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Blocking and re‑arrangement of pots 
in greenhouse experiments: which approach 
is more effective?
Jens Hartung1*, Juliane Wagener1, Reiner Ruser2 and Hans‑Peter Piepho1

Abstract 

Background:  Observations measured in field and greenhouse experiments always contain errors. These errors can 
arise from measurement error, local or positional conditions of the experimental units, or from the randomization 
of experimental units. In statistical analysis errors can be modelled as independent effects or as spatially correlated 
effects with an appropriate variance–covariance structure. Using a suitable experimental design, a part of the variance 
can be captured through blocking of the experimental units. If experimental units (e.g. pots within a greenhouse) 
are mobile, they can be re-arranged during the experiment. This re-arrangement enables a separation of variation 
due to time-invariant position effects and variation due to the experimental units. If re-arrangement is successful, the 
time-invariant positional effect can average out for experimental units moved between different positions during the 
experiment. While re-arrangement is commonly done in greenhouse experiments, data to quantify its usefulness is 
limited.

Results:  A uniformity greenhouse experiment with barley (Hordeum vulgare L.) to compare re-arrangement of pots 
with a range of designs under fixed-position arrangement showed that both methods can reduce the residual vari‑
ance and the average standard error of a difference. All designs with fixed-position arrangement, which accounted for 
the known north–south gradient in the greenhouse, outperformed re-arrangement. An α-design with block size four 
performed best across seven plant growth traits.

Conclusion:  Blocking with a fixed-position arrangement was more efficient in improving precision of greenhouse 
experiments than re-arrangement of pots and hence can be recommended for comparable greenhouse experiments.
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Background
Observations made in experiments deviate from their 
expected values. These deviations are called errors. 
They occur, e.g., due to measurement errors, differences 
between experimental units and differences in environ-
mental conditions experimental units are exposed to 
[1]. The experimental unit is the smallest unit within an 
experiment to which a treatment is randomly assigned 
[2]. Even though errors can arise for different reasons, 
separating or distinguishing different error effects is not 

always possible. For example, in a greenhouse evaluation 
trial with different crop cultivars tested for their yield 
performance in small pots, the observed yield in a pot 
deviates randomly from the expected yield of the cultivar 
grown. As cultivars are randomly assigned to pots, the 
pot is the randomization unit. If pots are located at fixed 
positions during the experiment, both, the cultivar and 
the soil of a pot, remains at the same position through-
out the experiment. Thus, there are two sources of error 
effects: the effect of the soil of a pot and the effect of 
the environment condition the pot is exposed to. These 
effects cannot be separated from each other. Pot or resid-
ual effects and environmental effects are completely con-
founded. A single (total) effect summarizing both error 
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effects can be fitted in a model for this type of data. Error 
effects are usually small in greenhouse and climate cham-
ber experiments as compared to error effects in field 
experiments, because environmental conditions are more 
controlled. Nevertheless, variation within a greenhouse 
is also common [3]. Furthermore, period-to-period vari-
ation from using the same greenhouse in a temporal 
sequence of experiments and greenhouse-to-greenhouse 
variation are known to be relevant in greenhouse experi-
ments [4–7].

One option to account for this variation is to conduct 
the experiment according to a blocked experimental 
design. The simplest experimental design with blocks is a 
randomized complete block design (RCBD), where treat-
ments are replicated once within each block. If blocks are 
orthogonal to a gradient, the variation due to this gradi-
ent can be accounted for by a block effect in the analy-
sis. In this case, blocks capture a part of the error, thus 
reducing the residual variance component (VC), which 
only amounts to the variance of error effects within 
blocks. If the number of treatments used in a RCBD gets 
large, experimental designs with incomplete but smaller 
blocks are preferred, e.g. α-designs. The blocks in these 
designs are incomplete in the sense that not each treat-
ment is replicated in each block. If there are gradients in 
more than one direction, the use of row–column designs 
with blocks in rows and in columns can be used. If 
incomplete blocks can be grouped into complete blocks, 
the design is called resolvable. If a blocked experimen-
tal design is used for an experiment and the blocks cap-
ture a part of the variance, an analysis accounting for the 
experimental design can be more efficient compared to 
an analysis not accounting for the design [8, 9]. The gain 
in efficiency results from the possibility of removing the 
variance between blocks from the total variance, mak-
ing the residual variance smaller. However, this efficiency 
gain comes at the cost of some degrees of freedom and 
a more restricted randomization. The use of experimen-
tal designs in planning and analyzing experiments is well 
known to be efficient (e.g. [10–12] and references within). 
Note that a gain in efficiency of a design means a reduc-
tion in the variance for the difference between two treat-
ment means compared to a contending design, such as a 
completely randomized design [10]. A range of different 
resolvable and non-resolvable designs with complete or 
incomplete blocks in one or two directions and varying 
block sizes were suggested [1, 13–17]. These experimen-
tal designs differ in their ability to account for spatial 
variation and gradients within the experimental area. An 
alternative to randomization-based modelling of the total 
variance is the separation into global, extraneous and 
natural variation using spatial models [18]. In this case, 
splines, random effects for row, and column, and a spatial 

