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Abstract 

Background:  Micro-computed tomography (μCT) bring a new opportunity to accurately quantify micro pheno-
typic traits of maize stem, also provide comparable benchmark to evaluate its dynamic development at the different 
growth stages. The progressive accumulation of stem biomass brings manifest structure changes of maize stem and 
vascular bundles, which are closely related with maize varietal characteristics and growth stages. Thus, micro-phe-
notyping (μPhenotyping) of maize stems is not only valuable to evaluate bio-mechanics and water-transport perfor-
mance of maize, but also yield growth-based traits for quantitative traits loci (QTL) and functional genes location in 
molecular breeding.

Result:  In this study, maize stems of 20 maize cultivars and two growth stages were imaged using μCT scanning 
technology. According to the observable differences of maize stems from the elongation and tasseling stages, func-
tion zones of maize stem were firstly defined to describe the substance accumulation of maize stems. And then a set 
of image-based μPhenotyping pipelines were implemented to quantify maize stem and vascular bundles at the two 
stages. The coefficient of determination (R2) of counting vascular bundles was higher than 0.95. Based on the uniform 
contour representation, intensity-related, geometry-related and distribution-related traits of vascular bundles were 
respectively evaluated in function zones and structure layers. And growth-related traits of the slice, epidermis, periph-
ery and inner zones were also used to describe the dynamic growth of maize stem. Statistical analysis demonstrated 
the presented method was suitable to the phenotyping analysis of maize stem for multiple growth stages.

Conclusions:  The novel descriptors of function zones provide effective phenotypic references to quantify the differ-
ences between growth stages; and the detection and identification of vascular bundles based on function zones are 
more robust to determine the adaptive image analysis pipeline. Developing robust and effective image-based pheno-
typing method to assess the traits of stem and vascular bundles, is highly relevant for understanding the relationship 
between maize phenomics and genomics.
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Background
With the advent of the first digital images in the 1960s 
[1], cell biologists began to use computer programs to 
manipulate their images in order to “better see what 
needs to be seen” [2]. The complexity and diversity in 
microscopic image data, however, poses challenges for 
developing suitable data analysis workflows. Micro-phe-
notypic screening based on machine learning has been 
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a hot topic in cell biology, plant physiology and agricul-
tural breeding in recent years. Machine learning aims 
to provide a general solution to this problem by learn-
ing processing rules from examples rather than relying 
on manual adjustments of parameters or pre-defined 
processing steps [3–6]. The machine learning methods 
used in microscopic image analysis mainly include neu-
ral networks [7], adaptive lifting [8], random forests [9] 
and support vector machines [10], formed with special-
ized image-analysis software such as Wndchrm [11], 
CellProfiler [12], CellCognition [13], EBImage [14], Phe-
noRipper [15], or ImageJ/Fiji [16, 17]. Most image analy-
sis algorithms, however, have been developed for specific 
biological assays. For the specific crop organ and cell 
phenotypic characteristics of the huge differences, there 
generally need to be specially developed in order to truly 
meet the research needs [18].

Vascular system is an important aspect of stalk struc-
ture and responsible for both the delivery of resources 
(water, essential mineral nutrients, sugars and amino 
acids) to the various plant organs, and the provision of 
mechanical support. In addition, the vascular system 
serves as an effective long-distance communication sys-
tem, with the phloem and xylem serving to input infor-
mation relating to abiotic and biotic conditions above 
and below ground, respectively [19]. Better understand-
ing the variations in vascular bundles within stems in 
different growth stages and different varieties will pro-
vide useful information for genetic improvement of yield 
potential. Over the past decade, considerable progress 
has been made in terms of our understanding of ana-
tomical structure and function of maize vascular system. 
With the development of microscopic imaging technol-
ogy and computer vision technology, the phenotypic 
characteristics and distribution pattern of vascular bun-
dles have been extended from qualitative description to 
quantitative analysis [20]. Zhang et  al. [21] developed 
an automated image analysis method for stained maize 
stem cross sections to quantify the lignification of stem 
tissues. Legland et  al. [22] and Heckwolf et  al. [23] cre-
ated an image analysis tool that could operate on images 
of hand-cut stem transections to measure stem anatomi-
cal features and vascular bundles traits without the rind. 
Legland et  al. [17] developed an image analysis proce-
dure for histological quantification of maize stem sec-
tions from FASGA-stained images, such as the size and 
average coloration of lignified fraction and non-lignified 
fraction could be quantified. Those tools have signifi-
cantly improved the measurement efficiency of stem 
morphological characteristics analysis, but the more 
sophisticated vascular bundle anatomical traits corre-
sponding to the stem section and the detection accuracy 
remained a challenge. Du et  al. [24] firstly introduced 

