch content are labor 
consuming, time consuming, indirect, and destructive. 
A hand-held Raman spectrometer was used by the Kur-
ouski group to assess nutrition value of intact potato 
tubers [34]. Additionally, nine different potato varie-
ties and origin of cultivation of these potatoes can be 

determined from the use of RS. The Kurouski group 
found that the peak intensity varied by potato variety at 
479 and 1125  cm−1 for starch, 1600 and 1630  cm−1 for 
phenylpropanoid, 1527 cm−1 for carotenoid content, and 
1660 cm−1 for protein content by using offset scans from 
a hand-held Raman spectrometer, Fig.  4. The research-
ers were able to determine both area of cultivation and 
distinguish between potato variety using the differences 
in relative intensities with 81% to 100% accuracy. The 
researchers also demonstrated that RS could be used for 
quantitative assessment of nutritional content of starch 
in potato tubers. For this, gels with different concentra-
tions of starch were prepared and their spectra were col-
lected. Morey and co-workers showed that the intensity 
at 480  cm−1 in those spectra increased linearly with the 
increase in the concentration of starch [34]. Using such 
calibration curves, the researchers were able to accurately 
determine the absolute rather than relative concentration 
of starch in potato tubers, Fig. 5.

The researchers showed that Raman spectra collected 
from the sample with 12% starch (6  g of starch) were 

400 600 800 1000 1200 1400 1600
Raman Shift (cm-1)

ytisnetnI

47
9

86
5

94
0

10
85

11
26

12
61

13
40

14
60

15
27

16
00

**

*

*

44
1

52
3

57
8

61
5

71
7

76
8

10
07

10
54

11
53

16
30

13
83

13
98

12
08

AT
RB
RN

SR
Ru/Y
YG

P/P
R/R
RLS

(a)

(b)

(c)

16
60 Carotenoids (1527 cm-1)

0 50 100 150 200 250 300
Intensity

YG

Ru/Y

SR

RN

RLS

RB

R/R

P/P

AT

Phenylpropanoids (1600 cm-1)

50 100 150 200 250
Intensity

YG

Ru/Y

SR

RN

RLS

RB

R/R

P/P

AT

200 300 400 500 600 700
Intensity

YG

Ru/Y

SR

RN

RLS

RB

R/R

P/P

AT
Starch (1126 cm-1)

5 10 15 20 25 30
Intensity

YG

Ru/Y

SR

RN

RLS

RB

R/R

P/P

AT Proteins (1660 cm-1)

Fig. 4  Left: Raman spectra of nine different potato varieties separated into three groups (a–c) for clarity of visualization. Asterisk (*) denotes 
1460 cm−1 peak was used to normalize spectra. Right: Means (circles) and confidence intervals for the intensities of the potato spectra at 1126 cm−1 
(starch), 1527 cm−1 (carotenoids), 1600 cm−1 (phenylpropanoids) and 1660 cm−1 (proteins). ANOVA of starch revealed 3 groups of potato varieties 
(blue, red and black) with significantly different starch contents. ANOVA of carotenoids revealed 2 groups of potato varieties (blue and red) with 
significantly different carotenoid contents. ANOVA of phenylpropanoids revealed 3 groups of potato varieties (blue, red, and black) with significantly 
different phenylpropanoid contents. ANOVA of proteins revealed 2 groups of potato varieties (blue and red) with significantly different protein 
contents. Multiple colors indicate a member of a group that has overlap between two separate groups. The caption and figure reproduced with 
permission from Morey et al. [34]
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statistically different from the spectra collected from 
9% (4.5 g of starch) and 15% (7.5 g of starch). Similarly, 
spectra collected from 15% starch samples were statisti-
cally different from the spectra collected from 12 and 
18% of starch. Reported standard deviations suggest that 

the accuracy of quantification of starch lies within 3%. 
Although such accuracy is expected by potato breeders 
and farmers, one can expect that more careful stand-
ardization may push the prediction accuracy to 1% and 
below.

Such titration curves are commonly accepted straight-
forward calibration approach that is used in nearly any 
analytical methods. However, their direct utilization in 
RS can be complicated by a laser penetration depth that 
may vary from sample to sample. Specifically, laser light 
may penetrate deeper into the starch gel than into the 
corn kernel. As a result, intensity of 480 cm−1 in the for-
mer case will be higher than in the latter case upon iden-
tical starch concentration in both samples. The problem 
can be solved if samples with similar laser penetration 
depths as the desired sample will be used to build the cal-
ibration curve. Alternatively, a correction coefficient can 
be used to adjust for the difference in the sample penetra-
tion depth described above.