correlation of error effects are fitted to data. For spatially 
correlated residual effects a linear or autoregressive vari-
ance–covariance structure can be fitted [19]. Other func-
tional variance-to-distance relationships in one or two 
directions can be fitted, such as isotropic or anisotropic 
spherical, Gaussian or exponential models [20]. All these 
methods can be applied to data from greenhouse and 
climate chamber experiments as well as to field experi-
ments, where experimental units have a fixed position 
throughout the experiment.

In field experiments, experimental units are mostly 
plots, which are immovable. However, experimental units 
in greenhouse and climate chamber experiments, which 
are usually pots, can either be located at fixed-positions 
[21] or moved around within the experimental area dur-
ing the experiment [7, 22–26]. In the latter case, experi-
mental units are exposed to different positions, and 
therefore potentially to different environmental condi-
tions within the experiment. This pattern allows sepa-
rating of the effects attached to the pot (thus the pot or 
residual effect) and the time-invariant positional effects. 
If re-arrangement of experimental units is repeated over 
time so that positional effects equally affect all experi-
mental units, positional effects can be hoped to average 
out. In this case, at the cost of the work load associated 
with the movement of experimental units, re-arrange-
ment provides an opportunity to remove positional 
effects from the total variance [1, 3]. In the most favour-
able case, positional effects are constant over time and 
plant growth stages. Furthermore, experimental units 
should be exposed to all positional effects for the same 
amount of time [3]. In practice, re-arrangement of exper-
imental units is often done in some systematic order, by 
rotating experimental units [27–29] or groups of experi-
mental units [3, 7].

For greenhouse experiments, where experimental units 
are portable, there exist two options for making experi-
ments more efficient: (i) the use of a blocked design for 
both performing an experiment and analyzing its data, 
and (ii) the use of a re-arrangement of experimental 
units for performing the experiment and analyzing its 
data. While the efficiency of experimental designs was 
shown theoretically [8, 9, 30] and empirically [10–12] a 
long time ago, the efficiency of re-arrangement of experi-
mental units has not been evaluated thoroughly [31]. 
An enquirer in the journal Biometrics in 1957 [1] was 
the first to raise the question of whether it is proper or 
improper to re-arrange experimental units in green-
house experiment. Kempthorne argued in his answer 
that the efficiency depends on the ratio of the variance 
of positional and pot effects. Little work on this problem 
seems to have been done since. We are aware of only five 
papers on the empirical evaluation of a re-arrangement 
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of experimental units: [27] showed that rotating pots 
on a rotating table reduces the residual VC compared 
to the variance estimated from a normal, fixed-position 
table. But unfortunately, pots on the rotated table and the 
fixed-position table were arranged differently with pots 
having more space between each other on the rotated 
table. Thus, the effect of rotating pots was confounded 
with the varying space between pots (and hence varying 
neighboring effects). Lazarovitch et al. [22] performed an 
unreplicated shading experiment showing a decreased 
standard error for re-arranged pots compared to a fixed-
position layout using a completely randomized design. 
Brien et al. [3] used a two-phase experiment to study the 
effect of four different arrangements in the second phase 
of a greenhouse experiment on growth traits in wheat. 
The authors concluded that re-arrangement of experi-
mental units can reduce errors for total plant area, but an 
appropriate experimental design and analysis will achieve 
the same result more easily and reliably. Unfortunately, 
this study lacks true replicates for the arrangement. This 
can be problematic when comparing re-arrangement and 
fixed-position arrangement, as zones within the green-
house allocated to different arrangements vary according 
to their environmental conditions. Two further experi-
ments, with small-scale and large-scale phenotyping 
platforms, were performed in [7]. In the small-scale phe-
notyping platform, re-arrangement and fixed-position 
arrangement were tested in the same experiment but in 
separate regions within the room (on the rotating line 
and aside the line). The large-scale experiment compared 
both arrangements in separate experiments. Further-
more, in the large-scale experiment the 12 control pots 
were allocated to the diagonal of the chamber with one 
pot per line. Tisné et  al. [28] ran separate experiments 
with continuously rotating of pots and without rotating 

