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METHODOLOGY

Comparison and extension of three methods 
for automated registration of multimodal plant 
images
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Abstract 

With the introduction of high-throughput multisensory imaging platforms, the automatization of multimodal image 
analysis has become the focus of quantitative plant research. Due to a number of natural and technical reasons (e.g., 
inhomogeneous scene illumination, shadows, and reflections), unsupervised identification of relevant plant struc-
tures (i.e., image segmentation) represents a nontrivial task that often requires extensive human-machine interaction. 
Registration of multimodal plant images enables the automatized segmentation of ’difficult’ image modalities such as 
visible light or near-infrared images using the segmentation results of image modalities that exhibit higher contrast 
between plant and background regions (such as fluorescent images). Furthermore, registration of different image 
modalities is essential for assessment of a consistent multiparametric plant phenotype, where, for example, chloro-
phyll and water content as well as disease- and/or stress-related pigmentation can simultaneously be studied at a 
local scale. To automatically register thousands of images, efficient algorithmic solutions for the unsupervised align-
ment of two structurally similar but, in general, nonidentical images are required. For establishment of image corre-
spondences, different algorithmic approaches based on different image features have been proposed. The particular-
ity of plant image analysis consists, however, of a large variability of shapes and colors of different plants measured at 
different developmental stages from different views. While adult plant shoots typically have a unique structure, young 
shoots may have a nonspecific shape that can often be hardly distinguished from the background structures. Conse-
quently, it is not clear a priori what image features and registration techniques are suitable for the alignment of vari-
ous multimodal plant images. Furthermore, dynamically measured plants may exhibit nonuniform movements that 
require application of nonrigid registration techniques. Here, we investigate three common techniques for registration 
of visible light and fluorescence images that rely on finding correspondences between (i) feature-points, (ii) frequency 
domain features, and (iii) image intensity information. The performance of registration methods is validated in terms 
of robustness and accuracy measured by a direct comparison with manually segmented images of different plants. 
Our experimental results show that all three techniques are sensitive to structural image distortions and require 
additional preprocessing steps including structural enhancement and characteristic scale selection. To overcome the 
limitations of conventional approaches, we develop an iterative algorithmic scheme, which allows it to perform both 
rigid and slightly nonrigid registration of high-throughput plant images in a fully automated manner.
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Introduction
In the last decade, multisensory camera systems have 
become indispensable tools for the high-throughput 
screening of quantitative plant traits upon perturba-
tion of environmental and/or molecular-genetic factors. 
Multimodal screening facilities enable plant scientists to 
generate large quantities of image data including visible 
light (VIS), fluorescence (FLU), near-infrared (NIR) and 
3D images that are typically analyzed separately from 
each other. Some image modalities such as visible light 
or near-infrared images exhibit low contrast between 
plant and background image regions, which complicates 
automated findings of plant structures (i.e., image seg-
mentation). Limited efficiency of existing manual and 
semi-automated approaches to image segmentation has 
been identified as the major bottleneck of quantitative 
plant phenotyping pipelines [1]. A combination of low- 
and high-contrast image modalities (e.g., fluorescence 
images) by means of multimodal image registration can 
help to overcome the limitations of unimodal image pro-
cessing. Once aligned, the binary mask of a segmented 
FLU image can be applied for extraction of plant regions 
in optically more heterogeneous VIS images. Conse-
quently, multimodal image registration is an important 
tool for the automatization of plant image analysis and 
quantitative trait derivation from high-throughput phe-
notyping data.

Multimodal image alignment begins with establish-
ment of mutual correspondences between each two 
structurally similar but nonidentical images. Due to large 
variability in optical appearance of different plants as 
well as the same plant in different image modalities, it is 
not evident what kind of image features and registration 
algorithms can be universally applied for the alignment of 
different multimodal plant images.

Differences in spatial camera resolution, position and 
orientation can, in general, be modeled by a combina-
tion of scaling, translations, and rotations. A plethora of 
methods for image registration has been developed in 
the past, particularly in the context of biomedical image 
analysis [2–6]. Depending on the type of image features 
or intrinsic algorithmic principles, different categoriza-
tions of registration techniques have been suggested in 
the literature. Here, we rely on the algorithm-focused 
classification of registration methods into three major 
groups: (i) feature-point, (ii) frequency domain and (iii) 
intensity-based techniques.

