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METHODOLOGY

A spatio temporal spectral framework 
for plant stress phenotyping
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Abstract 

Background:  Recent advances in high throughput phenotyping have made it possible to collect large datasets 
following plant growth and development over time, and those in machine learning have made inferring phenotypic 
plant traits from such datasets possible. However, there remains a dirth of datasets following plant growth under 
stress conditions along with methods for inferring them using only remotely sensed data, especially under a combi-
nation of multiple stress factors such as drought, weeds and nutrient deficiency. Such stress factors and their combi-
nations are commonly encountered during crop production and being able to accurately detect and treat such stress 
conditions in an automated and timely manner can provide a major boost to farm yields with minimal resource input.

Results:  We present a generic framework for remote plant stress phenotyping that consists of a dataset with spatio-
temporal-spectral data following sugarbeet crop growth under optimal, drought, low and surplus nitrogen fertiliza-
tion, and weed stress conditions, along with a machine learning based methodology for systematically inferring these 
stress conditions from the remotely measured data. The dataset contains biweekly color images, infra-red stereo 
image pairs and hyperspectral camera images along with applied treatment parameters and environmental factors 
like temperature and humidity, collected over two months. We present a plant agnostic methodology for deriving 
plant trait indicators such as canopy cover, height, hyperspectral reflectance and vegetation indices along with a 
spectral 3D reconstruction of the plants from the raw data to serve as a benchmark. Additionally, we provide fresh and 
dry weight measurements for both the above (canopy) and below (beet) ground biomass at the end of the growing 
period to serve as indicators of expected yield. We further describe a data driven, machine learning based method 
to infer water, Nitrogen and weed stress using the derived plant trait indicators. We use the plant trait indicators to 
evaluate 8 different classification approaches from which the best classifier achieved a mean cross validation accuracy 
of ≈ 93, 76 and 83% for drought, nitrogen and weed stress severity classification respectively. We also show that our 
multi-modal approach significantly improves classifier performance over using any single modality.

Conclusion:  The presented framework and dataset can serve as a valuable reference for creating and comparing pro-
cessing pipelines which extract plant trait indicators and infer prevalent stress factors from remote sensing data under 
a variety of environments and cropping conditions. These techniques can then be deployed on farm machinery or 
robots enabling automated, precise and timely corrective interventions for maximising yield.
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Introduction
Plants grown in most crop production fields and breed-
ing nurseries suffer from varying types and severities of 
biotic and abiotic stresses such as nutrient deficiency 
and weed pressure which have adverse affects on yields 
[3]. For precise and timely corrective intervention, a sig-
nificant challenge is to determine the types as well as the 
severity levels of the multiple stress conditions present at 
different locations on the field. This information is impor-
tant for field experiments as well as crop management in 
farmers’ fields. Once the type and severity level of each of 
the many possible stress factors can be accurately deter-
mined, corrective treatments such as irrigation, ferti-
lizer and herbicide application can then be applied in a 
precise local manner, targeting only areas where these 
treatments would have a beneficial impact while simulta-
neously adjusting the applied amount to meet the actual 
demand. This concept is widely described as variable rate 
application (VRA) and is linked to increased resource 
use efficiency and economic benefit [4, 5]. Furthermore, 
the recent surge in interest in agricultural robotics [6–8], 
specifically pertaining to precision agriculture applica-
tions [9] make automated, remote sensing based plant 
stress inference, as a key capability of such systems, a 
pertinent challenge.