micro-computed tomography (CT) technology for stem 
imaging and developed the VesselParser 1.0 algorithm, 
which made it possible to automatically and accurately 
analyze phenotypic traits of vascular bundles within 
entire maize stalk cross-sections. Although several tools 
have become available as mentioned above, because of 
very variable tissue morphology and image resolution 
for different maize varieties in different growth stages 
and environments, more robust and adaptive image 
processing methods are urgently needed that are suit-
able for mass samples of different periods, varieties and 
environments.

In this study, we presented a set of image-based 
μPhenotyping pipelines to detect the phenotypic traits 
of basal stem internodes and vascular bundles at both 
the elongation and tasseling stages. Combined with μCT 
scanning technology, new micro-phenotypic parameters, 
such as intensity-related, geometry-related and distribu-
tion-related traits of vascular bundles were extracted and 
used to quantify dozens of stem samples at the different 
growth stages.

Methods
Material
20 maize varieties (Jingke968, Jingke665, Zhongdan909, 
Jingdan28, Zhengdan958, Xianyu335, Denghai605, Non-
gda108, Dika517, SK567, Xianyu696, Jundan28, Jin-
gkenuo2000, Jingkenuo2010, Jingke9681, Jingdan58, 
Jingke9685, Jingkeqingzhu301, Jingketian183, and Jin-
gnongke728) were grown in experimental field of Beijing 
Academy of Agriculture and Foresting Sciences (BAAFS) 
in Beijing, China, 2017. Each variety was planted in two-
row plot, with 10 plants per row, and the inter-row spac-
ing was 60 cm. The stem third-internodes of each variety 
with three replicates were collected at elongation and 
tasseling stages, respectively. Depending on the size of 
sample compartment, the third internode of maize stems 
were firstly cut into small segments with 1 to 1.5 cm by 
a motor electric cutting machine (Bosch stone cutting 
machine GDM13-34). The sample segments were then 
soaked in FAA solution (90:5:5 v/v/v, 70% ethanol:100% 
formaldehyde:100% acetic acid) immediately. After the 
FAA fixation, samples were performed the sequential 
ethanol gradient dehydration in batch (i.e., 70%, 95% and 
100%) and set the processing time of each ethanol gradi-
ent as 30 min. Next, samples were transferred to tertiary 
butyl alcohol and soaked for 24 h, and then were frozen 
at − 80  °C for 24  h. Finally, frozen samples were placed 
in the freeze-dryer (LGJ-10E, China) and freeze-dried for 
3 h in batch.

Dried stem sample was inserted in wax (3  M Unitek, 
Monrovia, CA 91016 USA), stacking together to the 
sample table to maintain it and avoid movement during 
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scanning time. Then the sample was scanned by Skyscan 
1172 (SkyScan 1172, Bruker Micro-CT), and the unified 
scanning parameters were set as: X-ray source energy of 
40 kV, a current of 250 µA, the imaging pixel sizes with 
13.55  µm, 2  K scanning mode (2000 × 2000 pixels), and 
no filter [25]. The distance between Object and Source 
was 259.850 mm, and the distance between Camera and 
Source was 345.591  mm. The scan time of each sam-
ple was 20  min. The sample was rotated over 180° with 
0.4° rotation step during the image acquisition. At each 
angular position a shadow image or transmission image 
was acquired. The cone beam acquisition saved all these 
projection images as 16-bit TIFF files. The exposure time 
was 620  ms. A total of 1000 2D projection images was 
generated.

According to X-ray linear attenuation coefficient of 
various materials, the Hounsfield (HU) values of air and 
water are respectively − 1000 and 0. For different maize 
varieties and growth stages, we observed that HU values 
of maize stem distributed in a wide range from 0 to 7000. 
To provide a quantification and evaluation standard for 
the properties of maize stems, we defined a wider value 
range which could cover whole HU ranges of plant mate-
rials, i.e. [− 1000, 9240], to transform raw data (16-bit 
TIFF) into an 8-bit grey-level image with a value range 
[0, 255].

