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Abstract 

Background:  Unmanned aerial vehicle (UAV)-based remote sensing provides a flexible, low-cost, and efficient 
approach to monitor crop growth status at fine spatial and temporal resolutions, and has a high potential to acceler-
ate breeding process and improve precision field management.

Method:  In this study, we discussed the use of lightweight UAV with dual image-frame snapshot cameras to esti-
mate aboveground biomass (AGB) and panicle biomass (PB) of rice at different growth stages with different nitrogen 
(N) treatments. The spatial–temporal variations in the typical vegetation indices (VIs) and AGB were first investigated, 
and the accuracy of crop surface model (CSM) extracted from the Red Green Blue (RGB) images at two different 
stages were also evaluated. Random forest (RF) model for AGB estimation as well as the PB was then developed. 
Furthermore, variable importance and sensitivity analysis of UAV variables were performed to study the potential of 
improving model robustness and prediction accuracies.

Results:  It was found that the canopy height extracted from the CSM (Hcsm) exhibited a high correlation with the 
ground-measured canopy height, while it was unsuitable to be independently used for biomass assessment of rice 
during the entire growth stages. We also observed that several VIs were highly correlated with AGB, and the modi-
fied normalized difference spectral index extracted from the multispectral image achieved the highest correlation. RF 
model with fusing RGB and multispectral image data substantially improved the prediction results of AGB and PB with 
the prediction of root mean square error (RMSEP) reduced by 8.33–16.00%. The best prediction results for AGB and PB 
were achieved with the coefficient of determination (r2), the RMSEP and relative RMSE (RRMSE) of 0.90, 0.21 kg/m2 and 
14.05%, and 0.68, 0.10 kg/m2 and 12.11%, respectively. In addition, the result confirmed that the sensitivity analysis 
could simplify the prediction model without reducing the prediction accuracy.

Conclusion:  These findings demonstrate the feasibility of applying lightweight UAV with dual image-frame snapshot 
cameras for rice biomass estimation, and its potential for high throughput analysis of plant growth-related traits in 
precision agriculture as well as the advanced breeding program.
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Background
Rice (Oryza sativa) is one of the most important grain 
crops worldwide, and it serves as a food staple for more 
than half of the world’s population [1]. Crop biomass 
defined as the averaged dry weight per unit area is an 
important agronomic trait linked to plant genetics, 
growth rate, and productivity. It is also a key ecologi-
cal indicator of light use efficiency and carbon stocks in 
agro-ecosystems [2]. Moreover, biomass can be applied 
to quantify the grain yield with the harvest index [3]. It 
is also frequently used to assess crop health status and 
nutrient supply to support agricultural management 
practices [4]. Hence, it is necessary to explore advanced 
and efficient technologies for dynamically monitoring 
crop biomass during the entire growth stages.

Traditional measurement of biomass mainly relies on 
the field survey with destructive sampling, which is time-
consuming and labor-intensive. Many studies associated 
with advanced remote sensing methods utilized hand-
held instruments (i.e., ASD FieldSpec Pro spectrometer) 
[5, 6], ground platforms (i.e., manned ground vehicle 
with laser scanner) [7, 8] and satellite imaging (i.e., Land-
sat, MODIS, SPOT5, and WorldView-2) [9, 10] for bio-
mass estimation of different crops. However, limited 
spatial and temporal resolutions, and high cost of obtain-
ing satellite image data, and image quality affected by 
atmospheric conditions pose great challenges to achieve 
an accurate estimation of biomass during the whole 
growth period. Although hand-held devices and ground 
platforms provide a better spatial resolution and can be 
used to conduct a field survey as frequently as needed 
throughout the crop growing season, they are usually 
confined to a small area, which is not efficient when deal-
ing with a high-throughput analysis of biomass, and crop 
damage in the late growth stage could also be a concern 
in practical applications.

The rapid development of low-cost and relative easy 
to operate unmanned aerial vehicles (UAVs) provides 
a new means of remote sensing. They are more flexible 
than satellite-based remote sensing, and can overcome 
the survey area limitation of the ground-based platform. 
A UAV could fly at a low altitude and acquire an image 
at a high spatial resolution based on a pre-defined flight 
route. Different types of spectroscopic and image sensors 
for UAV have been developed, such as Red Green Blue 
(RGB) sensors, multispectral/hyperspectral imaging sen-
sors, light detection and ranging (LiDAR) and infrared 
thermal imaging sensors, further extending UAV-based 
remote sensing to various applications. Previous studies 
have shown the potential of high resolution UAV-based 
RGB images for measuring plant height [2, 11, 12], bio-
mass [13–15], vegetation fraction [16], plant density 
[17], and grain yield [18]. Due to the availability of the 