Methods based on the matching of feature-points 
(FPs) are applied when corresponding image regions 
exhibit local structural similarity. Pairwise correspond-
ences between two sets of feature-points are then used 
for calculation of geometrical transformations. Common 
approaches for the detection of feature-points are based 

on edges and corners (e.g., FAST [7], Shi and Tomasi [8], 
Harris operators [9], SUSAN [10]), blob detection (e.g., 
MSER [11], DoG, DoH), structure tensors, and general-
ized feature descriptions (e.g., SURF [12], HOG, SIFT 
[13]). The main limitation of FP methods is the difficulty 
in finding a sufficient number of corresponding points in 
similar but nonidentical images of different modaliti [14].

Another prominent approach to image alignment relies 
on finding correspondences in the frequency domain. 
For example, Fourier- or Fourier-Mellin phase correla-
tion (PC) techniques make use of the Fourier-shift theo-
rem, which reformulates the problem of finding a shift in 
Cartesian or polar system coordinates to the phase-shift 
of Fourier transforms [15–17]. A closer analysis of PC 
methods shows that they basically perform correlations 
of all image structures that contribute to the synchroni-
zation of Fourier phases such as edges and corners [18]. 
Previous works reported that PC is surprisingly robust 
with respect to statistical structural image noise [19–
21]. This remarkable feature of PC originates from the 
insensitivity of inverse Fourier integrals with respect to 
distortions of just a few spectral bands such as high- or 
low-frequency noise [22]. However, PC is also known to 
be less accurate in the presence of multiple structurally 
similar patterns or considerable structural dissimilarities 
such as nonrigid image transformations. The necessity 
of additional preprocessing steps including image filter-
ing and scaling for improved performance of multimodal 
image registration using PC was repeatedly reported in 
the previous literature [23, 24]. Downscaling to a proper 
size appears to improve the robustness and accuracy of 
image registration by suppressing modality-specific high-
frequency noise, which effectively enhances image simi-
larity [25].

Alternatively to landmarks and frequency domain fea-
tures, intensity-based methods rely on maximization 
of global image similarity measures such as the nor-
malized cross-correlation (NCC) [26, 27] or the mutual 
information (MI) [28–32]. As a dimensionless quantity, 
characterizing structural image similarity of the mutual 
information has a considerable advantage of being inde-
pendent from differences between image intensity func-
tions and histograms [33]. This property makes MI-based 
registration particularly suitable for image alignment that 
exhibits partial structural similarity but different image 
intensity levels.

The above registration techniques were previously 
applied for alignment of medical, microscopic and aerial 
images. Applications of image registration in the con-
text of multimodal plant image analysis are, however, 
relatively scarce [34–36]. Structural differences between 
images of different modalities, the presence of nonu-
niform image motion and blurring make alignment of 
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multimodal plant images a challenging task. Here, we 
investigate the performance of three registration meth-
ods by a direct comparison with manually segmented 
FLU and VIS plant images of different plants. The devel-
oped algorithmic scheme is, however, not limited to 
FLU/VIS images and can principally be applied to coreg-
istration of other modalities (e.g., near-infrared, 3D pro-
jection images) as well. Our experimental results show 
limitations of conventional approaches by straightfor-
ward application to the registration of FLU/VIS plant 
images. Extensions of conventional algorithmic schemes 
are presented that allow improvement of the robustness 
and accuracy of image registration by application to the 
automated processing of large quantities of image data in 
the context of high-throughput plant phenotyping.

Methods
Image acquisition and preprocessing
Time-series of visible light (VIS) and fluorescence (FLU) 
top-/side-view mages of developing Arabidopsis, wheat 
and maize shoots were acquired from high-throughput 
measurements over more than two weeks using Lem-
naTec-Scanalyzer3D high-throughput phenotypic plat-
forms (LemnaTec GmbH, Aachen, Germany). Figure  1 

and Table 1 give an overview of the image data modali-
ties and formats used in this study. To assess robustness 
and accuracy of image registration, investigations were 
performed with both original (i.e., unsegmented) and 
manually segmented FLU/VIS images that represent 
ideally filtered data free of any background structures. 
Manual segmentation was performed using supervised 
global thresholding of the background regions, followed 
by manual removal of any remaining structural artifacts. 
Since fluorescence and visible light cameras generate 
images of different dimensions (i.e., FLU—2D grayscale, 
VIS—3x2D color images), original RGB visible light 
images images are converted to grayscale. In addition to 
grayscale intensity images, registration was performed 
with edge-magnitude images that were calculated as 
suggested by [37]. Before registration was applied, FLU 
images were resampled to the same spatial resolution as 
the VIS images, which improves the robustness of image 
alignment algorithms, as shown in Fig. 2a. Furthermore, 
to study the effects of the characteristic image scale 
on algorithmic performance, registration was applied 
to both originally sized and equidistantly downscaled 
images, which effectively performs progressive low-pass 
smoothing. No further preprocessing steps were used 