Function zones identification of maize stem
During the maize growth and development, the sub-
stance accumulation of maize stem manifests as the grad-
ually increasing average HU values (i.e. intensity values) 
and dynamically changing distribution (i.e. connectiv-
ity relationship). According to the observable intensity 
and distribution differences between stem substances 
(shown as Fig.  1a), the entire stem slice could be rea-
sonably divided into three function zones, i.e. epidermis 
zone, periphery zone, and inner zone. Figure 1b showed 
the source and mask images of slice, epidermis, periph-
ery and inner zones, respectively. For each function 
zone, the intensity-based traits, such as intensity mean, 
standard variances and histogram, could be evaluated. In 
order to visualize histogram distribution in each func-
tion zone, background pixels which occupy the largest 
proportion were excluded from the histogram statistics. 
Thus, the value range of horizontal axis in the histogram 
was set as [1, 255], and the maximal value of vertical axis 
respectively corresponded to the maximal frequency of 
each function zone. Since the area (i.e. pixel number) of 
each function zone was different (e.g., the pixel number 
of the whole slice region was the largest, and the areas of 
periphery and epidermis zones were relatively smaller), 
thus maximal frequencies of histograms were greatly 
different. We plotted these histograms in the same 

coordinate system for visualization. Next, we depicted 
the detection pipeline of function zones in detail (Fig. 1c):

Step 1: The source image was initially segmented 
using a fixed threshold value (that was responding to 
HU value of air).
Step 2: Detected the outermost contour (Contour1), 
and judged whether the epidermis boundary was 
valid (an area ratio, i.e. 0.95, was used to evaluate the 
validation of epidermis boundary). Once epidermis 
boundary was valid, the generated image would be 
reversed by: Image = 255 − Image.
Step 3: Detected the inner zone according to pixel 
connectivity, and determined the boundary between 
the inner and periphery zones (Contour2).
Step 4: Extracted the periphery and epidermis zones 
according to Contour1 and Contour2.
Step 5: Segmented the gray image of the periphery 
and epidermis zones using the adaptive threshold 
segmentation method, and resulted in epidermis 
and vascular bundles.
Step 6: Reversed the mask image of Step 5 to make 
the epidermis zone and vascular bundles of the 
periphery zone as 0, and the cavity regions of the 
periphery zone as 255.
Step 7: Removed the outside region of slice, thus 
only inner zone and cavity regions of the periphery 
zone were labeled as 255.
Step 8: Performed closed operations to connect the 
cavity regions of the periphery zone together (the 
structure element size of morphological operations 
was estimated according to the biggest size of vascu-
lar bundles).
Step 9: Extracted the outer boundary of the resulted 
mask image in Step 8 as Contour3, thus the epider-
mis zone could be determined by Contour1 and 
Contour3.
Step 10: Contour1, Contour2 and Contour3 were 
combined to define the epidermis, periphery and 
inner zones.

In the algorithm pipeline above, function zones were 
detected and represented as a set of hierarchy con-
tours which could be extracted from the substance 
image. However, boundaries of some stem samples were 
cracked, therefore it was necessary to identify whether 
the detected outer boundary of the slice was valid or not 
(Step 2). If the boundary was broken, the morphological 
operations would be used to repair the boundary contour. 
Since the boundary of stem sample was very close to con-
vex shape, we could use a convex hull to fit the bound-
ary and set its area as the maximum area value. And then, 
we detected the actual outer contour of stem sample, and 
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took its area as the actual area. There was no doubt that 
the actual area should be less than the maximum area. 
Since this outer contour had to contain the most sub-
stances in the slice, 0.95 was an appropriate area ratio to 
evaluate and identify the availability of the detected con-
tour. If the area ratio exceeded 0.95, the detected contour 
could be considered as the true boundary of stem sample, 
otherwise iterative morphological operations (i.e., dilate 
the binary image until its outermost contour was legal, 
and then eroded the contour with the same size) were 
used to repair the broken boundary of epidermis.

The boundary between the periphery and inner zone 
was detected in Step 3. The inner zone was entirely 

included within this boundary, and vascular bundles 
in the inner zone were fully independent from the sur-
rounding tissues. Outside this boundary, vascular bun-
dles usually connected into a whole or multiple individual 
region by the intermediate substances (parenchyma cells 
etc.).