near-infrared (NIR) wavelengths in multispectral/hyper-
spectral images, spectral images have also become an 
alternative for UAV sensors in evaluating the physiologi-
cal- and biochemical-related parameters of plants, such 
as leaf area index (LAI) [19, 20], vegetation fraction [16], 
flower fraction [21], nitrogen (N) status [22–24], net pho-
tosynthesis [25] and biomass [26]. Most of the reported 
studies applied a single sensor to estimate a specific trait 
of the crop. In recent years, with the requirement of col-
lecting comprehensive information about plant growth 
status, more studies were focused on estimating plant 
growth-related traits by data fusion from different sen-
sors [8, 27, 28]. Bendig et  al. [14] utilized the canopy 
height extracted from the crop surface model (Hcsm) 
to estimate fresh aboveground biomass (FAGB) and dry 
aboveground biomass (DAGB) of barley with the coef-
ficient of determination (r2) values of 0.72 and 0.68, 
respectively, and the result of the DAGB estimation was 
further improved with r2 of 0.80–0.82 by adding NIR 
vegetation indices (VIs) obtained from the ground-based 
spectral measurement. Wang et al. [29] proposed fusion 
of airborne LiDAR and hyperspectral data derived from 
two platforms to estimate DAGB of maize with the r2 and 
root mean square error (RMSE) of 0.88 and 0.32 kg/m2, 
respectively, and concluded that sensor fusion provided 
a better estimate of DAGB compared with the result 
obtained from LiDAR or hyperspectral data alone. More 
recently, Maimaitijiang et al. [30] used multi-sensor data 
collected from RGB, multispectral and thermal cameras 
that were mounted on different UAVs to estimate FAGB 
and DAGB of soybean, and reported that multispec-
tral and thermal data fusion provided the best result for 
biomass estimation. The most studies as reviewed above 
mainly focused on estimating biomass based on the sen-
sor data collected from different remote sensing plat-
forms, which could add more uncertainty of the sensor 
data due to the variable illumination conditions and the 
systematic variability of the platforms during data acqui-
sition. Furthermore, canopy coverages and structures of 
the crop vary at different growth stages, which would sig-
nificantly affect the spectral characteristics and 3D point 
clouds extracted from multispectral and RGB images, 
respectively.

In this study, we developed a compact UAV with low-
cost, lightweight dual image-frame snapshot cameras for 
dynamic monitoring of rice biomass at different growth 
stages. The specific goals were to: (1) investigate the spa-
tial and temporal variations in UAV variables and above-
ground biomass (AGB) under different N treatments and 
growth stages; (2) develop random forest (RF) model for 
AGB and panicle biomass (PB) estimations by using UAV 
aerial images and test variable importance for AGB and 
PB estimations; and (3) perform statistical analysis to 
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evaluate the accuracy and robustness of the AGB and PB 
prediction models developed from the fusion of RGB and 
multispectral images.

Methods
Experimental site
The experimental site was located at the Grain-produc-
tion Functional Area of Anhua Town, Zhuji City, Zheji-
ang Province, China (29°31′5.35″N, 120°6′6.12″E). It has 
an average altitude of 16 m above sea level, and the aver-
age annual temperature is 16.3  °C. Rice (Yongyou 1540) 
was cultivated in an experimental site of 25 subplots with 
18 × 10 m2 of each, and they were treated with five lev-
els of N fertilizers (0, 72, 120, 240 and 360 kg N/ha) with 
five repetitions. N fertilizers were applied in the form 
of urea with the rates of 40, 30 and 30% at the stages of 
preplanting, tillering, and booting, respectively. In addi-
tion, phosphate (P) fertilizer (120 kg/ha) and potash (K) 
(240 kg/ha) were applied in the form of Ca(H2PO4)2∙H2O 

and KCl, respectively, at the preplanting stage. Rice was 
transplanted in early June and harvested in middle to late 
October in 2017. A protected planting area, with a width 
of 1 m, was provided around the entire experimental site.

UAV‑based image data collection
An octorotor lightweight UAV, developed by the Digital 
Agriculture and Agricultural Internet-of-things Innova-
tion Laboratory at Zhejiang University, was used to carry 
the image sensors (Fig. 1a). The UAV is 1.1 m in diameter 
and 0.35  m in height, and it has the maximum payload 
and the flight duration of 8 kg and 30 min, respectively. 
An RGB camera (NEX-7 camera, Sony, Dugang District, 
TKY, Japan) with a spatial resolution of 6000 × 4000 
pixels and a snapshot multispectral camera (CMV2  K 
CMOS, IMEC, Chatsworth, Leuven, Belgium) with a spa-
tial resolution of 409 × 216 pixels coupled with a three-
axes gimbal were mounted on the UAV. The ground 
resolutions of RGB and multispectral cameras are 6 mm/