Today, determination of crop stress factors using vis-
ible symptoms is still often a manual and complex task 
predominantly carried out by trained and experienced 
individuals, such as agronomists, crop scientists and plant 
pathologists, since a variety of stress factors can mani-
fest themselves through similar symptoms. Similar to 
plant breeding, however, the manual process is laborious, 
time-consuming and not always reproducible due to the 
inherently subjective nature of manual ratings, experience 
and interpretation [10]. Advancements in high through-
put phenotyping, remote sensing hardware and machine 
learning software have now made remote sensing based 
plant stress inference computationally tractable [11]. State 
of the art machine learning methods [12, 13] can employ 
large amounts of multi-modal data to produce accurate 
classification and regression models that can be used for 
such inference tasks. There exist a variety of readily avail-
able, rich, open-source software libraries [14–16] with 
which, given suitable data, one can quickly iterate and 
determine the most suitable machine learning algorithm 
and create an accurate model for a given inference task. 
With the proliferation of these automated high through-
put plant phenotyping tools, a large number of recent 
studies have been focused on studying plant growth in 
relation to genotype variety [17, 18] and under stress using 
a variety of sensors and their combinations [11]. Studies 
on plant stress include those on drought stress [19, 20], 
heat stress [21], salt stress [22, 23], nutrient deficiency [24, 

25] and biotic stress [10, 12, 13, 26–28]. Sensor modali-
ties used in these studies include colour, hyperspectral, 
thermal and fluorescence imaging. However, most stud-
ies typically include primarily one sensor modality [11, 
29] and focuses on one out of the many aforementioned 
stress conditions [11, 30], which often occur simultane-
ously on real fields. These stress studies also typically 
only look at individual time points during plant develop-
ment [11]. Studies covering the temporal range of plant 
growth may allow for better characterization of dynamic 
plant response to stress. There also remains a dirth of 
open, high quality, multi-modal datasets which can be 
used along with the powerful machine learning software 
libraries to develop, compare and benchmark methods for 
automated plant stress inference.

To address these issues, we studied plant growth under 
different severities of 2 commonly occurring abiotic stress 
conditions-drought and nitrogen availability and one biotic 
stress-weeds. We imaged the plants subjected to multiple 
combinations of these stress conditions with color, stereo 
infrared and narrow-band hyperspectral cameras providing 
bi-weekly multi-modal information on the growth of sugar-
beet plants under these stress conditions. We show how such 
a dataset can serve as an test bench for rapidly developing and 
evaluating classification models which determine the presence 
and severity of different stress factors using remotely sensed 
data. The primary contributions of this work are (Fig. 1):

•	 A open, publicly available dataset [1] from a two 
month long experiment consisting of biweekly RGB, 
stereo and hyperspectral imagery for sugar beet 
plants grown in a greenhouse subject to known 
severity levels of water, nitrogen and weed stress.

•	 Reference measurements including environmental 
temperature and humidity logs, along with applied 
treatment regimens creating the different stress con-
ditions, SPAD measurements and harvested beet 
biomass after the experiment enabling the systematic 
study of the effects of different stress factors on plant 
development and yield.

•	 Generic, plant agnostic pre and post processing soft-
ware [2] for the raw imagery, providing functionality 
for spectral point cloud generation and extraction of 
a variety of remote phenotypic plant trait indicators 
such as canopy cover, height and spectral vegeta-
tion indices along with an analysis of the impact of 
the different stress factors on the extracted plant trait 
indicators and biomass production.

•	 A machine learning based methodology, using the 
extracted plant trait indicators for simultaneous 
stress severity level classification of drought, nitrogen 
and weed stress, released as part of the open source 
software suite [2].
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With this methodology, we show that with spatio-tem-
poral spectral data it becomes possible to create accurate 
classification models for a variety of useful tasks, spe-
cifically, the simultaneous detection of the presence and 
severity of drought, nitrogen and weed stress. The same 
methodology can also be used to collect similar datasets 
for other plant species, which can then be used with the 
provided software suite to conveniently build similar 
models for a variety of different crops. These validated 
models can then be augmented with data from limited, 
less expensive field trials and deployed on hand-held sen-
sor setups [31], Unmanned Aerial Vehicles (UAVs), smart 
tractors and Unmanned Ground Vehicles (UGVs) for use 
in plant breeding and sustainable crop production [6, 7].