In the most of cases, the epidermis and periphery zones 
were merged together by some vascular bundles. The 
boundary region between epidermis and periphery zones 
was ambiguous, thus a local adaptive threshold method 
based on mean was more appropriate for the separation 
between epidermis and periphery (Step 5). This classical 
method calculated the average value of all pixels in the 

Fig. 1  Schematic function zones of maize stem in a CT cross-section image. a The boundaries of the epidermis, periphery and inner zones. b The 
source and mask images of each individual zones, and the intensity and histogram results. c The detection pipeline of function zones
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given block region as a local optimal threshold instead of 
the specified threshold value. Therein, the block size was 
estimated as 31 according to experience and experiment.

The cavity regions of the periphery zone determined 
the boundary between the epidermis and periphery 
zones. Thus, the mask image of Step 5 was firstly reversed 
to make the cavity regions of the periphery zone as 255, 
and the epidermis zone and vascular bundles of the 
periphery zone as 0 (Step 6). Once the outside region 
of slice was removed, the cavity regions of the periph-
ery zone would become the outermost regions of the 
slice (Step 7). To fill the vacancies of vascular bundles 
and smooth the boundary of cavity regions of periphery 
zone, closed operations were performed to merge cav-
ity regions of the periphery zone together (Step 8). The 
structure element size of morphological operations was 
estimated according to the biggest size of vascular bun-
dles, such as 15. Further, the outer boundary of cavity 
regions was extracted as Contour3 (Step 9). As a result, 
Contour1, Contour2 and Contour3 could be combined 
to determine the epidermis, periphery and inner zones 
(Step 10).

Detection pipeline for vascular bundles
Vascular bundles in periphery and inner zones were dis-
tinctly different not only in size and morphology, but dis-
tribution and intensity. Vascular bundles of the periphery 
zones were densely distributed, and had a closer spac-
ing distance, smaller area and more changeable inten-
sity than ones in the inner zone. It was difficult to detect 
simultaneously vascular bundles of periphery and inner 
zones by the same method and parameters. Fortunately, 
the presented function zones provided valuable refer-
ences for the segmentation and identification of vascular 
bundles. That is, image segmentation and object verifica-
tion of vascular bundles could be respectively performed 
in the periphery and inner zones by the more adaptive 
methods. The detection pipeline of vascular bundles was 
described as follows:

For vascular bundles of the inner zone, the boundaries 
of vascular bundles were often equivocal due to the bro-
ken edge or less intensities. To protect the boundaries 
of vascular bundles in the inner zone, a fixed threshold 
value with 1 was used to result in redundant segmenta-
tion results that contained all boundaries of vascular 
bundles, but the size and shape were usually improper. 
Moreover, each segmented object in the inner zone could 
be taken as an individual candidate of vascular bun-
dle. Therefore, Level set algorithm [26] was performed 
to track more appropriate boundary of these vascular 
bundles. Figure  2a demonstrated the shape improve-
ment results of vascular bundles. Green contours were 
the redundant segmentation result of vascular bundles, 

blue contours indicated the improved shape by Level set 
method, and red contour represented the convex hulls of 
vascular bundles.

Vascular bundles in periphery zone were closely sur-
rounded by the composites of lignin and cellulose, and 
were closely arranged. As a result, some candidates 
might contain several interconnected vascular bun-
dles. Although these merged vascular bundles could be 
identified visually, the huge size difference and complex 
connectivity between vascular bundles were prone to 
decision-making ambiguity. In this study, an object split-
ting method based on shape features (inscribed circles) 
was used to subdivide the candidate object into several 
individual vascular bundles. This technique could gen-
erate a series of inscribed circles to fit and represent the 
shape of the target. That is, for a given object shape, the 
following operations were performed: (1) calculated the 
maximum inscribed circle of the given object, (2) deleted 
this inscribed circle region from the input image, and (3) 
the remaining area as new input image was performed 
step (1) and (2), until the radius of the new inscribed cir-
cle was less than a small threshold, such as 3. As a result, 
the given object was represented as a serial of inscribed 
circles with different size. As an example, 100 candidate 
regions were respectively collected from the previous 
results, and then were split into individual vascular bun-
dles by the presented method, as shown in Fig. 2b. Each 
candidate region with complex shape was split into more 
than two individual regions.