Fig. 1  Examples of FLU/VIS images of Arabidopsis, wheat and maize shoots taken at different phenotyping facilities with different camera 
resolutions

Table 1  An overview of  image data used in  this study including  three different experiments of  three different species, 
each taken in  visible light and  fluorescence, obtained by  three different LemnaTec high-throughput phenotyping 
facilities for large, intermediate-size and small plants at the IPK Gatersleben

Plants/views # plants # days # angles # FLU/VIS pairs VIS size FLU size

Arab. T./top 4 20 1 80 2056 × 2454 1234 × 1624

Wheat/side 4 47 3 564 1234 × 1624 1234 × 1624

Maize/side 6 22 4 526 2056 × 2454 1038 × 1390
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with exception of top-view Arabidopsis images, where 
the contrasting blue mat was eliminated prior to image 
registration.

Image registration using built‑in and extended MATLAB 
functions
Image registration was performed using the following 
three groups of registration routines, as provided with 
the MATLAB 2018a Image Analysis toolbox (The Math-
Works, Inc., Natick, Massachusetts, United States):

•	 For feature-point matching, several different edge-, 
corner- and blob-detectors were used. In addition to 
built-in MATLAB functions that rely on one particu-
lar feature detector, an integrative multifeature gen-
erator was introduced that merges the results of dif-
ferent feature-point detectors.

•	 Alternative image registration techniques based on 
frequency domain features rely on the MATLAB 
imregcorr function, which performs Fourier-Mel-
lin phase correlation of the corresponding spectral 
image transforms. For assessment of image trans-

formation reliability, a fixed threshold of the maxi-
mum PC peak height (i.e., H > 0.03 ) was used as 
suggested in [16]. Transformations obtained with 
H < 0.03 typically indicate a failure of PC registra-
tion, for example, due to excessively low and miss-
ing structural similarities between two images.

•	 The third method of image registration is based 
on maximization of the Mattes mutual informa-
tion between each two images using the MATLAB 
imregister function [30, 31].

All registration methods were applied to determine a 
global rigid transformation including rotation, scal-
ing and translation, which correspond to the ‘similar-
ity’ option of MATLAB transformation routines; see an 
overview in Table 2.

Evaluation of image registration
To evaluate the results of image registration, two cri-
teria for characterizing the robustness and accuracy of 
image alignment are used.

Fig. 2  Scheme of evaluation of image registration. a FLU images are prescaled to the height of VIS images in order to improve robustness of 
subsequent registration. b Registration of prescaled FLU and VIS images is performed to obtain the transformation matrix Tij describing global 
image rotation, scaling and translation. Transformations ranging within the scope of admissible rotation, scaling and translation values are treated 
as a success; otherwise, registration is considered to have failed. c To assess accuracy of image registration, the resulting transformation is applied 
to manually segmented FLU/VIS images. d The accuracy of FLU/VIS image registration is measured as the overlap ratio (OR) between the area of the 
manually segmented VIS plant image that is covered by the registered FLU image and the total area of the manually segmented plant regions; see 
Eq. 2
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Success rate of image registration
To assess the robustness of image registration, the suc-
cess rate (SR) is calculated as the ratio between the num-
ber of successfully performed image registrations ( ns ) 
and the total number of registered image pairs (n):

Image registration was defined as successful when com-
ponents of the transformation matrix lay within a range 
of admissible values of translation ( |T | < 300 pixels), 
rotation ( | cos(α)| < 0.15 ) and scaling ( S ∈ [0.75, 1.25] ). 
Geometrical transformations that do not fit in this range 
were treated as a failure of image registration.

Accuracy of image registration
The second criterion is constructed to quantify the accu-
racy of image registration. For this purpose, geometrical 
transformations acquired for a pair of FLU/VIS images 
are applied to manually segmented images, and the over-
lap ratio (OR) between the area of VIS plant regions 

(1)SR =
ns

n
.

covered by the registered FLU image ( ar ) and the total 
area of manually segmented plant regions (a) in VIS 
image is calculated, as shown in the scheme of evaluation 
of image registration in Fig. 2:

Asymmetric definition of OR, which considers only VIS 
images, was used because the primary goal of FLU/VIS 
registration consists of segmentation of plant regions in 
VIS images.