Fig. 1  Illustration of the UAV system and radiometric calibration targets
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pixel and 4.3  cm/pixel, respectively. The multispectral 
camera contains 25 wavelengths in the spectral region 
of 600–1000 nm (679, 693, 719, 732, 745, 758, 771, 784, 
796, 808, 827, 839, 84, 860, 871, 880, 889, 898, 915, 922, 
931, 937, 944, 951 and 956  nm). The UAV campaigns 
were conducted between 14:00 and 16:00 local time on 
28 July (initial jointing stage), 28 August (initial heading 
stage), 18 September (initial filling stage) and 10 October 
(late filling stage), in 2017, and the weather was sunny 
without much wind. The GPS-controlled flight route 
was predefined with the autopilot mode in the flight 
control system. Fourteen ground control points (GCPs) 
were evenly distributed in the field as shown in Addi-
tional file  1: Figure  1S. The position of each GCP was 
measured using a GPS measuring instrument (iRTK2, 
HITARGET, Guangzhou, GD, China), which was used for 
image mosaicking, geometric correction and identifica-
tion. The altitude for image acquisition was 25 m, with a 
flight speed of 2.5 m/s. The exposure times of RGB and 
multispectral cameras were adjusted based on the illumi-
nation conditions measured by a photometer (MQ-200, 
Apogee instruments, Logan, UT, USA). The flight route 
was planned with 60% and 75% lateral and forward over-
laps, respectively, to achieve a good image mosaicking 
performance.

Ground measurements of canopy height and aboveground 
biomass
After UAV campaigns, field measurements were con-
ducted within 1 day. The ground truth data of the plant 
canopy height (Hcanopy), AGB and PB was collected 
from five 0.2 × 0.3  m2 zones in each plot. The sampling 
points were randomly selected, and the sampling posi-
tions were also recorded. The calculated height was the 
average of the determined height area. The rice canopy 
height between the ground and the highest point of the 
plant was measured in each subplot by using a ruler in 
the field at initial jointing and initial heading stages. Since 
the height of the plant canopy remained unchangeable 
when rice plants entered into the heading stage, no meas-
urement of Hcanopy was performed after the heading 
stage. Then, five samples in the five quadrats were manu-
ally harvested from each subplot, and 500 sample points 
were obtained during the entire experiment to measure 
the ground truth of the biomass with four growth stages. 
These plants were sealed in plastic bags and taken to 
the laboratory within 6  h after harvesting. After trans-
portation to the laboratory, plant samples were cleaned 
to remove the soil and water, and the roots of the plants 
were cut. Theses samples were then dried for 72 h, until 
a consistent weight was obtained. Finally, AGB with 
the weight per unit area (kg/m2) was calculated [14]. 

Meanwhile, PB was also measured at initial filling and 
late filling stages.

Image processing
Crop surface models extraction
Image mosaicking was first conducted using Agisoft Pho-
toScan Professional Software (Agisoft LLC, St. Peters-
burg, Russia), which uses matching features in the images 
to perform a bundle adjustment and generates a point 
cloud [31]. Based on the mosaicked RGB image, the crop 
surface model (CSM) was developed to determine the 
crop height [32, 33]. The point clouds were first generated 
using the structure from motion (SfM) method, and the 
detailed procedure can be found in the study of Tomasi 
et  al. [34]. The point cloud consisted of the matched 
points between overlapping images, including crop can-
opy and terrain surfaces. By conducting the classification 
of point cloud, the digital elevation model (DEM) and the 
digital terrain model (DTM) were obtained. The DEM 
was generated based on the complete dense point clouds 
representing the height of the crop canopy, while the 
DTM was only developed from the dense point clouds 
of the ground surface. By importing two models into Esri 
ArcGIS software (ArcGIS, Esri.Inc, Redlands, CA, USA), 
the CSM can be obtained by subtracting the DTM from 
the DEM. For height information, a series of sampling 
points were defined around sampling area, and the eleva-
tion information for each point was then exported into a 
text file. Finally, the height data for each sampling point 
was determined, which was then fused with spectral VIs 
for the biomass estimation. The detailed workflow for 
CSM generation was shown in Fig. 2.

Radiometric and spectral correction
Radiometric calibration was first performed by five ref-
erence targets with a known reflectance measured by a 
ground-based spectrometer (QE65000, Ocean Optics, 
Dunedin, FL, USA) (Fig. 1b). The correction factors were 

Fig. 2  Workflow for crop surface model extraction and rice height 
estimation
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calculated using the reflectance targets with the known 
reflectance and the digital number (DN) obtained from 
the onboard RGB and multispectral cameras, which were 
then used to transform the DN values of crop images into 
the reflectance based on the following equations:

where R(i,k) and DN(i,k) are the reflectance and DN values 
of the calibration target i in band k, respectively, and ak 
is the slope or gain and bk is the intercept or the offset 
[35]. An example of the result for estimating ak and bk at 
796  nm was shown in Additional file  2: Figure  2S. Due 
to physical constraints of multispectral sensor, spectral 
correction was also performed to eliminate the negative 
effect on spectral information caused by the second order 
response, spectral leaking and crosstalk [26].