Phenotyping for vascular bundles
Contour representation was an effective and simple 
shape descriptor for the entire slice, function zones, and 
vascular bundles. Contour could be directly used to cal-
culate the geometry-based traits. And the image region 
surrounded by this contour also could be used to calcu-
late the intensity-based traits, such as mean intensity and 
variance. Moreover, the contour center represented the 
true object position, thus it was also used to calculate the 
distribution-based traits.

Layer‑related traits of vascular bundles
To quantify the distribution of vascular bundles in the 
entire slice, two layer schemes have been implemented to 
divide the slice into several ring regions, as described in 
the literature [24]. Several geometrical contours related 
with the stem center were generated to divide the maize 
stem into equal-distance (ED) or equal-area (EA) regions, 
as shown in Figs. 3a and 4b. Delaunay triangulation tech-
niques were used to generate graph representation (such 
as triangles and patches) of vascular bundles by taking 
the center points of all vascular bundles as initial nodes, 
and the inner boundary of epidermis as a boundary 
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constraint. According to the areas of vascular bundles, 
K-Mean clustering technique was performed to classify 
these graphs into several categories labeled with different 
pseudo-colors (shown as Fig. 3c).

Implementation
To quantify micro phenotypes of maize stems for large-
scale samples from different growth stages is still a 
challenge. Here, we developed a set of automated pheno-
typing pipelines to handle with a large-scale CT images 
in a batch processing style. All image processing and 
analysis steps were conducted in Visual studio C++ and 
OpenCV.

Based on uniform contour representation, almost all of 
the objects detected from the CT image were represented 
as contours, and each contour could be represented as a 
set of points. Thus, the data structure could be stored or 
loaded as a local file (VBF) by serialization mechanism. 
This file could not only record all semantic information 
parsed by the image pipeline, such as vascular bundles, 
layers and function zones, but be conducted the fur-
ther statistic analysis of the slice and vascular bundles. 
As a result, the presented μPhenotyping pipelines can 
automatically process a large scale of samples, and well 

organize the related traits of the stem and vascular bun-
dles together for statistical analysis.

Results
Quantification of stem phenotypes
Table  1 listed five categories of phenotypic traits of 
vascular bundles, including intensity-related, geom-
etry-related, distribution-related, layer-related, and 
growth-related traits. In this study, the geometry-based 
traits were classified into dimensional and dimension-
less parameters. Six dimensionless parameters (rectan-
gularity, aspect ratio, circularity, eccentricity, sphericity 
and convexity) were irrelevant to the size and orientation 
of contour shape, and nine dimensional parameters (i.e. 
width, height, main axis length, main axis width, circum-
circle radius, inscribed circle radius, area, perimeter, and 
convex hull area) were relevant to the size and orienta-
tion of contour shape, with mm or mm2 units.

The geometry-related traits of vascular bundles were 
strongly related to their position relative to the stem center. 
Thus, the distance from vascular bundle to the stem center 
was taken as a distribution descriptor. Figure 4a–c showed 
the relationship between geometry-related traits (perim-
eter, radius and area) of candidates and their positions, 

Fig. 2  Detection and identification for vascular bundles. a Shape improvement for vascular bundles in the inner zone. b The object split of 
candidate regions for vascular bundles in the periphery zone
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respectively. A serial of exponential curves were fitted to 
indicate the distribution of candidates, as follows:











yperimeter = 1.419− 1.22× 10−4e0.589x

yradius = 0.249− 5.765× 10−4e0.502x

yarea = 0.129− 5.594 × 10−4e0.475x

Therein, x indicates the distance from the center of 
candidates to the stem center, and y indicates the shape 
features of candidates, i.e. radius, area and perimeter. As 
far away from the slice center, the number of candidates 
rapidly increased, and all dimensional geometry-based 
traits rapidly reduced exponentially. The most candidates 
assembled in the outer layer of the slice (about 10  mm 
from the slice center), however dozens of candidates in 

Fig. 3  Distribution-related traits of vascular bundles. a Layer scheme with equal-area. b Layer scheme with equal-distance. c Voronoi diagrams of 
vascular bundles
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the farthest region were obviously deviated from the 
fit curves. Thus, these candidates were likely to con-
tain multiple vascular bundles. Figure  4d, e showed the 
value ranges of geometry-related traits of candidates. 
As a result, these geometry-related and distribution-
related traits of candidates provided reasonable grounds 
to determine whether they represented valid vascular 
bundles or not. Actually, these traits could be utilized to 
build machine learning model (such as support vector 
machine, SVM) and embedded into the detection pipe-
line for vascular bundles.