Materials and methods
Plant cultivation and stress treatments
The experiment was conducted at the ETH research sta-
tion for plant sciences in Lindau Eschikon, Switzerland. The 
sugar beet plants (Beta vulgaris) of the variety “Samuela” 
(KWS Suisse SA, Basel, Switzerland) were grown in a green-
house chamber under controlled climate conditions—24/12 
(◦C) Day/Night temperature, a relative humidity of 50–80 
percent (average 60%), and additional light using Eye Clean 
Arc MT 400DL/BH lamps with a color temperature of 

6400  K when ambient radiation was below 25 klux. The 
achieved radiation intensity ranged approximately between 
300 and 680  µmol/cm2s . The radiation angle between 
the cultivation light source and the plants was nadir ±20◦ . 
Above 45 klux the shading screen was closed. For the exper-
iment, 6 sugar beet plants each were sown on 18.01.2018 
in 30 cultivation boxes of size 40 × 20 × 15.5 cm using a 
peat substrate (Klasmann substrate 1 and 2, Klasmann–
Deilmann GmbH, Geeste, Germany). The plant boxes were 
placed on tables about 2 m from the artificial light sources. 
Regular watering was volume controlled and applied manu-
ally according to necessity two to three times a week. The 
experiment was conducted until 29.03.2018 when the plants 
were manually harvested.

In addition to the control group of plant cultivation 
boxes which were provided with sufficient nutrients and 
were not subjected to any weed pressure, we established 
a mix of three different stresses relevant for field crops 
in general and for sugar beet production in particular—
Nitrogen (N) availability, weed pressure and water sup-
ply listed in Table  1. Different severity levels for each 
of these three stress types and their combinations were 
established which span the range of expected conditions 
which may be observed on the field.

Fig. 1  An overview of the framework described in this paper. This work presents a methodology for building and benchmarking machine learning 
models that can infer plant stress using remotely sensed, multi-modal data. Our framework consists of a spatio-temporal spectral dataset, image 
pre-processing and classification algorithms along with reference plant trait measurements and stress type and severity level labels to serve as 
ground truth. Our generic, plant agnostic pipeline starts with raw input imagery from RGB, stereo infrared (IR) and multispectral cameras, followed 
by pre-processing steps of vegetation segmentation, 3D reconstruction and reflectance normalization to transform this raw data into plant trait 
indicators such as canopy cover, average height and normalized narrow-band reflectances over time. We then train machine learning models which 
can use these indicators to predict severity levels for Water, Nitrogen and Weed stress simultaneously. We show the effectiveness of our framework 
by using the trained models to accurately predict stress severity levels on novel test data. We release the collected dataset [1] and accompanying 
pre-processing and classification software [2] under an open source license for the broader plant research community
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Nitrogen stress
For plant N availability, three levels: low, medium and high 
were established, targeting a deficient, sufficient and sur-
plus N supply, simulating an N availability equivalent of 
20, 40 and 80 kg/ha on the field respectively. These N sup-
ply values were chosen based on literature [6, 32, 33], own 
experience and local farmers’ best management practices. 
The low N supply was achieved using the Klasmann sub-
strate 1 which contains minor amounts of N, sufficient only 
for initial plant growth. The medium N level was achieved 
using the Klasman substrate two containing amounts of N 
sufficient for 1–2 months of plant growth and the high level 
received additional N by means of fertigation once a week 
from 14.02.2018 onwards using 0.2 percent Wuxal Profi 
(Syngenta Agro AG, Dielsdorf, Switzerland) [34].