of pots. The authors found that evaporation was more 
homogeneous with rotating. It is noted that once again 
in the fixed-position arrangement data were analyzed 
assuming a completely randomized design and thus 
with a model which cannot account for spatial variation 
via block effects. While the authors of these five papers 
showed that re-arrangement of experimental units 
reduced residual variance, their experiments do not per-
mit conclusions about the efficiency of re-arrangement of 
experimental units compared to using a blocked experi-
mental design. The limitations in the data to answer the 
question of whether or not to re-arrange pots in green-
house experiments is slightly surprising, as most of the 
researchers working on the design of greenhouse experi-
ments have a decided answer to this question, either 
against the use of re-arrangement [3, 23, 32–34] or in 
favor to its use [22, 24, 26].

The aim of the current study is therefore to perform a 
randomized and replicated experiment to give an empiri-
cal answer to the question of whether re-arrangement of 
experimental units or the use of a blocked experimental 
design in planning and analyzing the data is the preferred 
method for efficient greenhouse experiments. Barley 
(Hordeum vulgare L.) was used here as a model plant for 
cereals.

Results
Ignoring the superimposed treatment design and ana-
lyzing simply the observed data demonstrates that re-
arrangement of pots (which are the experimental unit 
in our experiment) tends to reduce the error VC. The 
results given in Table 1 are based on model (1), and they 
show that the ratio of the fixed-position error VC divided 
by the re-arrangement error VC for the seven traits 
varies between 0.39 and 2.35 with an average of 1.09 

Table 1  Evaluation criteria (error VC and  their ratio) for  seven traits and  across  traits under  fixed-position design 
and re-arrangement

SPAD single photon avalanche diode

Trait Error variance component

Fixed-position Re-arrangement Ratio (fixed-
position/
re-arrangement)

Fresh weight 34.9211 14.8595 2.35

Dry weight 0.2532 0.1905 1.33

SPAD day 30 14.7888 19.4623 0.76

SPAD day 36 6.1816 8.1668 0.76

C content 0.0687 0.1748 0.39

N content 0.1068 0.1058 0.99

C to N ratio 0.0111 0.0105 1.06

Average across traits 1.09
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across traits. Fitting random positional effects (model 6) 
resulted in a zero VC estimate in six out of seven traits. 
For the trait ‘C content’ the VC is different from zero 
and the Akaike information criterion (AIC) increases by 
1.9. Thus, from the analysis of the observed data, fixed-
position pots tend to have a slightly larger error VC. 
Modelling position effects under the assumption of time-
invariant position effects was not successful. Further-
more, plants in pots on the northern and southern end 
of the experimental area were visually more homogene-
ous under re-arrangement compared to fixed-position 
arrangement.

For results of different experimental designs, estimates 
were averaged across randomizations. Afterwards, the 
ratios of the error VC and the standard error of a treat-
ment difference (s.e.d.) for each trait were calculated 
(Additional file 1: Tables S1, S2). These ratios were then 
averaged across traits (Table  2 or the last column in 
Additional file 1: Tables S1, S2). For a randomized com-
plete block design (RCBD), the ratio of the error VC 
across randomizations varies between 0.39 and 2.40 with 
an average of 1.09 across traits. These values are simi-
lar to the values estimated from observed data without 
superimposed treatments, as both based on the same 
block structure. The ratio of average s.e.d. varies between 
0.6 and 1.54 with an average of 1.02. For the analysis of 
designs 1B, 1M and 1N, the average ratio of s.e.d. and 
error VC across traits were close to, or equal to one. For 
all other analyses of fixed-position data (using designs 
1C-1L), the average ratios of s.e.d. and VC across traits 
were lower than one. This means that across randomi-
zations and traits all block designs were as good as re-
arrangement. Indeed, most of the designs outperformed 
re-arrangement (Table 2).

It should also be noted that error VC decrease with 
increasing number of blocks, but at the cost of losing 
error degrees of freedom. There is a trade-off between 
smaller VC and decreasing efficiency factor [2], so VCs 
alone are less informative (Table 2) and the s.e.d. is more 
meaningful. From s.e.d. results of our simulation with 20 
superimposed treatments, a block size of four pots seems 
to be optimal with an arrangement visualized in Fig. 1j. 
Incomplete blocks and spatial error structure improve 
model fit according to AIC on average across randomi-
zations. Furthermore, AIC decreases in about two out of 
three randomizations for all these designs (results are not 
shown).