One of the most impactful grains in the world is maize, 
also known as corn. Maize is used as livestock feed, 
raw material in industry, biofuel, and serves as a staple 
for human consumption as food and has a commercial 
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impact of more than 50 billion dollars in the United States 
[16]. Krimmer and co-workers investigate the accuracy of 
RS for identification of maize varieties and assessment of 
their nutrient content. It has been found that RS could 
predict the content of carbohydrates, fibers, carotenoids, 
and proteins in maize kernels [21], Fig.  6. Using PLS-
DA, Krimmer and co-workers also demonstrated that RS 
could be used to identify maize varieties based on their 
unique vibrational fingerprints [21].

A question to ask is how accurate is such prediction 
of nutritional elements. To answer this question, corn 
material was in parallel examined using near-IR (NIR) 
spectroscopy and megazyme total starch content assay, 
methods that commonly used for non-invasive assess-
ment of the starch content of grain. NIR revealed starch 
variability in the corn from 60.2 to 63.1%, whereas 
according to the megazyme assay, the amount of starch 
varied from 54.6 to 59.3%. However, these techniques 
have substantial internal errors in starch assessment. 
Specifically, for NIR such error is within ± 5%, whereas 
for megazyme assay it is within ± 3%. In the light of these 
facts, two issues became apparent. First, from perspec-
tive of both NIR and megazyme assays, the analyzed 
corn varieties had no statistical difference in the starch 

content. Second, none of those technique could be used 
as a reliable calibration metrics for RS.

These findings suggest that RS requires its own calibra-
tion approach that has to be developed for highly accu-
rate assessment of the nutritional content of grain.

Spectroscopic analysis of coffee beans
Keidel and co-workers used RS to analyze kahweol in 
whole and ground coffee beans of two different species 
Coffea arabica L. and Coffea canephora L. (var. Robusta) 
grown in Asia, Africa and South America [81]. The 
researchers found that kahweol could be quantitatively 
determined with around 3.5% accuracy. It was also shown 
that spectroscopic signatures of both ground and whole 
beans could be used to predict the geographical origins 
of coffee beans, Fig. 7.

Abreu and co-workers further expanded the use of 
RS for monitoring of coffee quality [82]. Specifically, 
the researchers questioned whether RS could be used 
to identify coffee storage conditions and the duration 
of storage. For this, the researchers collected spectra 
from coffee beans stored at several different conditions 
for 0, 3, 6, 9, 12, and 18 months. The researchers found 
that spectroscopic changes in kahweol could be used to 

Fig. 7  Raman spectra (left) collected from the whole green bean from Arabica (A) and from Robusta (B). Spectrum (C) represents the difference 
of A, B to show more clearly the Raman bands of kahweol. The experimental Raman spectrum of neat kahweol is shown in trace (D). Results 
of chemometric analysis of coffee beans (right) demonstrate the possibility of accurate identification of coffee varieties. The caption and figure 
reproduced with permission from Keidel et al. [81]
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predict quality of coffee and changes that take place in 
beans upon storage. The same group of researchers also 
demonstrated that RS could be used for highly accurate 
differentiation of Arabic coffee genotypes [83]. Coupling 
RS to principle component analysis, Figueiredo and co-
workers were able to differentiate between four geno-
types of Arabic coffee: one Mundo Novo line and three 
Bourbon lines with ~ 80% accuracy.

Spectroscopic identification of hemp and cannabis 
varieties
Since 2900 B.C., hemp has been used to treat pain and 
a numerous pharmacological effects from an array of 
cannabinols [84]. With over 100 different cannabi-
noids present, cannabis plants can have a variety of 
psychological effects. Delta-9 tetrahydrocannabinol 
(Δ9-THC), cannabidiol (CBD), and cannabigerol (CBG) 
are a few of the most studied cannabinoids in which 
clear psychological effects have been determined [85, 
86]. Hemp plants that contain THC in amounts higher 
than industrial hemp (above 0.3%) is called cannabis. 
Around 147 million people, which is about 2.5% of 
the world population, use cannabis [43]. Psychoactive 
Δ9-THC forms from the oxidation of tetrahydrocan-
nabinolic acid (THCA) that is synthesized by plants. 
There is a substantial effort from the border control and 
law enforcement to control illegal trafficking of can-
nabis as it is the most widely cultivated and trafficked 
illicit drug in the world. Ideally, growers would want to 
cultivate cannabis plants with large amounts of CBD 
and CBG and little to no THC. High performance liq-
uid chromatography is the commonly used method to 
determine the amount of cannabinoids in plant mate-
rial [87–90]. However, this method is time consuming, 
labor consuming, non-portable and destructive. Using 
orthogonal PLS-DA (OPLS-DA), Sanchez and co-
workers recently demonstrated that RS could be used 
to differentiate with 100% accuracy between hemp, 
cannabis, and CBD-rich hemp based on spectroscopic 
analysis of plant buds and leaves [43]. Vibrational bands 
of cellulose, carotenoids, and lignin were found in the 
spectrum of hemp using a handheld spectrometer. Key 
peaks at 780, 1295, 1623, and 1666  cm−1 clearly dem-
onstrated a presence of THCA in scanned varieties of 
hemp and carotenoids had higher intensity in hemp 
scans relative to cannabis, indicating hemp has a higher 
carotenoid content compared to cannabis, Fig.  8. It 
was also found in hemp that higher intensities of cel-
lulose peaks in hemp indicate a higher amount of cel-
lulose in hemp when compared to cannabis. A model 
was set up to determine if RS could be used to differ-
entiate between hemp and cannabis based on the data 
collected by Sanchez and co-workers; the results were 