Vegetation indices calculation
Various VIs extracted from RGB images (RGB-VIs) 
and multispectral images (MS-VIs) have been used to 
evaluate the plant growth status. Nine VIs, as shown in 
Table  1, were calculated from RGB and multispectral 
images, which possess the capacity to estimate biomass. 
The calculated VIs were averages of the corresponding 
sampling areas in RGB and multispectral images, which 
were calculated based on the true sampling areas and 
ground resolutions. RGB-VIs are sensitive to the plant 
greenness, and they have been employed to extract green 
vegetation and calculate vegetation coverage such as 

(1)R(i,k) = DN(i,k) × ak + bk(i = 1, 2, 3, 4, 5)
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visible-band difference vegetation index (VDVI), normal-
ized green–red difference index (NGRDI), visible atmos-
pherically resistant index (VARI), green–red ratio index 
(GRRI), and vegetativen (VEG) [16, 18, 36–38]. The mod-
ified VARI [MVARI = (G − B)/(G + R − B)] was also 
explored. Importantly, the RGB-VIs of modified green 
blue vegetation index (MGRVI), NGRDI, VDVI and VEG 
have been demonstrated many advantages on biomass 
assessment [2, 14].

MS-VIs can be classified into three categories: normal-
ized difference spectral index (NDSI), simple ratio index 
(SR), and modified normalized difference spectral index 
(MNDSI). They were calculated using two or three avail-
able wavelengths in the spectral region of 600–1000 nm, 
which have been widely utilized to assess LAI, chloro-
phyll and N contents, biomass and grain yield [39–42]. 
Relative to the RGB-VIs that consist fixed wavelength 
combinations, the MS-VIs are determined with the opti-
mal wavelength combinations at the given spectral region 
of multispectral images. In this study, the r2 between bio-
mass (AGB and PB) and MS-VIs (SR, NDSI and MNDSI) 
were first calculated using all combinations of any wave-
lengths to select the significant index with optimized 
wavelengths. In this article, the r2 values of all possible 
wavelength combinations were presented using the con-
tour map as shown in Fig. 3. The combinations present-
ing the highest r2 to rice biomass were selected, which 
had a higher predictive ability.

Statistical analysis and model development
The spatial heterogeneity and temporal variation in 
the typical VIs including the NDSI(796, 679) and VDVI, 
and AGB were first investigated. The NDSI(796, 679) was 
equivalent to the normalized difference vegetation 
index (NDVI), which was closely related to the canopy 

Table 1  Vegetation indices (VIs) derived from red green blue (RGB) and multispectral images

R, G and B are the reflectance of Red, Blue and Green channels, respectively. Rλ1 represents the reflectance of a variable band in the spectral region of 600–1000 nm. 
For an example, the NDSI(796, 679) is calculated based on the reflectance data at λ1 = 796 nm and λ2 = 679 nm

Vegetation indices Definition References

RGB-VIs

Visible-band difference vegetation index VDVI = (2 * G − R − B)/(2 * G + R + B) [37]

Normalized green–red difference index NGRDI = (G − R)/(G + R) [43]

Visible atmospherically resistant index VARI = (G − R)/(G + R – B) [38]

Green–red ratio index GRRI = G/R [44]

Vegetativen VEG = G/(Ra * B(1 − a)) a = 0.667 [45]

Modified green blue vegetation index MGRVI = (G2 − R2)/(G2 + R2) [14]

MS-VIs

Normalized difference spectral index NDSI = (Rλ1 − Rλ2)/(Rλ1 + Rλ2) [46]

Simple ratio index SR = Rλ1/Rλ2 [47]

Modified normalized difference spectral index MNDSI = (Rλ1 − Rλ2)/(Rλ1 − Rλ3) [48]
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greenness, N content, aboveground N uptake, and N 
efficiency of crops [49]. VDVI was also a good indicator 
of crop growth, canopy greenness and yield [18]. There-
fore, NDSI(796, 679) and VDVI values can well reflect 
seasonal changes in phenology of rice. Based on RGB 
images and multispectral reflectance images, the VDVI 
and NDSI(796, 679) maps were produced using the equa-
tions as shown in Table 1. The average values of VDVI 
and NDSI(796, 679) for each plot were calculated to rep-
resent the average growth condition. Then, the inter-
correlations among all of the UAV variables, including 
the Hcsm, RGB-VIs, and MS-VIs, were evaluated 
using Pearson correlation coefficient (r). Furthermore, 
a regression analysis was performed to investigate the 
feasibility of VIs and Hcsm to estimate AGB and PB.

Considering the possible nonlinear relationships 
between these UAV variables and biomass, the RF 
model that can identify the collinear and nonlin-
ear relationships among variables was proposed. The 
RF model can handle a large number of variables and 
assess the importance of each variable. It was reported 
that the generalization performance and the training 
efficiency of the RF model were both improved com-
pared with the stepwise regression (SWR) and the back 
propagation neural network (BPNN) methods [50, 
51]. RF model utilized the bagging method, which cre-
ates a separate tree using a random sample of the data 
set to estimate variable importance with the following 
equation:

(3)Importance(X) =

n
∑

i=1

errOOB2− errOOB1

n

where errOOB1 represents the error of out of bag for var-
iable X with one decision tree, errOOB2 represents the 
error of adding noise to variable X with one decision tree, 
and n represents the number of decision trees.