Weed stress
To establish weed pressure we used monocotyle and 
dicotyl weeds, shown in Fig. 2. As monocotyle weeds we 

used three grass species—Poa pratensis L., Lolium per-
enne L. and Festuca rubra agg. L., in variable combinations 
as derived from the mulch meadow grass seed mixture 
provided by Ufa Seeds (fenaco, Bern, Switzerland) [35]. As 
dicot species we used locally collected Stellaria media (L.) 
Vill. (common chickweed). We established three levels of 
weed density: no weeds, medium weed pressure contain-
ing 2–4 chickweeds (without grass) and a high weed pres-
sure containing 4–8 chickweed plants and 2–4 grasses 
totalling in 7–12 weed plants per cultivation box. The 
weed pressure classes medium and high were established 
according to experience from previous field and green-
house experiments. Additionally, we established boxes of 
single and mixed weed species without sugar beet which 
may be useful for classifier training purposes.

Water (drought) stress
We established two severity levels of drought stress. To 
the water limited (drying) plant boxes, we provided an 

Table 1  Overview of the experimental treatments

30 boxes were monitored during the experiment consisting of 3 repetitions of a variety of treatments representing a range of stress factors and their severity levels 
commonly observed on the field

Treatment # of Boxes Soil type Water input Nitrogen input Weed pressure

Low N 3 1 Sufficient Low None

Med N 3 2 Sufficient Medium None

High N 3 2 Sufficient High None

Med weeds 3 2 Sufficient High Medium

High weeds 3 2 Sufficient High High

Dry 3 2 Limited Medium None

Weed only dicot 1 2 Sufficient High High

Weed only monocot 1 2 Sufficient High High

Weed only mixed 1 2 Sufficient High High

Low N-med weed 3 1 Sufficient Low Medium

Drying-med N-high weed 3 2 Limited Medium High

Drying-low N 3 1 Limited Low None

Fig. 2  Images of monocotyle and dicotyl weeds used to create weed stress during the experiment



Page 5 of 18Khanna et al. Plant Methods           (2019) 15:13 

initially sufficient water supply which was followed by a 
drought phase after germination. The well watered plant 
boxes were kept well irrigated by regular subsequent re-
watering every 2–3 days. A detailed timeline of all treat-
ments is available with the dataset [1]. For the limited 
water supply treatment irrigation was withheld starting 
from 14.02.2018 and regular watering started again at 
12.03.2018. The boxes were weighed at the beginning and 
on every measurement date during the experiment to 
provide a reference measurement directly corresponding 
to soil moisture content. A sample plot of box weights for 
the sufficient and limited water supply treatments can be 
seen in Fig. 3.

An overview of the different stress treatments applied 
to the plant cultivation boxes under study during the 
experiment is provided in Table 1.

Imaging setup
The measurement setup used to collect the dataset con-
sisting of biweekly measurements after germination of 
the 30 boxes planted with sugarbeet and/or weeds and 
the treatments described above is depicted in Fig.  4. 
Imaging is done using two sensors, the Intel®Realsense 
ZR300 camera and the Ximea MQ022HG-IM-SM5X5-
NIR Snapshot Hyperspectral camera. These sensors 
were chosen since they satisfy the criteria of being both 
light weight and low power while being able to provide 
accurate multi-modal data under outdoor conditions. 
This makes them ideally suited for deployment on the 
field onboard hand-held sensors, smart tractors, UAVs 
and UGVs alike. Both the sensors were mounted on a 
frame constructed with item profiles and their locations 

and field of views optimized to overlap while imaging 
the boxes as depicted in the schematic. A reflectance 
panel with a homogeneous reflectance of 0.6 over the 
400–1000 nm wavelengths was placed within the field 
of view of both sensors for radiometric correction of 
the hyperspectral data. In addition to the plant boxes, 
an additional box, depicted in Fig. 5, containing a x-rite 
ColorChecker®  chart and a Caltag [36] marker was 
imaged on every measurement date in order to allow for 
radiometric and geometric recalibration of the cameras 
if and when required. The plant boxes were placed such 
that the soil surface was approximately 1 m below the 
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Fig. 3  Area plots of box weights over time for water limited and well 
watered boxes used for creating the two levels of water stress during 
the experiment. The reduction in box weight in the water limited 
treatment from 28 days after sowing (DAS) onwards reflects the 
reduced soil moisture causing drought stress