100% accuracy. The vibrational band at 1691  cm−1 
that correlates to the carboxyl group of THCA allows 
Sanchez and co-workers also to detect THCA in intact 
growing plants. This key band allowed Sanchez and 
co-workers to predict the amount of THC in a sam-
ple without necessary oxidation of THCA to THC 
[41]. Another study done by Sanchez and co-workers 
detected other cannabinoids such as CBD, CBG, canna-
bigerolic acid (CBGA), and cannabidiolic acid (CBDA) 
in addition to THCA and THC [41]. Differentiating 
not only hemp vs cannabis, but also detecting CBD-
rich hemp with 100% accuracy is possible thanks to the 
work done by the Kurouski lab. The extensive study on 
the six major cannabinoids (THC, THCA, CBD, CBDA, 
CBG, and CBGA) using RS allows for differentiation 
between THC/THCA vs CBD/CBDA vs CBG/CBGA 
and can be used to identify cannabis variety with 97% 
accuracy [41]. This work also demonstrated the poten-
tial of RS to be used upon selection and breeding of 
hemp and cannabis. Evidence provided by Sanchez and 
co-workers suggested that RS can be used for on-line 
monitoring of the plant growth and accumulation of 
cannabinoids directly in the greenhouse.

Although this work demonstrates that RS can be used 
for highly accurate differentiation between industrial 
hemp, cannabis and CBD-rich hemp, it is important 
to examine the accuracy of determination of the can-
nabinoid content in the plant. Currently, this accuracy 
remains unclear. The authors infer that additional work 
is required to calibrate RS for quantitative and accurate 
identification of cannabinoids in the plant material.
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Future perspectives
RS is a well-established analytical technique that demon-
strated enormous potential in numerous research fields 
ranging from food chemistry [51] and electrochemis-
try [91] to forensics [92, 93] and materials science [94] 
since its discovery in 1928 by C.V. Raman. However, RS’s 
potential in agriculture and precision farming was largely 
overlooked for decades. Research results reported by sev-
eral groups during the last five years demonstrated enor-
mous potential of this technique for: (1) detection and 
identification of plant diseases [15, 16, 18, 22, 28, 36, 40, 
42, 44, 45]; (2) diagnostics of abiotic stresses [8, 26, 28, 
95]; (3) spectroscopic identification of plants and eluci-
dation of their phenomics [21, 38, 39, 41, 43], as well as 
determination of nutritional values of plants and seeds 
[21, 39]. Constantly growing interest to RS originates 
from its non-invasive and non-destructive nature that 
eliminates the need of sampling and sample transporta-
tion for the discussed above purposes. RS is also a chem-
ical-free approach. This reduces the cost associated with 
sample preparation and analyses themselves. Lastly, RS 
became portable. This allows for its utilization directly 
in the field, grain elevator, UAV or a combine. Describ-
ing all those advantages, it is important to discuss limita-
tions of RS. One of the strongest is the cost of equipment. 
Although the cost of hand-held Raman spectrometers is 
comparable to hand-held Infrared spectrometers and a 
set of equipment required for conventional or real-time 
PCR, it is largely unaffordable by an average farmer. 
Therefore, it is highly likely RS would be implemented as 
a service in agriculture that a farmer may order to inves-
tigate the field.