During the model development, the dataset was divided 
into a training set (2/3) and a testing set (1/3), with a ten-
fold cross-validation to reduce the variability of the mod-
eling. The model performance was evaluated using the 
r2, relative root mean square error (RRMSE) and the root 
mean square error of prediction (RMSEP) [2]. A higher r2 
and a lower RMSEP and RRMSE indicate a better estima-
tion performance. The mean absolute deviation (MAE) 
was also used to evaluate the distribution of error around 
the mean of data. Meanwhile, to investigate the response 
of the change of model performance to perturbations in 
the input parameters and simultaneously provide a theo-
retical basis for simplifying the model, sensitivity analysis 
was also performed [52]. It determines the model result 
changes when the model parameters are changed. The 
parameters were removed one by one to re-simulate the 
prediction of the model while keeping the other parame-
ters unchanged. Finally, the sensitivity, MAE, RMSEP and 
RRMSE were calculated as follows:

where r2 and ri
2 represent the coefficient of determina-

tion based on a tenfold cross-validation of the original 
prediction model and the re-simulated prediction model, 
respectively, by removing the parameter i, which is the 
number of input parameters. In addition, pi is the meas-
ured value, p̄i is mean value of all measured values and p̂i 
is the predicted value.

Results
Spatial–temporal variations in NDSI(796, 679), VDVI and AGB
The spatial and temporal variations in RGB images, 
NDSI(796, 679) and VDVI as well as AGB of the rice dur-
ing growing stages in the experimental field, are shown 
in Fig. 4. The growth differences among plots with differ-
ent N treatments were visually observed from the RGB 

(4)Sensitivity =
r2i − r2

R2
× 100%

(5)MAE =
1

n

n
∑

1

|pi − p̂i|

(6)RMSEP =

√

√

√

√

1

n

n
∑

1

(

pi − p̂i
)2

(7)RRMSE =
RMSE

p̄i
× 100%

Fig. 3  The contour map of the absolute r-value between 
aboveground biomass (AGB) and NDSI (i, j), and it is calculated using 
reflectance values Rλ1 and Rλ2 at thorough combinations of two 
wavebands, i and j nm
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images, providing an intuitive view on the change of 
canopy greenness with a tendency from green to yellow. 
It was found that the increased N application rates had a 
positive effect on the NDSI(796, 679), VDVI and AGB at the 
four growth stages. From the initial jointing stage to the 
late filling stage, NDSI(796, 679) and VDVI showed a sig-
nificant decreasing tendency in similar with the change 
of canopy greenness, while AGB maintained the growth 
trend.

Canopy height derived from crop surface model
Figure  5a presents the correlations between Hcsm and 
Hcanopy at the initial jointing and the initial heading 
stages, and a high correlation was observed with the r, 
RRMSE, and MAE of 0.97, 5.12% and 0.043  m, respec-
tively. Considering the correlations at individual stages, 
the r significantly decreased with the values of 0.81 and 
0.82 for the initial jointing and initial heading stages, 
respectively, due to the relative narrow distribution of 
the height data, but the MAE also decreased (Fig. 5b–d). 
The lowest RRMSE of 3.67% was obtained between the 
Hcsm and Hcanopy at the initial jointing stage. As shown 
in Fig.  6, the distribution maps of CSM produced from 
UAV-based RGB images clearly presented that there 
existed differences in Hcanopy among different plots with 
an increasing tendency from low to high N treatments. 

These results not only presented the performance of 
CSM for a quantitative estimation of Hcanopy, but also 
provided a visualization of Hcanopy distributions on the 
entire field scale.

Estimation of biomass during rice growth stages
Correlations for UAV variables and AGB
Figure  7 shows the Pearson’s correlation among Hcsm, 
RGB-VIs, selected MS-VIs, and field-measured AGB at 
four growth stages. The highest correlation was found 
between MNDSI(951, 849, 949) and AGB, with the absolute 
r-value of 0.87 followed by VDVI (r = 0.86). This also 
confirmed that MNDSI(951, 849, 949), SR(951, 889), NDSI(941, 

889) and VDVI were promising indicators for AGB esti-
mation in this field experiment. While the Hcsm had a 
relative low correlation with biomass (r = 0.54), indicat-
ing the limitation of Hcsm for AGB estimation during the 
entire growth stages. Additionally, high correlations also 
existed among several VIs such as RGB-VIs of NGRDI, 
VARI, GRRI and MGRVI and three MS-VIs.