Experimental results
First, the built-in MATLAB routines for feature-point 
(FP)-, phase correlation (PC)- and intensity (INT)-based 
image registration were applied for alignment of original 
(i.e., unscaled, unfiltered) FLU and VIS images of devel-
oping Arabidopsis, wheat and maize shoots. The results 
of this first feasibility test show a superior success rate 
of INT registration in comparison to FP- and PC-based 
approaches; see Table  3. However, the accuracy of INT 
registration exhibits substantial variations among differ-
ent plant species.

To dissect possible causes of reduced robustness and 
accuracy of image registration methods by application 
to original FLU/VIS images, a systematic analysis of the 
effects of structural image enhancement and scaling was 
performed. Figure 3 gives an overview of the preprocess-
ing conditions that were evaluated with respect to image 
registration outcome, including 35 equidistant downscal-
ing steps in the range of scaling factors [0.3, 1.0], as well 
as grayscale (GS) and color-edge (CE) representations of 
original and manually segmented FLU/VIS images. Fig-
ure  4 summarizes statistics of success rates (SRs) of FP, 
PC, and INT registration by application to original (i.e., 
unscaled, unfiltered) and manually segmented (ground-
truth) plant images. From this overview, it is evident that 
removal of background structures significantly improves 
the robustness of image registration, i.e., the number of 
image registrations with admissible transformations.

(2)OR =
ar

a
.

Table 2  Overview of  three groups of  image alignment 
methods including  feature-point (FP) matching, 
phase correlation (PC) and  image intensity (mutual) 
information (INT) image features and  corresponding 
MATLAB functions used for  calculation of  pairwise image 
correspondences

All methods are used with the ‘similarity’ option, which restricts the class of 
possible image transformations to a combination of global rotation, scaling and 
translation

Method Feature MATLAB function References

PC Phase correlation imregcorr [15–17]

INT Mutual information imregtform [28–32]

FP:BRISK Corners detectBRISKFeatures [38]

FP:FAST Corners detectFASTFeatures [7]

FP:Harris Corners detectHarrisFeatures [9]

FP:KAZE Blobs detectKAZEFeatures [39]

FP:MinEigen Corners detectMinEigenFea-
tures

[8]

FP:MSER Intensities detectMSERFeatures [11]

FP:SURF Blobs detectSURFFeatures [12]

Table 3  Success rates and accuracy ratios of the successful alignment of originally sized Arabidopsis, wheat, and maize 
FLU/VIS images using FP/PC/INT registration techniques

Success rate (%) Accuracy (%)

FP PC INT FP PC INT

Arabidopsis 44.44 11.11 96.30 43.50 49.29 93.27

Wheat 81.77 13.45 97.52 66.39 67.28 85.40

Maize 89.15 97.79 86.58 70.12 77.99 63.57
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To dissect the effects of characteristic image scale on 
the results of image registration, equidistant downscal-
ing of FLU/VIS images in the range of scaling factors 
between [0.3, 1.0] was applied. Figures  5 and 6 show a 
summary of success rate and overlap ratio calculations 
for time-series of developing Arabidopsis, wheat and 
maize shoots. As seen in the FP/PC diagrams of Fig. 5a, 
the FP and PC methods exhibit reduced success rates of 
registration for originally sized and moderately down-
scaled images. Background filtering in manually seg-
mented images significantly improves the success rate of 
FP and PC registration; see Fig.  5b. Among these tech-
niques, INT registration shows the most robust perfor-
mance in terms of SR.

Complementary plots of registration accuracy in Fig. 6 
measured using Eq.  2 indicate, however, that a formally 
successful image alignment within the range of admissi-
ble transformations is not always associated with a good 
overlap between registered and manually segmented 
(ground-truth) plant areas. In particular, exceptionally 
high SR values of INT-based registration (Fig. 5) are not 
accompanied by high OR. Further, one can see that some 
plant images (e.g., Arabidopsis, top view) can be gener-
ally aligned more accurately than the others (e.g., wheat, 
maize, side view). Thereby, the deviation of registered 
plant areas from the ground-truth data is larger for origi-
nal images in comparison to manually segmented plants, 
cf. Fig. 6a versus b.