Fig. 4  Schematic of the experimental setup. The Intel ZR300 (blue) 
and the Ximea Hyperspectral camera (gray) were the primary 
imaging sensors used for the remote measurements. The two sensors 
were mounted on a frame constructed using item® profiles. Two 
halogen lamps were mounted on either side of the sensors to ensure 
sufficient illumination in the visible and near infrared range of the 
cameras. A reference reflectance panel was placed in the field of view 
of both cameras for each image

Fig. 5  A reference cultivation box with a x-rite ColourChecker® chart 
and a CALTag marker, for geometric and radiometric calibration was 
imaged on each measurement date. This enriches the dataset by 
allowing for the possibility of recalibration of both the geometric and 
radiometric parameters for the two sensors
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cameras resulting in a raw image ground sampling dis-
tance of 0.72 mm/pixel for the color camera and 1.7 mm/
pixel for the hyperspectral camera.1 Custom software 
drivers were developed using the manufacturer provided 
software development kits (SDKs) for the cameras in the 
setup to enable simultaneous triggering of all cameras 
during image acquisition.

Sensors
Intel Realsense ZR300
The Intel®  RealSense™  ZR300 camera [37] consists of a 
2 MP rolling shutter color camera, an infrared camera 
pair for depth imaging up to 3.5m, a 6 degree of freedom 
inertial measurement unit, and a fisheye optical sensor in 
a single module with a USB 3.0 interface for both power 
and data transfer. We used the kalibr.2 [38] framework 
for estimating the cameras’ intrinsic parameters-focal 
length, principal point and radial-tangential distortion 
coefficients. The kalibr framework was also used for 
extrinsically calibrating the cameras w.r.t each other.

Ximea snapshot hyperspectral camera
The Ximea MQ022HG-IM-SM5X5-Near Infra-red (NIR) 
Snapshot Hyperspectral (HS) Camera [39] (Fig. 6a) con-
sists of a 2 MP global shutter CMOS imaging sensor 
with Fabry-Perot interferometric spectral filters placed 
directly on top of every image pixel. The camera spectral 
range consists of 25 narrow-band channels from 600 to 
950 nm. This implies a 409 × 216 pixel resolution image 
for each of the 25 channels of the camera (without inter-
polation). The camera also provides a USB 3.0 interface 
for power and data transfer. Images may be acquired at 

up to 170 frames/second. An IR short pass filter which 
blocks wavelengths above 875 nm was mounted on top 
of the camera lens resulting in the sensor response curve 
shown in Fig. 6b for the 25 camera channels. The expo-
sure time of the camera was adjusted to avoid saturation 
and fixed at a value of 50 ms throughout the measure-
ments. The camera and lens system was geometrically 
calibrated using the kalibr framework and radiometri-
cally calibrated using the method described in [40].

Dataset description and reference traits
A total of 1984 images were captured (31 boxes  ×  16 
dates × (1 RGB + 2 IR + 1 HS)) along with temperature 
and humidity data from the greenhouse control system 
every 12 min for the duration of the experiment. As a 
reference measurement to track plant N status we used 
a chlorophyll meter SPAD-502PLUS [41] reflecting the 
chlorophyll content of a leaf which is strongly related 
to the N supply of a plant. Weekly SPAD measurements 
for each cultivation box were conducted after the leaves 
grew to a measurable size, by averaging measurements 
from the youngest fully developed leaf of each of the six 
plants per box which. The means and standard deviations 
of the SPAD values measured over three replications of 
each of the three different Nitrogen treatments is plot-
ted in Fig. 7. To track soil moisture content, box weights 
(water, plus substrate, plus plant biomass) were measured 
along with the imaging measurements. Following the 
harvest on the 29.03.2018, above and below ground plant 
biomass was weighed for fresh weight (FW) directly after 
harvest and for dry weight (DW) after drying at 60◦C 
until it achieved a constant weight in a drying oven.