Development of AGB estimation model
Based on the correlation analysis, RF model for AGB pre-
diction was developed using the combinations of Hcsm, 
RGB-VIs and MS-VIs extracted from RGB and multi-
spectral images. Figure 8a shows the RMSEP and RRMSE 
values for biomass estimations at different growth stages, 
and the smallest RMSEP and RRMSE were obtained at 
initial jointing and late filling stages, respectively. The 
RRMSE values of these variables consistently increased 
from the initial jointing stage to the late filling stage, indi-
cating that AGB estimation possessed relatively smaller 
errors when rice gradually became mature. For nine 
VIs and Hcsm versus biomass with four growth stages 
(Fig.  8b), the best prediction for AGB was achieved by 
MNDSI(951, 849, 949) (r2 = 0.83 and RMSEP = 0.25  kg/m2). 
In addition, VDVI, VEG, SR(951, 898), and NDSI(951, 898) 
also exhibited a high r2 of above 0.8, while VARI and 
Hcsm showed relative lower r2 values of 0.50 and 0.51, 
respectively. Further combination of nine VIs and Hcsm 
at four growth stages achieved the best AGB prediction 
with the r2, RMSEP and RRMSE of 0.90, 0.21 kg/m2 and 
14.05%, respectively (Fig. 9a), which indicated that fusion 
of dual-camera image data improved the estimation of 
AGB. Based on the analysis of the variable importance in 
RF model shown in Fig.  9b, it was found that RGB-VIs 
were more valuable for AGB prediction than MS-VIs 
in general, and the Hcsm showed the highest variable 
importance.

Estimation of PB at the mature phase
At the mature phase (initial filling and late filling stages), 
the estimation of PB was also conducted, which was 

Fig. 4  Spatial and temporal variations in Red Green Blue (RGB) 
images, NDSI(796, 679), VDVI and AGB (kg/m2) of rice. NDSI(796, 679), 
VDVI, AGB and N represent the normalized difference spectral index, 
visible-band difference vegetation index, aboveground biomass, and 
nitrogen fertilizers
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closely related to the final rice yield. To show above varia-
bles’ ability to estimate PB of rice at the mature phase, the 
estimation results developed by individual UAV variables 
were shown in Fig. 10a. Among all variables, SR(956, 898), 
NDSI(956, 898) and MNDSI(732, 693, 771) exhibited relatively 
good performance, which was consistent with the mod-
eling of AGB as presented in Fig. 8b. This suggested that 
MS-VIs possessed relative higher capacity of estimating 
AGB and PB. The PB prediction result of RF model with 
all UAV variables was shown in Fig. 10b, and a reasonable 
accuracy was obtained with r2, RMSEP and RRMSE of 
0.64, 0.11 kg/m2 and 13.74%, respectively. This suggested 
that dual-camera data fusion could improve the result 
of PB estimation. As expected, SR(956, 898), NDSI(856, 898) 

and MNDSI(732, 693, 771) presented relatively high variable 
importance to estimate PB, and it also pointed that MS-
VIs possessed more value for PB prediction than RGB-
VIs (Fig. 10c).

Comparison of RGB and multispectral cameras for biomass 
estimation
To assess the predictive capabilities of different cameras, 
the r2, RMSEP and RRMSE were calculated for evalu-
ating the model performances. Based on RF estimates 
of AGB and PB, the multispectral and RGB image data 
provided the comparable result for AGB estimation, and 
the multispectral image data, which included the NIR 
spectral region, outperformed the RGB image data for 

Fig. 5  Correlations between the canopy height derived from crop surface model (Hcsm) and canopy height (Hcanopy) from field measurements 
at the initial jointing and initial heading stages (a), and residual plots of the error distributions for b two stages, c initial jointing stage, and d initial 
heading stage. The r, RRMSE and MAE represent the Pearson correlation coefficient, relative root mean square error, and mean absolute deviation, 
respectively
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PB estimation (Table  2). Further examination of sensor 
fusion showed that the combination of RGB and multi-
spectral image data presented the best estimations for 
AGB and PB with the smallest RRMSE of 14.05% and 
13.74%, respectively. Compared to the results obtained 
from the individual sensors, the values of RMSEP of AGB 
and PB were reduced by 8.33–16.00%, which indicated 
that fusion of RGB and multispectral image data can sub-
stantially improve the biomass estimations.

Discussion
In this study, we discussed a lightweight UAV equipped 
with dual image-frame snapshot cameras and the perfor-
mance of estimating rice biomass (AGB and PB) by RGB 
and multispectral images under a field environment. The 
results have demonstrated the potential of fusing RGB 
and multispectral image data for biomass estimations.

Both RGB and multispectral cameras could provide 
spectral information in the visible spectral region, which 
was closely related to the vegetation greenness [16, 36]. 
While considering biomass estimation, RGB camera and 

Fig. 6  Distributions of canopy height derived from crop surface model (Hcsm) developed from Red Green Blue (RGB) images acquired at the initial 
jointing and initial heading stages. Coordinates are displayed in the World Geodetic System 1984 Coordinate System