Discussion
Results in other papers
Re-arrangement of pots can average out positional 
effects, and therefore reduce the residual or pot-to-
pot variance if pots are equalized in their exposure to 

microclimates or environmental condition present in 
the experiment [1, 3, 26]. This would mean that the 
accumulated positional effects are the same for each 
pot. The simplest case when re-arrangement of pots 
successfully averages out positional effects is as fol-
lows: (i) all pots were located in each position an equal 
amount of time, and (ii) all positional effects were con-
stant over time and over growing stages. Note that 
there could be other, more relaxed conditions still ful-
filling the requirement that pots are subject to the same 
positional effects over time. But for these cases, both 
the proof that the sum of positional effects is indeed 
constant, and finding a design for re-arranging pots 
gets more difficult. If these conditions are fulfilled, 
positional effects are successfully removed from errors 
[1]. Otherwise, positional effects can be reduced only 
incompletely. In our experiment, pots were located on 
only 13 out of 20 positions for a varying time between 

Table 2  Average ratio of evaluation criteria [error variance 
component (VC) and  standard error of  a  treatment 
difference (s.e.d.)] for  a  given experimental design 
compared to the evaluation criteria using re-arrangement 
of pots across seven traits

200 randomizations for each trait and design were performed and results are 
based on analyses reaching convergence

RCBD randomized complete block design, SPAD single photon avalanche diode
a  Nugget variance plus a first-order autoregressive error structure within a block 
of ten pots arranged in a row on the table (Fig. 1b)
b  Ratio for all designs of either the VC or s.e.d. for fixed-position arrangement to 
the VC or s.e.d. under re-arrangement, respectively

Design (number 
of blocks × block size)

Efficiency 
factor [2]

Average ratiob of

error VC 
across traits

s.e.d. 
across traits

RCBD

 1 × 20 (1A) 1 1.09 1.00

α-design

 2 × 10 (1B) 0.90 1.05 1.02

 2 × 10 (1C) 0.90 0.89 0.96

 4 × 5 (1D) 0.75 0.81 0.97

 4 × 5 (1E) 0.75 0.78 0.94

 4 × 5 (1F) 0.75 0.75 0.94

 5 × 5 (1G) 0.68 0.70 0.94

 5 × 5 (1H) 0.68 0.78 0.98

 5 × 4 (1I) 0.68 0.71 0.94

 5 × 4 (1J) 0.68 0.63 0.91

 10 × 2 (1K) 0.14 0.62 0.96

 10 × 2 (1L) 0.14 0.66 0.98

Row–column design

 2 × 10 (1M) – 0.59 1.02

 2 × 10 (1N) 0.63 0.60 1.02

α-design (1B) with spa‑
tial error structurea

0.90 – 1.00
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one and seven days per position. Brien et al. [3] argued 
that such a haphazard re-arrangement of pots dur-
ing an experiment will not equalize their exposure to 
microclimate. Therefore, we tried to model the 20 posi-
tion effects being spread to 13 pots each (model 6). 
This model assumes time-invariant and growth-stage-
invariant positional effects. Results showed no advan-
tage in model fit. Thus, positional effects were either 
time dependent or they were small enough so as not to 
explain a sufficient amount of variance.

Error effects can be assumed as independent or as spa-
tially correlated [18]. Two approaches are possible when 
errors are assumed to be spatially correlated and the 
experimental units were randomized using a blocked 
experimental design. First, block effects are included in 
the model and errors within a block were considered 

as spatially correlated. Spatial correlation is taken as an 
add-on to the randomization-based analysis [35]. Second, 
fixed-position data can be analyzed with a spatial error 
that applies to the whole experimental area and the fit-
ting of blocks effects depends on the evidence for those 
block effects occurring in the experiment [18]. Note that 
we used only the first approach here. Furthermore, only 
error effects within a row were assumed as independent 
or as spatially correlated with an additional first-order 
autoregressive variance–covariance structure in the anal-
ysis. In this special case, results showed no advantage of 
including a spatial correlation. This is in line with results 
found in, e.g., [35].

In most greenhouse experiments, the heterogene-
ity of environmental conditions is not measured. If such 
information is available, there are two options. First, the 
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Fig. 1  Assignment of pots on a table to blocks of different designs. In all cases, a design with 20 treatments was superimposed onto the 20 pots 
per table. a Randomized complete block design (RCBD) with 20 pots per complete block. b, c α-design with two incomplete blocks along rows or 
columns. d–f α-designs with four incomplete blocks. g–j α-design with five incomplete blocks each with four pots. k, l α-design with ten blocks of 
size two. m, n resolvable/non-resolvable row–column design with two row and ten column blocks per table



Page 6 of 11Hartung et al. Plant Methods          (2019) 15:143 

information can be used to optimize re-arrangement of 
pots. Assuming that temperature and radiation are the 
most important variables for heterogeneous microcli-
mates within the green-house, [26] showed that opti-
mized re-arrangement of pots can reduce accumulated 
positional effects by 90%. Second, for a fixed-position 
arrangement, this information can be used as a covariate 
[7, 36].