Fig. 6  Ximea snapshot hyperspectral Camera MQ022HG-IM-SM5X5-NIR with Pentax C61215TH 12 mm lens (a) and manufacturer specified spectral 
response of the hyperspectral sensor (b)

1  Note that since the hyperspectral camera has a 5 × 5 filter pattern, the GSD 
per band without interpolation is 5 times higher, i.e 8.5 mm/pixel.
2  Available at https​://githu​b.com/ethz-asl/kalib​r.

https://github.com/ethz-asl/kalibr
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Data pre‑processing and plant trait extraction
This section describes the data pre-processing algorithms 
and methods for extracting plant trait indicators from the 
collected dataset. Documented MATLAB® code with the 
pre- and post-processing methodology described in this 
section is available online [2].

Region of interest(ROI)/box detection
In order to facilitate extraction of relevant parts of the 
images and include only the foreground, i.e the boxes 
containing the plant and soil material, we provide a semi 

automated work flow for detecting box boundaries in the 
RGB images. We rely on observing similarly colored gray 
points on the edges of the box and then use one of the 
two procedures described below:

1.	 Fit the box boundaries to the most prominent 
detected edges, i.e locations of highest edge point 
density. This method is relatively robust to outliers, 
however works well only if lots of points on the box 
edges are observable in the image, which is only the 
case for early growth stages with low canopy cover.

2.	 Span a rectangle of maximum size, that does not con-
tain any of the edge points. This method only needs 
few (e.g. 2 per boundary) points in order to detect 
a rectangle, and thus works well even in cases of 
extreme coverage by the canopy. However, it is sensi-
tive to outliers detected within the box (e.g plant or 
soil pixels detected as edges since they appear “gray” 
in the image).

The automated detection candidates are then provided to 
the user for feedback through a pop-up window (Fig. 8), 
where the user can drag the box outlines to the correct 
box edges (Fig.  8b). Once the box areas are detected in 
each of the color images, they are saved for further pro-
cessing steps. We release our annotations based on this 
work flow for the pixel positions of the box corners for 
each image along with the dataset.

Reflectance computation
Radiometric calibration for the hyperspectral camera is 
performed using the method described in [40]. Further-
more, a plate of uniform reflectance across the wave-
length range of interest is placed in the measurement 
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Fig. 7  Means and standard deviations of SPAD measurement 
values obtained over three replications of each of the three different 
Nitrogen treatment regimens. One can see that the plant N 
availability which correlates strongly with the SPAD values is lower 
in the deficient (Low N input) case, however, similar for the medium 
and high N input levels. This indicates that the plants’ Nitrogen 
requirement in these two cases is satisfied, hence there is little need 
for the additional fertilizer present in the high N treatment

Fig. 8  User interface for semi-automated box (ROI) detection. The user is provided an interface to verify the automated detection (a) and is able 
to modify it in cases where the automated detection is not satisfactory (b). The cyan rectangle in b depicts the user corrected ROI actually used for 
further analysis
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setup to provide a normalization factor under varying 
illumination conditions. The reflectance normalization 
factors, freflectance , are estimated using the reflectance 
plate in every image with known constant reflectance of 
R = 0.6. Since the plate is fixed with respect to the cam-
eras, its location in the images is always the same. The 
reflectance factors are defined as the ratio of point reflec-
tance to its observed intensity