Fig. 7  Correlation analysis (r) between aboveground biomass 
(AGB) and individual UAV variables from Red Green Blue (RGB) and 
multispectral images
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multispectral camera possessed own advantages and dis-
advantages as presented in Figs. 7, 8, 9 and 10. Figure 9 
revealed that the Hcsm and RGB-VIs of MVARI and 
VDVI possessed the higher importance for the assess-
ment of AGB than MS-VIs. This may be due to that RGB 
images with a higher spatial resolution contained canopy 
structural information, resulting in obtaining relatively 
clear phenotypes of crops such as vegetation coverage 
and plant height, and surpassed the performance of the 
multispectral sensor in the spatial domain [2, 14, 16]. 
Moreover, RGB images can provide rich texture informa-
tion, and the SfM technique with an RGB camera is able 
to generate denser point cloud data, and is thus suitable 
for restoring the intricate surface texture of plant struc-
ture [53]. Compared to RGB sensor, the multispectral 
sensor with a wider wavelength range could provide the 
NIR spectral information that reflects physiological char-
acteristics of crops [30, 54], especially for estimating the 
panicle biomass as shown in Fig. 10a. However, the satu-
ration issue associated with using the multispectral sen-
sor in a dense vegetation canopy could be a limitation for 
the biomass estimation [30]. Hence, each sensor or data 
set could be both limited in accuracy and incomplete. 
Combining data from RGB and multispectral cameras 
provided a holistic view of the plant growth status, and 

Fig. 8  Estimations of aboveground biomass (AGB) at different 
growth stages by random forest (RF) model using the combination 
of nine vegetation indices (VIs) and canopy height derived from crop 
surface model (Hcsm) (a). Estimation of biomass developed by RF 
model using single variable with four growth stages (b). The r2, RMSEP 
and RRMSE represent the coefficient of determination, the prediction 
of root mean square error and relative RMSE, respectively

Fig. 9  Estimation of aboveground biomass (AGB) using random forest (RF) model developed from UAV variables extracted from Red Green Blue 
(RGB) and multispectral images (a). Dashed red line is the 1:1 line. The right figure shows the variable importance estimation of the RF model (b). 
The r2, RMSEP and RRMSE represent the coefficient of determination, the prediction of root mean square error and relative RMSE, respectively
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it was also possible to increase the signal to noise ratio 
for the final estimation. Our results indicated that fus-
ing RGB with multispectral image data did improve the 
prediction results of biomass as shown in Table 2, since 
both crop canopy structural features and diverse spectral 
characteristics with NIR wavelengths related to the crop 
biomass were introduced.

Agronomically, there are two growth phases of rice: 
vegetative and reproductive [55]. The vegetative phase 

refers to the period from germination to the initiation of 
panicle with four stages, including emergence, seedling 
development, tillering and internode elongation [55]. 
The first two growth stages describe the process from 
the emergence of the radicle to the onset of tillering, 
which were generally not considered in the field experi-
ment due to the limited information of crop growth that 
current sensors can obtain. At tillering stage, rice plants 
were too small to present significant growth difference 

Fig. 10  The r2 for nine vegetation indices (VIs) and canopy height derived from crop surface model (Hcsm) versus panicle biomass (PB) (a). 
Estimation of panicle biomass using random forest model developed from UAV variables extracted from Red Green Blue (RGB) and multispectral 
images (b). Dashed red line is the 1:1 line. The right figure shows the variable importance estimation of the RF model (c). The r2, RMSEP and RRMSE 
represent the coefficient of determination, the prediction of root mean square error and relative RMSE, respectively
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among different N applications, which was unsuitable for 
the prediction of biomass. In addition, matched points of 
the images extracted from the top canopy mixed with the 
lower parts of crops or soil background due to the sparse 
structure could also affect the plant height extraction 
from CSMs [11, 56]. When the tillering stage ends, the 
rice plant entered into the jointing stage, which has basi-
cally formed a continuous canopy that could contribute 
to extract height information from the CSM precisely. 
When rice plants entered into the initial heading stage, 
most of the plant nutrients were used to develop panicles, 
and there would be a less change in the plant height while 
the biomass was still accumulated. This indicated that the 
relationship between height and biomass varied with dif-
ferent growth stages, and therefore, it would be difficult 
to determine the biomass by only using the Hcsm when 
rice plants entered into mature stages, which was similar 
to the results shown in Figs. 8b and 10a.

Data analysis is another challenge in remote sensing 
since images obtained from remote sensing includes 
different noises and information is highly corre-
lated. Effective machine learning methods are usually 
required to interpret the data and to develop robust 
prediction models. Taking account of the influence 
of different models which was also reported in the 
previous study [2], the performance of RF model was 

also compared with three regression models, includ-
ing extreme learning machine (ELM), BPNN and least 
square-support vector machine (LS-SVM) (as shown in 
Table  3). In general, all the models generated reason-
able results, and RF showed the best performance of 
the estimations of AGB and PB as well as LS-SVM for 
PB estimation.

The random selection of the training and testing sets 
was also one of the keys to improve the model perfor-
mance. It is thus necessary to determine the stability of 
the prediction model by randomly dividing the data-
set. As shown in Fig.  11a, it was observed that the RF 
model presented a stable performance when estimating 
AGB and PB. Consequently, we could conclude that the 
selected models were relatively reliable to conduct the 
prediction of rice biomass. In addition, the number of 
trees of RF model was crucial for the accuracy and the 
time cost of modeling. As shown in Fig. 11b, the out of 
Bag error reached the minimum and remained stable 
with the number of trees above 50 for AGB and PB esti-
mation, and the prediction for PB developed by RF model 
possessed a smaller out of Bag error.