The performed experiment estimates the effect of re-
arrangement versus fixed-position arrangement in a 
small randomized and replicated greenhouse experiment. 
The seven traits considered were chosen because they 
are commonly measured in experiments performed in 
this greenhouse [37, 38]. These traits are correlated, and 
so they are not independent. Nevertheless, we believe 
that the results found will hold more broadly for green-
house and climate chamber experiments having smaller 
positional effects compared to the experiment consid-
ered as both arrangements get more efficient with larger 
positional effects. Note that the conditions during the 
experiment were chosen so that the potential advantage 
of re-arrangement of pots is maximized. To do so, a non-
heated greenhouse with a large and well-known gradient 
in north–south direction was used and tables within the 
experiment were rotated to maximize positional effects. 
The gradient is mainly caused by differences in light and 
temperature, as the greenhouse has glass in the north 
and mesh in the south. Temperature is the most vari-
able condition in non-heated greenhouses [15, 39]. Its 
influence on growth is maximized if temperature is criti-
cal for growth, therefore the experiment was performed 
in spring [40–42]. The tables were arranged within the 
greenhouse so that the expected gradient is parallel to 
the long side of each table (further information about the 
greenhouse can be found in Additional file 1: Figures S1, 
S2).

The chosen experimental settings were successful in the 
sense that differences between pots were visibly reduced 
under re-arrangement compared to fixed-positioning. 
Pots located at both sides of the table at the start of the 
experiment, showed similar growth status and plant 
height under re-arrangement and reduced growth for pot 
located at the southern end under fixed-positioning. Fur-
thermore, positional effects were large enough to slightly 
reduce the average error VC estimate under re-arrange-
ment compared to fixed-position arrangement using 
model (2). Also, the drop of residual VC using incom-
plete blocks or row and column effects and the improved 
model fit when including these effects show the existence 
of different positional effects [3]. In our experiment, the 
average residual VC (across traits and randomizations) 
was reduced by 5% to 50% if incomplete blocks were 
fitted. This reduction is similar to the reduction of 36% 

observed in cultivar evaluation field trials [43] and the 
36% to 52% reduction observed by Lee and Rawlings [4]. 
While positional effects did exist, re-arrangement of pots 
did not reduce the s.e.d. of treatment differences as com-
pared to a superimposed incomplete block design. While 
designs with blocks in west–east direction (1B, N and 
M) are as good as re-arrangement, designs with blocks 
in north–south direction outperformed re-arrangement. 
This is in accordance with [3] and theoretical arguments 
given by [15]. However, [27] showed the usefulness of 
re-arrangement. But note that in their experiment, the 
re-arrangement effect was confounded with the effect of 
larger pot space.

Convergence problems due to lack of sufficient error 
degree of freedom
The arrangement methods were replicated twice, where 
replicates corresponding to tables used in the experi-
ment. 40 pots, arranged on two tables each with two rows 
of ten pots, were measured for each arrangement. For the 
fixed-position arrangement, a row–column design was 
assumed, where 20 treatments are virtually allocated to 
two rows and ten columns per table. The model account-
ing for this row–column design is saturated. For the 
α-design with ten incomplete blocks per table, only one 
error degree of freedom remained. For both designs, con-
vergence problems using the default model fitting condi-
tions (default starting values, 50 iterations) occurred in 1 
to 5% of the randomizations. Using starting values from 
parameter estimates of other randomizations was rarely 
a successful strategy to get convergence. Results from 
randomizations without convergence were dropped. 
Note, that for a lower number of virtually superimposed 
treatments, the error degrees of freedom increase, which 
appears to eliminate convergence problems.