Since the camera exposure time and white balance is set 
to utilize the full 10 bit range of digital number values 
provided by the camera, the pixel intensity values do not 
directly correspond to the point reflectance. Assuming 
uniform illumination over the area of interest, a robust 
reflectance factor can be estimated from a region of 
known reflectance, i.e. the reflectance panel, using

independently for each channel (wavelength band). 
Occlusions of the reflectance panel, however, remain 
a potential source of error. To overcome errors due to 
occlusion, at first, occlusions of the reflectance panel are 
detected in the RGB image, since it is easier to find val-
ues deviating from the expected brightness. If the reflec-
tance panel region contains any pixels, darker than a 
certain threshold (0.4 in this case), the image is marked 
as occluded. The reflectance factors are then computed 
for all non-occluded images in the dataset and all image 
types (RGB, IR and HS). The reflectance factors for 
occluded images are approximated by averaging the first 
non-occluded images taken before and after the image of 
interest. If there are no non-occluded images before, only 
the following image is considered. In the worst case, this 
procedure leads to assuming the reflectance factor from 
the reference box image (Fig.  5), where the reflectance 
panel is always fully visible.

Spectral 3D point cloud generation
We combine the information from the color, stereo-infra-
red and hyperspectral images to create spectral point 
clouds for each image set. This data structure is funda-
mental to all further processing steps including plant trait 
indicator computation and classification. The spectral 3D 
point cloud stores information about each box on each 
measurement date in the form of a point cloud, where 
each point is defined by its 3D cartesian coordinates w.r.t 
the left IR camera optical center, RGB colors and spec-
tral reflectance data. The point clouds are constructed as 
follows:

(1)freflectance =
Rpixel

Ipixel

(2)freflectance ≈ mean
pixel∈Region

(

Rpixel

Ipixel

)

1.	 The two infra-red images are used to extract the 3D 
structure of the scene in the form of a point cloud using 
the stereo processing approach described in [42].

2.	 Each 3D point in the above point cloud is then asso-
ciated to a pixel in the color image by projecting 
its 3D coordinates into the color camera using the 
extrinsic camera calibration parameters [43]. The 
RGB values of the corresponding pixel can then be 
associated with the 3D point, producing colored 
point clouds, such as the ones shown in Fig. 9.

3.	 A similar procedure is followed to project the 3D 
point into the hyperspectral image, thereby associ-
ating the corresponding 25 narrow band reflectance 
values with this 3D point. These reflectance values 
can then be used to produce phenotyping related 
index maps (e.g NDVI, NDRE), such as those shown 
in Fig. 10, which can be used to follow the develop-
ment of physiology and chemistry (e.g chlorophyll 
levels [44]) within the plants over time.

Vegetation segmentation
Vegetation segmentation is an important pre-process-
ing step which effects all derived plant trait indicators. 
In contrast to previous popular approaches where seg-
mentation is performed using only one modality such as 
thresholding in some colour space [45, 46] or based on 
some index [47], we perform robust segmentation using 
a combination of color, hyperspectral and spatial cues. 
Empirically determined thresholding criteria for each 
of the three sensing modalities were found to provide 
excellent segmentation quality over the entire range of 
illumination conditions, growth stages and plant species 
present in the dataset. All points matching one of the fol-
lowing criteria were classified as vegetation:

The Excess Green Index (Eq.  3) is incorporating infor-
mation from the color images, where R, G and B are the 
reflectance of the color channels. Equation  4 includes 
information from the hyperspectral images by compar-
ing infrared to red reflectance. Equation  5 adds height 
information to include points which may be incorrectly 
classified by the above two criteria due to shadows. The 
three modalities are fused in order to include sufficient 
information from all sources into the segmentation. This 
process is depicted in Fig. 11.

(3)2G − R− B ≥ 0.08

(4)R857nm − R686nm ≥ 0.35

(5)Height ≥ 0.02
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pipeline. These top down rendered views depict the structural change between the plants exposed to different stress treatments over time. It can 
be seen from these rendered views that discerning differences between the different treatments is difficult using only RGB style images, hence 
a multi-modal approach is desirable, providing a rich variety of data sources to create indicators encompassing visual, geometric and spectral 
information