An enhancement of the importance of RS in agriculture 
will likely to come with required technological advances. 
First, currently available hand-held spectrometers, 
although can be used directly in the field, require direct 
contact with the analyzed sample. Technological solution 
of this problem will enable the use of RS on UAVs. It is 
also important to fully understand ideal excitation wave-
length for plant sensing, as well as continue miniaturiz-
ing and lowering the cost of spectrometers. A large step 
in broad recognition of RS by farmers and plant breed-
ers is in direct use of this technique in the field. Only a 
few studies reported to date used RS for direct analysis of 
plants in the field [18, 22]. Once this practice will become 
the routine of research studies—the recognition of RS 
will tremendously increase. It should be also noted that 
one of the biggest challenges for RS to address in such 
experiments is diagnostics of several diseases in the same 
plant, or simultaneous diagnostics of biotic and abiotic 
stresses.

It should be noted that RS can be further empowered 
by its coupling to already established imaging [48, 50] and 

molecular techniques [96–98]. For instance, quick sur-
veillance of the large field territories by UAVs or airplanes 
equipped with RGB and thermography sensors can be 
used to navigate RS to the ‘danger’ areas [48, 49, 99]. Such 
UAV-guided approach can save enormous resources in 
diagnostics of biotic and abiotic stresses in large agricul-
tural territories. Also, in the light of numerous diseases 
simultaneously present on a plant, RS can be considered 
as ‘fast screening’ approach that may be used for rapid 
screening of plants. If more sophisticated or accurate 
analysis is needed, molecular methods of analysis such 
as PCR, qPCR or ELISA can be used [96–98, 100]. In 
terms of nutritional value assessment, RS goes toe-by-toe 
with IR-based technologies, which are currently com-
mercialized. In our recent work, we showed that RS- and 
IR-based technologies are comparable for assessment of 
nutritional values or grain. RS becomes superior only for 
wet samples, such as potato tubers [21].

Although this review is focused on RS, technologi-
cal advances in plant biology and agriculture stretch far 
beyond this technique. They include an emerging class of 
sensors that are based on boron-doped diamonds (BDD) 
[101], single-walled carbon nanotubes (SWNT) [102], 
and quantum dots [103]. These nano-sensors are capable 
of probing bioelectric potential changes in plants. This 
allows for on-line monitoring of temperature, light inten-
sity, and humidity in various plant species [101, 104]. For 
instance, Strano group demonstrated an outstanding sen-
sitivity of SWNT for detection of stress-induced hydro-
gen peroxide (H2O2) signaling waves in seven different 
plant species [102]. Although the characteristics of the 
H2O2 waves appeared to be different across species these 
responses were specific for the stresses that plants expe-
rienced. Such sensors can be also used for detection of 
volatile organic compounds (VOC), such as ethylene, at 
parts per billion range [105]. These excellent studies show 
that significant improvement in understanding of plant 
genomics and metabolomics can be achieved by develop-
ment of innovative sensing approaches.

The sensitivity of RS can be amplified by electromag-
netic enhancement provided by metal nanostructures 
upon their illumination by electromagnetic rotation. 
This phenomenon, first explained by Van Duyne [106], 
and later determined by Schatz and Moskovitz [107, 
108], is known as surface-enhanced Raman spectros-
copy (SERS). SERS provides for 106–108 enhancement 
of Raman scattering enabling single molecule sensitivity. 
This extremely high sensitivity of SERS can be used to 
detect plant metabolites present in low concentrations. 
For instance, Lee et  al. used SERS to quantify aflatoxin, 
a metabolite produced by Aspergillus flavus, in corn at 
a concentration range of 0−1206 μg/kg [109]. SERS was 
also used to detect turnip yellow mosaic virus (TYMV) in 
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Chinese cabbage leaves [110], as well as mycelia, micro-
conidia, and macroconidia of Fusarium oxysporum f. sp. 
cubense,fungus that infects banana causing Fusarium 
wilt of banana [111]. These examples suggest that SERS 
can be a good alternative to RS if additional sensitivity is 
required for diagnostics of the pathogens.

Conclusions
This review shows the potential of Raman spectroscopy 
for digital farming, including timely diagnostics of biotic 
and abiotic stresses, as well as identification of plants 
and assessment of plant resistance to certain patho-
gens such as nematodes. We also discussed how RS can 
be used to enable digital breeding for drought-resistant 
peanut lines. We show that high sensitivity possessed by 
RS has far reaching implications in both plant breeding, 
botany, and plant pathology. Lastly, we critically review 
recent research reports that demonstrate the use of RS 
for determination of nutritional values of peanut seeds 
and potato tubers. Portability of RS together with its 
non-invasive and non-destructive nature enhances inter-
est of plant breeders, farmers, basic plant biologists, and 
pathologists to this emerging analytical technique.
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