Application of re‑arrangement of pots and experimental 
designs to experiments performed on phenotyping 
platforms
Re-arrangement of pots is used in the context of vertical 
farming [6], but the highest relevance is its application in 
phenotyping platforms [28, 44, 45]. The latter are inten-
sively investigated as one option for high-throughput 
phenotyping methods, e.g. [44–51]. The reason for the 
high relevance is that phenotyping platforms allow an 
easy use of re-arrangement, as pots are moved for water-
ing or phenotyping anyway. Therefore, there is nearly no 
additional workload [24]. Thus, efficient high-through-
put phenotyping raises questions about the integration 
of optimal experimental design [52], and the possible 
re-arrangement of pots. Depending on the phenotyping 
platform, the number of choices to re-arrange pots dif-
fer. For example, the IPK Lemna Tec Scanalyzer system 
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can automatically phenotype 384 carriers (384 pots or 
trays with several pots per tray). This forms a single series 
of carriers, which means that pots are always standing 
between the same two neighbors [7]. Also, weighing and 
watering is done in the same order. The HT automated 
non-invasive phenotyping (LemnaTec) system allows re-
arranging single pots or group of pots. In a single cycle, 
where all pots are weighed and therefore moved once, re-
arrangement of pots is restricted by the order in which 
pots are selected. Only pots at the end of lines can be 
selected and can be moved to the beginning of another 
line. This may cause restrictions in the re-arrangement 
options.

Brien et al. [3] reduced the south-north gradient within 
the greenhouse by rotating full lines of experimental 
units. Junker et al. [7] concluded that re-arrangement of 
groups of pots is sufficient for reducing or eliminating 
spatial variance between blocks. Thus, the objective of [3, 
7] was to remove or reduce block effects. In our experi-
ment, pots were re-arrange to reduce the residual VC 
under a RCBD. This was successful too, even if the use 
of a blocked design with (additional) incomplete blocks 
was more efficient, which was already expected from [3]. 
Thus, re-arrangement can be applied to pots or blocks 
within the experiment and therefore reduce the variance 
between pots or between blocks. For RCBD, the variance 
of blocks does not influence the precision of treatment 
differences. Note that for these designs blocks are orthog-
onal to treatments so treatment means require no adjust-
ment for blocks and there is no inter-block information. 
For designs with incomplete blocks such as α-designs and 
augmented designs, the block variance estimate influ-
ences the amount of inter-block information to be recov-
ered. Thus, a combination of an experimental design and 
a randomized re-arrangements of incomplete blocks 
can be an interesting option. Furthermore, if conditions 
within blocks of a blocked experimental design are not 
homogeneous, re-arrangement can be another promising 
option as it can reduce the residual VC within complete 
or incomplete blocks. Note that re-arrangement within 
blocks is likely to be ineffective when blocking is effective.

Distinguishing between movement‑effects 
and re‑arrangement
There exists a well-documented movement-effect or 
thigmomorphogenic effect on plant growth [53], e.g. in 
tomato [54] and maize [7]. Greenhouse plants moved 
around showed reduced growth but increased stability 
and increased yield. The effect results from the move-
ment of plants simulating injuries due to wind. As in 
our experiment plants in pots in both arrangements are 
equally moved around for watering, the movement effect 
should influence results equally. The only difference 

between the re-arrangement and the fixed-position 
arrangement in our experiment was that pots were allo-
cated to varying or the same positions after watering.

Conclusion
In our greenhouse experiment with barley, re-arrange-
ment of pots within a replicate successfully reduced the 
average s.e.d. But any reasonable block structure outper-
formed re-arrangement of pots. Therefore, blocking with 
a fixed-position arrangement can be suggested for use in 
comparable greenhouse experiments.

Methods
The aim of the current study is to perform a randomized 
and replicated greenhouse experiment to give an empiri-
cal answer to the questions of whether re-arrangement 
of pots or the use of experimental designs in performing 
the experiment and analyzing the data is the preferred 
method for efficient greenhouse experiments.

Greenhouse experiment
The experiment was conducted in spring 2016 in a green-
house of the University of Hohenheim. The non-heated 
greenhouse has a large known temperature gradient from 
the door at the northern side to the window to a mesh-
protected area outside at the southern side (Additional 
file 1: Figures S1, S2). Windows at the southern side were 
opened during day time if temperatures were not too 
cold for barley growth. Another orthogonal environmen-
tal gradient cannot be precluded. Therefore, four tables 
were arranged in a 2-by-2 set-up, and arrangements 
were randomly assigned to the two diagonals. Thus, the 
arrangement methods were replicated twice, where repli-
cates correspond to tables used in the experiment.