Moreover, to quantify the distribution of vascular bun-
dles in the entire slice, two layer schemes were imple-
mented to divide the slice into several ring regions, i.e. 
equal-distance (ED) or equal-area (EA) regions (as shown 
as Fig.  3a, b). In the voronoi diagram shown in Fig.  3c, 
each patch corresponded to an individual vascular bun-
dle, and indicated the exclusive growth space of this vas-
cular bundle. Starting from the stem center to the inner 
epidermis boundary, the slice was divided into five adja-
cent layers, and marked as layer 1–5. The average number 
of vascular bundles from the 1st to 4th layers moderately 
increased but a huge increase came up in the 5th layer. 
Average intensity of different layer showed the same vari-
ation tendency as the number of vascular bundles. On the 
contrary, voronoi areas of vascular bundles were demon-
strated similarly linear declining trend from 1st to 5th in 

two growth stages. As shown in Fig. 5a, b, equal-distance 
and equal-area schemes described the similar distribu-
tion characteristics of vascular bundles at the elongation 
and tasseling stages. Compared with distribution-related 
traits based on the distance, the layer schemes can actu-
ally be regarded as distribution-related traits based on 
layer areas of vascular bundles.

Function zone distributions at elongation and tasseling 
stages
Phenotypic traits of function zones provided direct 
indicators to evaluate the specific physiological status 
of maize stem at elongation and tasseling stages. For the 
different growth periods, i.e. elongation and tasseling 
stages, correspond to the vegetative and reproductive 
stages respectively, the intensity and structure of the 
maize stem and which vascular bundles were much 
different (Fig.  6a). Accurate detection of the function 
zones was the precondition of the segmentation and 
verification of vascular bundles. The function zones 
of the same maize cultivar (Jingke665) at elongation 
and tasseling stages were shown in Fig. 6b. Three con-
tours respectively represented the boundaries of func-
tion zones, i.e. the outer epidermis contour (blue), the 
outer periphery contour (cyan) and the inner periphery 
contour (red). From the elongation to tasseling stages, 

Fig. 4  The geometry-related and distribution-related traits of vascular bundles. a–c The relationship between geometry-related traits (perimeter, 
radius, area) of vascular bundles and the distance (from the center of vascular bundle to stem center). d The value ranges of 6 dimensionless 
geometry-related traits of vascular bundles. e The value ranges of 9 dimensional geometry-related traits of vascular bundles



Page 9 of 14Zhang et al. Plant Methods            (2020) 16:2 

maize plants grew rapidly along with greater demand 
for nutrients and water, and morphological character-
istics of vascular bundles changed dramatically accord-
ingly. In Fig.  6c, the histogram distributions of the 
whole slice (white), epidermis zone (green), periph-
ery zone (blue), inner zone (yellow), and surrounding 
region (red, considering the epidermis and periphery 
zones together) revealed the substance distribution 
within maize stem. The changes of histograms also 
revealed the growth and development characteristics 
of maize stem. From the elongation to tasseling stages, 
the substances of maize stem rapidly accumulated in 
the epidermis and the periphery zones, especially the 
epidermis zone. The huge intensity and distribution dif-
ferences between periphery and inner zones indicated 
phenotypic traits of function zones could effectively 
describe the dynamic growth and substance accumula-
tion of maize stem.

Growth‑related traits of the slice and epidermis zone 
at different growth stages
In this study, the slice areas of the stem samples in dif-
ferent growth stages were very similar, the average slice 
area of 20 varieties from the elongation to tasseling stages 
was 339.8  mm2 and 348.9  mm2. However, the intensity 
and substance ratio of maize stems were demonstrated 
significant differences from the elongation to tasseling 
stages (Fig.  7b, c). The difference in slice intensity of 
maize stem was almost twice as much from the elonga-
tion to tasseling stages, and the substance ratio (i.e. the 
ratio of non-zero pixels to all slice pixels) increased sig-
nificantly. Moreover, the epidermis thickness was one of 
the most important structural indicators to describe the 
growth state of maize stem. At the elongation stage, the 
epidermis thickness had a large variance related with cul-
tivar attributes, but became stable at the tasseling stage 
(Fig. 7d). It maybe means the epidermis rapidly grows at 

Table 1  List of five categories 28 phenotypic traits of stem obtained by automated image processing pipeline