Fig. 3  Overview of preprocessing conditions (filtering and scaling) for evaluation of plant image registration using FP, PC and INT methods. 35 scale 
steps in the range between [0.3, 1.0] (step size = 0.02) were probed with original (a) and manually segmented (b) FLU/VIS images. Since registration 
routines require grayscale images, RGB images are converted to grayscale (c). In addition, registration is performed with color-edge FLU/VIS images 
(d)
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Figure  7 shows success and accuracy statistics of 
image registration by combined application of all three 
methods (FP, PC, and INT) and both image representa-
tions, i.e., grayscale (GS) and color-edge (CE) images. 
From this diagram, it is evident that the majority of 
FLU/VIS image pairs can be successfully registered 
with more than one method and preprocessing condi-
tion. However, there are also some cases where only a 
few or even only one particular method is capable of 
successfully performing FLU/VIS image alignment. 
Again, background filtering in manually segmented 

images significantly improves success rates by com-
bined application of different registration techniques; 
see Fig.  7a, b. To quantify the advantage of combined 
image registration, the maximum accuracy among all 
six techniques (i.e., FP-CE, FP-GS, PC-CE, PC-GS, 
INT-CE, and INT-GS) is calculated. From Fig. 7c, it is 
clearly visible that some plants (e.g., Arabidopsis) can 
generally be registered more accurately by one single 
registration step than others, and background elimina-
tion decisively improves the accuracy performance of 
FLU/VIS registration.

Fig. 4  Summary of effects of background filtering on the success rate of FP, PC and INT registration of FLU/VIS images of Arabidopsis, wheat and 
maize plant shoots. Pie charts show the percentage of successful (yellow-colored fractions) and failed (blue-colored fraction) registration of original 
and manually segmented grayscale and color-edge FLU/VIS images



Page 8 of 15Henke et al. Plant Methods           (2019) 15:44 

Fig. 5  Summary of effects of image downscaling on the success of FP, PC and INT registration of FLU/VIS images of Arabidopsis (A), wheat (W) and 
maize (M) plant shoots. Color diagrams show formally successful registrations (blue) and obvious misalignments (red) of original (a) and manually 
segmented (b) images with dependency on the downscaling ratio ranging between [0.3, 1.0]. Diagram titles indicate registration techniques (FP, 
PC, INT), type of image modality (color-edges—CE, grayscale—GS) and the overall success rate of image registration for a particular method, image 
modality and plant species
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Fig. 6  Summary of effects of image downscaling on the accuracy of FP, PC and INT registration of FLU/VIS images of Arabidopsis (A), wheat (W) and 
maize (M) plant shoots in comparison to manually segmented (ground-truth) data. Color diagrams show the accuracy ratio (Eq. 2) of registration 
with dependency on image downscaling. White areas in the color diagrams correspond to FLU/VIS misalignments, i.e., red areas in Fig. 5
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A closer analysis of cases with low OR revealed sev-
eral possible causes for inaccurate FLU/VIS alignment 
including repeated patterns (e.g., multiple similar 

leaves) and nonuniform image motion due to inertial 
movements of leaves. Different registration meth-
ods exhibit different tolerance levels with respect to 

Fig. 7  Statistics of success and accuracy of FLU/VIS registration by combined application of different methods and image representations. a Color 
mapping of the number methods with successful image registration. b Color codes indicate the number of methods successfully performing FLU/
VIS registration with dependency on the scaling factor. Diagram titles show the percentage of successfully registered images by combination of all 
methods (FP, PC, INT) and image representations (color-edges—CE, grayscale—GS). c Color mapping of maximum accuracy among FP-CE, FP-GS, 
PC-CE, PC-GS, INT-CE, INT-GS. d Mean/Stdev values of accuracy for plant species
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structural image distortions. For example, PC registra-
tion turns out to be particularly sensitive to multiple 
self-similar patterns such as leaves of similar shape and 

size; see Fig. 8a. Finding complementary feature-points 
in FLU/VIS images appears to be particularly difficult 
for thin moving leaves of wheat shoots; see Fig.  8b. 

Fig. 8  Examples of FLU/VIS image misalignments due to a multiple similar leaves, b, c nonuniform leaf motion, d blurring in FLU channel, and 
optimal registration of the same images using other methods or image preprocessing conditions. e Single-step registrations of differently scaled 
images (S i  ) may result in partial alignment of plant structures. To improve the accuracy of registration for nonuniformly moving plant structures, the 
results of multiple registrations are integrated into a single integrated mask (IM)
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Intensity-based registration can, in turn, be misled by 
the intensity of background structures similar to inten-
sity of shoots; see Fig.  8c. Finally, one and the same 
method may produce alignments of different accuracy 
with differently scaled and preprocessed images; see 
Fig. 8d.