On each table, 20 Mitscherlich pots were allocated in 
a 2-by-10 grid with two rows and ten columns (Fig.  1, 
in which north is on the left). The 80 pots had a volume 
of 6.2  l each. They were filled with a mixture of 5 kg of 
sieved (<4  mm) top soil sampled from an arable Haplic 
Luvisol and quartz sand (0.6–1.2  mm) to a total weight 
of 7.45 kg. Soil texture of the top soil was composed of 
3.5% sand, 65.8% silt and 30.7% clay. Organic C-content 
was 1.44% and the initial pH value in 10–2 M CaCl2 solu-
tion (soil:solution 1:2.5 by weight) was 6.8. The nutri-
ents (0.5 g N, 1 g K, 0.75 g P, 0.5 g Mg in solution of 0.6 l 
water per pot) were added and mixed carefully with the 
soil-quartz mixture. In each pot, 30 summer barley seeds 
(variety: RGT Planet) were sown and covered with 1.5 cm 
quartz sand. Seeds were sown on March 9th 2016 (day 
0). Germination started on March 14th (day 5). To equal-
ize the number of seedlings per pot they were reduced 
to 21 on day 13. Furthermore, the number of plants were 
reduced to 20 on day 24.
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During the growing period, each day a random sample 
of two to three pots per table were weighted to determine 
the average water loss. This measurement was used to 
determine the aliquot of water given to all pots to balance 
daily weight loss. Once a week, all pots were weighted 
individually and water was added to a given weight 
between 8.08 kg (after sowing) and 8.3 kg (after day 21). 
To avoid nitrogen deficiency, 0.25  g N as NH4NO3 was 
given to each pot on days 14 and 24. Chlorophyll content 
was measured by a single photon avalanche diode (SPAD, 
[55]) at days 30 and 36. Plants were harvested on day 37. 
All 20 plants from a pot were bulked to one sample. Fresh 
weights of the bulked samples were measured. Samples 
were dried at 60  °C to constant weight. Total C and N 
concentrations in dried plant material aliquots were 
determined using a total CN analyzer (Vario Max CN, 
Elementar Analysesysteme, Hanau).

In total, five values of the whole data set were detected 
as outliers via residual plots and plausibility checks; one 
SPAD value on day 36, two values of C and two values of 
N content. All outliers were detected under re-arrange-
ment and were dropped from the analysis.

Arrangement of pots on a table
Two different pot arrangements were compared. In the 
first arrangement, pots on tables with fixed-position 
arrangement were randomly allocated to positions on a 
table once and were not moved afterwards (except for 
weighing and watering, after which they were replaced 
to their fixed positions). Pots were returned to the same 
position after weighing. In the second arrangement, pots 
were rotated in the following way: on days 6, 7, 15, 22, 25, 
30, and 33 the 20 pots on a table were cyclically moved 
clockwise direction to the next position. Additionally, re-
arrangement tables were rotated by 180° on days 8, 17, 
20, 26, 28, 30, 32, and 34. Therefore, each pot was placed 
at several positions during the experiment. For example, 
the pot originally located at position 1 was allocated to 
a total of 13 different positions during the experiment 
(positions 1–4, 6–8 and 13–18).

Superimposed treatment allocation onto pots
As described previously, a uniformity trial per table was 
performed. Thus, all pots were treated equally, apart 
from the two different arrangements. In practice, pots in 
designed experiments are treated differently as the sci-
entist is interested in comparing treatments, and treat-
ments are allocated to pots (and not to tables within the 
greenhouse). Therefore, for analysis (and thus after per-
forming the experiment) we superimposed a treatment 
factor onto the uniformity trial of each arrangement. The 
20 levels of this treatment factor were allocated to the 20 
pots per table. This merely involved assigning treatment 

labels to pots, but no treatment effects, meaning that the 
simulated effects of the superimposed treatments were 
zero. A range of different experimental designs were used 
to superimpose treatments onto pots. An RCBD with 20 
treatments was used for both arrangements. Further-
more, for the fixed-position arrangement, α-designs and 
resolvable and non-resolvable row–column designs were 
used. In all designs, 20 treatment levels were assumed. 
The experimental designs used in the experiment are 
shown in Fig.  1a–n. 200 randomizations were used for 
each design. All randomizations for all designs were cre-
ated using CycDesigN 5.1 [56].

Data analysis
Ignoring the superimposed treatment designs, the fol-
lowing model was fitted to the uniformity data:

 where yijm is the response measured on pot m of table j 
treated with the ith arrangement, µ is the intercept, τi is 
the fixed effect of the ith arrangement, tij is the random 
effect of the jth table treated with arrangement i, and eijm 
is the error effect of yijm with arrangement-specific vari-
ance 

(

eijm ∼ N
(

0, e2i
))

 . Note that the error variance for 
re-arrangement corresponds to the sum of the residual 
variance and the variance of positional effects accumu-
lated during the experiment. For fixed-position arrange-
ment it corresponds to the residual variance plus the 
variance of positional effects.