Phenotypic types Description Units

Intensity-based Average intensity (AI) Gray-level

Geometry-based (dimensional) Width (W) mm

Height (H) mm

Main axis length (MAL) mm

Main axis width (MAW) mm

Circumcircle radius (CR) mm

Inscribed circle radius (ICR) mm

Area (A) mm2

Perimeter (P) mm

Convex hull area (CHA) mm2

Geometry-based (dimensionless) Rectangularity (RA), RA =
A

MAL×MAW
–

Aspect ratio (AR), AR =
MAW

MAL
–

Circularity (CIR), CIR =
4π ·A

P2
–

Eccentricity (ECC), ECC =

√

MAL2−MAW2

MAL

–

Sphericity (SPH), SPH =
ICR

CR
–

Convexity (CV), CV =
A

CHA
–

Distribution-based Distance from vascular bundle to stem center (DC) mm

Layer-based (equal-distance, equal-area) Area of each layer (AEL) mm2

Number of vascular bundles in each layer (NVBEL) –

Area of vascular bundles in each layer (AVBEL) mm2

Voronoi area of vascular bundle in each layer (VAVBEL) mm2

Growth-based (epidermis, periphery, inner) Area of each function zone (AEFZ) mm2

Number of vascular bundles in periphery zone (NVBPZ) –

Number of vascular bundles in inner zone (NVBIZ) –

Area of vascular bundles in periphery zone (AVBPZ) mm2

Area of vascular bundles in inner zone (AVBIZ) mm2

Voronoi area of vascular bundle in periphery zone (VAVPZ) mm2

Voronoi area of vascular bundle in inner zone (VAVIZ) mm2
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the elongation stage, and establishes morphogenesis at 
the tasseling stage.

Growth‑related traits of periphery and inner zones 
in different growth stages
From the elongation to tasseling stages, not only sub-
stance contents of the maize stem but the geometry and 

distribution of vascular bundles changed greatly. The 
function zones of maize stem quantified these differences 
in a new viewpoint, thus new growth-related traits based 
on function zones were calculated and used for more 
refined evaluation of the dynamic growth of maize stems.

At the elongation stage, the average area of inner 
zone for 20 different varieties was 292.2  mm2, which 
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Fig. 5  Analysis of stem microscopic phenotypic traits (vascular bundle number, intensity, and vascular bundle voronoi area) in EA and ED layers at 
elongation and tasseling stages
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was about 7 times than that of periphery zone (Fig. 8a, 
e), but the average number of vascular bundles of 
two different zones was quite similar, 325.8 and 296.5 

respectively (Fig.  8b, f ). Moreover, the average area 
(Fig. 8c, g) of vascular bundles in the inner zone were 
much bigger than that in the periphery zone. At the tas-
seling stage, the average area of inner zone for 20 differ-
ent varieties was 279.1 mm2, which was about 5 times 
than that of periphery zone (Fig. 8a, e), but the average 
number of vascular bundles in the inner zone was only 
half of that in the periphery zone, which were 246.5 
and 395.1 respectively (Fig.  8b, f ). The average area of 
vascular bundles in the inner zone was about twice as 
much as one in the periphery zone (Fig. 8c, g).

From the elongation to tasseling stages, the area of 
periphery zone maintained progressive increase, but 
the inner zone decreased in a relatively lower speed 
(Fig.  8a, e). The number of vascular bundles in the 
periphery zone rapidly increased but had a slightly 
decreased in the inner zone, simultaneously (Fig. 8b, f ). 
On the contrary, the average area of vascular bundles 
demonstrated different changes. The average area of 
vascular bundle in inner zone showed a faster growth 
than that in the periphery zone (Fig. 8c, g). This might 
be closely related to the increase of material transport 
capacity of stem vascular bundle during the reproduc-
tive growth stage.

Further, we combined vascular bundle number, vascu-
lar bundle area, and function zone area to calculate the 
area ratio of vascular bundles in the periphery and inner 
zones, respectively (Fig. 8d, h). At the two stages, the area 
ratio of vascular bundles in the periphery zone was much 
larger than that in the inner zone. And from the elonga-
tion to tasseling stages, the area ratio of vascular bun-
dles in the inner zone had not changed much, but that 
in periphery zone decreased significantly. Experimental 
results above showed that the periphery and inner zone 
division demonstrated more refined growth-related traits 
of vascular bundles, such as the vascular bundle number, 
area, and distribution traits. Moreover, the vascular bun-
dle number and area ratio of vascular bundles might be 
an effective indicator to evaluate the dynamic growth of 
maize stem and cultivar differences.