Depending on image preprocessing, registration algo-
rithms may calculate quite different image transforma-
tions. Figure  9 shows component distributions of the 
transformation matrix that were assessed with differ-
ent registration techniques and preprocessing condi-
tions (i.e., scaling factors, background filtering). As one 

Fig. 9  Distributions of components of the transformation matrix ( Tij ) acquired by registration of FLU/VIS images of Arabidopsis shoots using 
different methods (FP, PC, INT), different image representations (color-edges—CE, grayscale—GS) and different scaling factors. The 2× 2 submatrix 
of i, j < 3 values describes scaling and rotational components of Tij , while T13 and T23 are the global image translations
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can see, the values of scaling, rotation and translation 
undergo considerable variations that correspond to both 
optimal and suboptimal FLU/VIS image alignments, 
such as those shown in Fig. 8. At first glance, registration 
dependency on structural image content and preprocess-
ing appears to be disadvantageous. However, it turns out 
to be a very helpful feature. Here, we exploit the variabil-
ity of geometrical transformations resulting from opti-
mal and suboptimal image registration to construct an 
integrated registration mask that allows for a piecewise 
approximation of nonuniformly moving plant regions 
that otherwise could not be completely covered by a sin-
gle-step registration; see Fig. 8e.

Computational costs of pairwise image registration are 
essentially dependent on image size, type of registration 
method and diverse algorithmic parameters. To demon-
strate the above-described parameter-dependent per-
formance of FP/PC/INT registration techniques for the 
automated alignment of multimodal plant images, a GUI 
software tool with examples of plant images is provided 

for direct download from our homepage;1 a screen shot is 
shown in Fig. 10. While the performance of image regis-
tration algorithms was primarily evaluated with FLU and 
VIS images, our exemplary tests show that they are also 
applicable to fusion of other image modalities, e.g., FLU/
NIR or VIS/NIR. Examples of FLU, VIS and NIR plant 
images are included in our online file repository.

Conclusion
Multimodal image registration opens new possibili-
ties for the automatization of image segmentation and 
analysis in high-throughput plant phenotyping. Using 
image registration, the result of a straightforward FLU 
image segmentation can, for example, be applied to 
automatically detect plant regions in optically more 
heterogeneous visible light images. Furthermore, the 
spatial alignment of different image modalities paves 
the way for consistent assessment of a multiparametric 

Fig. 10  Overview of the GUI interface of the multimodal plant image registration tool (mPIR) for demonstration of FLU/VIS image alignment using 
FP/PC/INT registration algorithms with different parameter settings

1  https​://ag-ba.ipk-gater​slebe​n.de/mpir.html.

https://ag-ba.ipk-gatersleben.de/mpir.html
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plant phenotype including information on local chloro-
phyll/water content and disease-/stress-related pigmen-
tation. Our experimental results using three common 
registration techniques (FP, PC, and INT) show that the 
robustness and accuracy of FLU/VIS image alignment 
undergo substantial variations depending on the plant 
species, interplay between the background and plant 
intensities, and image preprocessing conditions. In 
general, background filtering, structural enhancement 
and downscaling significantly improve the performance 
of FLU/VIS image registration. However, none of the 
methods and preprocessing conditions offers universal 
advantages that guarantee optimal results of single-step 
registration by application to arbitrary image data. On 
the basis of insights gained in this study, we conclude 
that a combination of different registration techniques, 
scaling levels and image representations (i.e., gray-
scale and color-edge) enables significantly more robust 
and accurate results to be obtained when compared 
to single-step image alignment using one particular 
method and/or one particular image preprocessing fil-
ter. We began this study with the assumption of global 
rigid image transformations. However, it turned out 
that FLU/VIS images may exhibit nonuniform motion 
due to uncorrelated inertial movements of tillers and 
leaves after relocation or rotation of plant carriers dur-
ing stepwise image acquisition. Integration of multiple 
registration results obtained for different preprocessing 
conditions into one single integrated mask allows this 
problem to be overcome by constructing a piecewise 
approximation of nonuniform image motion, which 
otherwise would require the application of significantly 
more expensive nonrigid registration.

The basic approach to automated alignment of plant 
images using a combination of feature detectors and 
preprocessing conditions presented in this work was 
evaluated with fluorescence and visible light images, 
but the results can principally be applied to coregis-
tration of other image modalities, e.g., near-infrared 
images.
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