For analyzing data with superimposed treatment 
designs, a split-plot model with main plot factor ‘arrange-
ment’ (with levels fixed-position and re-arrangement) 
and sub-plot factor ‘treatment’ was used. Recall that the 
assignment of 20 virtual treatments follows a RCBD for 
the re-arrangement or a range of different designs for 
the fixed-position arrangement. A design-specific model 
with different random effects for incomplete block, row 
or column effects was fitted. For the RCBD, the following 
model was fitted:

where yijkm is the response measured on pot m treated 
with the ith arrangement and the kth treatment on the jth 
table. Note that observations are indexed by m and k even 
if on a table ij only one treatment is superposed on one 
pot. Therefore, one of the two indices would be sufficient, 
but both are kept here for consistency of notation. ϕik is 
the effect of the kth treatment at the ith arrangement and 
all other effects are analogous to (1). Further note that 
tij is the random effect of the jth table with ith arrange-
ment and therefore the main plot error. Without loss 
of generality, superimposed treatments differ between 

(1)yijm = µ+ τi + tij + eijm,

(2)yijkm = µ+ τi + ϕik + tij + eijkm,
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arrangements. Thus, the model includes no main effect 
for treatment. When treatments were arranged according 
to an α-design, the model was extended to

where bijl is the random effect of the lth incomplete block 
within the ijth table. All other effects are analogous to 
(1). Note that bijl was only fitted to fixed-position data. 
A dummy variable to block out data of re-arrangement 
from estimation of block effects was used for this pur-
pose [57], but is not shown in the model description for 
simplicity. For the row–column designs, the model is 
extended to

where rijl and cijo are the random lth row and oth column 
effects on the ijth table, respectively. All other effects are 
analogous to (1). As an alternative to including further 
block effects, a first-order autoregressive error structure 
was assumed in (2), and a block size of ten along the col-
umns (model 5). Again, a dummy variable was used to fit 
effects of rows and columns in (4) and columns and spa-
tial correlated errors in (5) under fixed-position arrange-
ment only.

Furthermore (1) is extended by adding a positional 
effect for re-arranged data only. This model assumes that 
the pth position effect on the ijth table is constant over 
time. As re-arranged pots are subject to 13 different posi-
tion effects over time, dummy variables were defined for 
each position. The complete position pijp effect is divided 
among all pots allocated at this position. This division 
was assumed to be proportional to the time a pot was 
allocated to the corresponding position. The extended 
model (model 6) of (1) is:

 where pijm is the sum of all products of position effects 
pijp and the time pot m was allocated on position p on 
table ij ( tijmp ). Note that the position effect in the fixed-
position arrangement is confounded with the error 
effect, thus it can be separated from the error effect for 
the re-arranged pots only. Again, a dummy variable was 
used to make sure position effects are only estimated for 
rearranged-position data but was not shown in the model 
description to simplify the presentation. As position 
effects were treated as random, a single variance for all 
position effects pijp was fitted using a Toeplitz variance–
covariance structure [58]. All analysis were performed 

(3)yijklm = µ+ τi + ϕik + tij + bijl + eijklm,

(4)yijklmo = µ+ τi + ϕik + tij + rijl + cijo + eijklmo,

(5)

yijm = µ+ tij + pijm + τi + eijm with

pijm =

∑20
p=1 pijp · tijmp
∑20

p=1 tijmp

,

using the PROC MIXED procedure of the SAS System 
Version 9.4 (Additional file 2).

Evaluation criteria
For comparing the two arrangements, two measures of 
precision were calculated. Preferred arrangements will 
show a higher precision and therefore smaller values for 
the residual VC and the s.e.d. Note that the average s.e.d. 
is used as evaluation criterion, as the interest is usually 
to compare treatments. Estimating the differences of a 
pair of treatment estimates as precisely as possible occurs 
when the average standard error of these differences is 
minimized. The average s.e.d. and average residual VC 
within an arrangement was averaged across randomiza-
tions. Furthermore, the average VC for arrangement-
specific residual variance was calculated. Afterwards, the 
ratio of average s.e.d. and VC for fixed-position designs 
to the corresponding value of re-arrangement was cal-
culated. Furthermore, the usefulness of additional ran-
dom incomplete block effects, positional effects, row and 
column effects and spatial correlation in (2) to (5) was 
checked by comparing AIC values of these models with 
the AIC value of model (1) [59].
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org/10.1186/s1300​7-019-0527-4.

Additional file 1: Table S1. Ratio of average error variance component 
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the south. Figure S2. Layout of the greenhouse showing the entry door in 
the north and two doors to the outer mesh-protected room in the south. 
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