Fig. 6  Function zone distributions of maize stem (Jingke665) at 
the elongation and tasseling stage. a The source images of stem 
at elongation and tasseling stages. b Function zone distributions 
of maize stem at elongation and tasseling stages. c Histograms of 
different zones, the whole slice (white), epidermis zone (green), 
periphery zone (blue), inner area (yellow), and the combination of the 
epidermis and periphery zones (red)

Fig. 7  Growth-related traits of the slice and epidermis zone at the elongation and tasseling stages. a Slice area of stem. b Slice intensity of stem. c 
Slice substance ratio of stem. d Epidermis thickness of stem
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Discussion
In earlier work, a large number of methods have been 
developed for the detection of micro anatomical char-
acteristics of cross-section stem, to meet the need for 
large-scale measurements of stem anatomy features 
[21–25, 27]. In spite of improved measurement effi-
ciency of vascular bundle, the robustness and general 
applicability of these tools need to be improved. Here, 
the results of μPhenotyping pipelines for maize stem 
were well be organized and serialized as a VBF file. 
Through this pipeline, contour representations of the 
slice, function zones, layers, and vascular bundles, pro-
vided uniform analysis process to output lots of traits, 
such as intensity-related, geometry-related, distribu-
tion-related and growth-related traits.

In order to evaluate the counting accuracy of vascular 
bundles, 40 CT images (i.e. 20 different varieties, and two 
growth stages) were randomly selected for manual count-
ing. Counting results of vascular bundles by the manual 
investigation and presented method were shown in Fig. 9. 
The coefficient of determination (R2) of the observed 
and computed values at the tasseling stage (Fig. 9b) was 
slightly higher than that at the elongation stage (Fig. 9a), 
and R2 using all sample from two stages (Fig. 9c) was low-
est but reached 0.9542. It indicated the presented method 
could effectively detect vascular bundles both at the 
elongation and tasseling stages, even more propitious to 
mature growth stages owing to bigger intensity of stem 
substances and segmentation schemes based on function 
zones. Moreover, μPhenotyping pipelines for maize stem 
were organized into a batch processing, and the average 
computation time was about 20 s per image.

Fig. 8  Growth-related traits of the periphery and inner zones at the elongation and tasseling stages. a–d Phenotypic traits of periphery zone (a 
zone area, b vascular bundle number, c vascular bundle area, and d area ratio of vascular bundle). e–h Phenotypic traits of inner zone (e zone area, f 
vascular bundle number, g vascular bundle area, and h area ratio of vascular bundle)
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Function zones of maize stem play a crucially impor-
tant role not only for the detection pipeline but for the 
phenotyping pipeline of vascular bundles. The periphery 
and inner zones are sensitive to growth and develop-
ment status of maize stem, thus it is effective to identify 
growth-related phenotypic traits, such as estimation of 
the biomass, maturity degree, bio-mechanical proper-
ties etc. The dynamic development of maize stems and 
vascular bundles from the elongation to tasseling stages 
can be well described by growth-related traits of func-
tion zones. These traits are highly valuable for revealing 
the development mechanism and understanding the rela-
tionship between anatomical structure and physiological 
function of vascular bundles [28]. Efficient and accurate 
µPhenotyping technology is opening the door to studies 
that integrate vascular bundle functional genomics with 
phenomics, to provide novel insights in development and 
functions of the maize vascular system. Future wok there-
fore will focus on quantification of growth-related traits 
of maize stem in more growth stages to reveal the succes-
sive and dynamic growth and development features.

Conclusions
We have presented a set of image-based μPhenotyping 
pipelines to quantify maize stem images acquired using 
μCT scanning technology. The robustness and accuracy 
of the presented method are evaluated using stem sam-
ples from different maize varieties and growth stages. 
Compared with the previous methods, a dominant 
advantage of this method was its more abundant pheno-
typic indicators and much wider application for different 
growth stages. And growth-related traits of the slice, epi-
dermis, periphery and inner zones provided novel indica-
tors to describe the dynamic growth of maize stem. Using 
these rich phenotypic characteristics, it is highly crucial 
for understanding the relationship between stem phe-
nomics and genomics.
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