From mentioned above, the prediction model con-
sisted of various UAV-based variables, while there existed 
large difference of correlations for VIs and Hcsm ver-
sus biomass. Consequently, it was critical to discuss 

Table 2  Estimated aboveground biomass (AGB) and panicle biomass (PB) in rice by random forest (RF) method

The r2, RMSEP and RRMSE represent the coefficient of determination, the prediction of root mean square error and relative RMSE, respectively

Camera type Features Estimation AGB PB

RGB VDVI, NGRDI, VARI, GRRI, VEG, MGRVI, Hcsm r2 0.85 0.48

RMSEP 0.23 0.13

RRMSE 15.57% 16.93%

Multispectral NDSI, SR, MNDSI r2 0.83 0.53

RMSEP 0.25 0.12

RRMSE 17.02% 14.91%

RGB + multispectral VDVI, NGRDI, VARI, GRRI, VEG, MGRVI, NDSI, SR, MNDSI, 
Hcsm

r2 0.90 0.64

RMSEP 0.21 0.11

RRMSE 14.05% 13.74%

Table 3  Estimations of aboveground biomass (AGB) and panicle biomass (PB)

RF, ELM, BPNN and LS-SVM represent random forest, extreme learning machine, back propagation neural network and least square-support vector machine. The r2, 
RMSEP and RRMSE represent the coefficient of determination, the prediction of root mean square error and relative RMSE, respectively

Regression methods AGB PB

r2 RMSEP (kg/m2) RRMSE (%) r2 RMSEP (kg/m2) RRMSE (%)

RF 0.90 0.21 13.56 0.64 0.11 14.14

ELM 0.87 0.22 15.42 0.64 0.11 14.16

BPNN 0.87 0.23 15.73 0.59 0.13 15.85

LS-SVM 0.89 0.21 14.64 0.64 0.11 14.14
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the sensitivity of these variables to the entire prediction 
model, and the analysis result was shown in Fig. 12. The 
input variable with a sensitivity below zero indicated that 
the variable had a positive role in improving the predic-
tion model. There did not exist high sensitivity of vari-
ables that could improve the estimation of AGB, while 
the sensitivity of variables to the PB estimation exhibited 
large difference. It was obvious that the MGRVI pos-
sessed the highest negative sensitivity to the prediction 
model compared with other variables, followed by the 
VARI. Further, new prediction models were developed 
based on the sensitive variables as shown in Fig.  12b, 
c. It was observed that fusion of RGB-VIs and MS-VIs 
improved the prediction results of PB with the combina-
tion of six sensitive variables including VDVI, NGRDI, 
VARI, VEG, NDSI(856, 898) and MNDSI(732, 693, 771) with 
the r2 and RMSEP of 0.68 and 0.10  kg/m2, respectively. 
Moreover, the estimation of AGB was implemented 
with the smaller variable combination of VARI, GRRI, 
MGRVI, SR(951, 949), and Hcsm (Fig. 12c), and the predic-
tion performance was comparable to the result that was 
obtained from RF model with all UAV variables as shown 
in Fig. 9a. It was concluded that variable sensitivity anal-
ysis could simplify the prediction model with achieving 
decent prediction results.

Conclusions
This research demonstrated that a lightweight UAV with 
dual image-frame snapshot cameras has the potential 
for estimating biomass of rice during the entire growth 
stages. The spatial and temporal variations were observed 
in typical VIs (e.g., VDVI and NDSI(796, 679)), as well as 
AGB under different N treatments and growth stages. 
The correlation analysis between Hcsm and Hcanopy was 
conducted to verify the accuracy of the CSMs. We also 
examined the capacity of various UAV variables derived 
from UAV-based RGB and multispectral images to esti-
mate AGB and PB. It was found that the Hcsm extracted 
from RGB images exhibited a high correlation with the 
ground-measured Hcanopy, while it was unsuitable to 
be independently used for biomass assessment of rice 
during the entire growth stages. MS-VIs showed higher 
correlations with AGB and PB than RGB-VIs. Compared 
with individual UAV variables, the performance of RF 
models developed by the fusion of RGB and multispec-
tral image data was substantially improved for estimating 
AGB and PB. Moreover, RF models can be further sim-
plified by sensitivity analysis while without reducing the 
prediction accuracy.

For the future work, it would be useful to improve 
the temporal resolution for the image acquisition of the 
crop in order to develop a continue plant growth model. 
Sophisticated data fusion algorithms and advanced 

Fig. 11  Stabilities of the random forest (RF) model for the estimations of aboveground biomass (AGB) and panicle biomass (PB) with the ten-fold 
cross-validation by using the r2 (a) and the out of Bag error (b)
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machine learning methods would be helpful to improve 
the robustness and accuracy of prediction models for 
crop growth-related trait estimations. The UAV-based 
dual-sensor remote sensing platform will be further used 
to collect more rice growth-related traits in different cul-
tivars and regions to develop a remote sensing database 
for rice.
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