NDVI
Control Low N High Weed Low Water

14

36

25

46
Days
after
sowing

Treatment
Fig. 10  Calibrated NDVI images for the same dates and treatments as Fig. 9. The near infrared (NIR) and red (R) wavelengths used correspond to the 
803 nm and 670 nm bands. The availability of 25 narrow-band reflectances within the dataset, enables the possibility to systematically study plant 
vitality and growth over time under the different stress factor-severity level combinations and their effect on many multi-channel vegetation indices
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Remote trait indicator based stress severity classification
Classifier training methodology
The provided dataset contains a total 16 measurement 
dates over the growing period for each of the 30 boxes 
with different treatments listed in Table 1. Since the first 
measurement date (day of sowing), does not contain any 
germinated plants, it was removed for this analysis. The 
remaining data was split into a training and test set:- all 
measurements pertaining to 6 randomly selected boxes 
(20% of the total data) were not available to any of the 
classifiers during training, in order to serve as an inde-
pendent and unbiased test set.

In order to evaluate the utility of the dataset with 
respect to automated stress inference, we trained clas-
sification models using a variety of commonly used 
machine learning techniques using the spatio-temporal 
spectral feature set listed in Table  2 created from the 
indicator-statistic pairs described in section "Tem-
poral evolution of plant trait indicators". Each feature 
(e.g. Height, Canopy cover, reflectance) was standard-
ized by scaling it to zero mean and unit variance across 
the training set. With the time parameter appended, in 
units of days after sowing (DAS), to the 54 indicator-
statistic pairs after scaling, the input to the models were 
55 dimensional vectors, with components enumer-
ated in Table 2. Given these input vectors, the classifier 
models were tasked with predicting the level of sever-
ity for each of the three stress factors. The different lev-
els for each of the three stress factors, i.e the possible 
output classes of the classification model are listed in 

Table 3. Separate classification models were trained for 
each of the 3 stress factors.

We employed five-fold cross-validation for training the 
classification models. In k-fold cross-validation, the train-
ing dataset is randomly separated into k equally sized 
folds or groups. From the k groups, a single group is used 
as the validation set for testing the model predictions by 
comparing them to their true values, and the remaining 
k − 1 groups are used as the training data. The process 
is then repeated k times, with each of the k groups used 
once as the validation set. The k results can then be aver-
aged to obtain a mean cross validation accuracy. Cross 
validation allows one to assess the general applicability 
of a classification model, by preventing over-fitting on 
the training data. Furthermore, our classification scheme 
warrants non-uniform misclassification costs, since mis-
classifying a high nitrogen or weed stress sample as a 
medium one is more appropriate than misclassifying it as 
a low one. To take this factor into account we define mis-
classification cost matrices, as shown in Table  4 for the 
Nitrogen and Weed stress classifiers.

Classifier performance evaluation
We evaluated several machine learning methods, listed in 
Table 5 in order to train the classifiers which learn a func-
tion (mapping) from the input feature vectors (Table 2) to 
the output class (Table 3), i.e predict the level of severity 
for each of the three stress factors under study using the 
plant trait indicators extracted from the images. We used 

Colour criterion Colour thresh-
olded

 Infrared criterion Infrared thresh-
olded

Final segmentation

a b

c d

e

Fig. 11  Visualization of the segmentation process. In a and c the criteria from Eqs. 3 and 4 are depicted using a jet colour map, b and d show the 
corresponding thresholded images. e contains the final combined segmentation projected onto a colour image
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the confusion matrix [48] to evaluate and compare the 
performance of the different classification methods. The 
entry in the ith row and jth column of a classifier’s con-
fusion matrix, CMij contains the total number of obser-
vations for which the actual class is i and the predicted 
class is j. The accuracy for each of the methods quantifies 
the fraction of the training dataset which is correctly pre-
dicted by the trained model. The mean misclassification 
cost can be computed as

where CMij and wij are the corresponding entries in the 
confusion and misclassification cost matrices respec-
tively and N is the total number of observations or pre-
dictions. As seen from Table  5, several classifiers show 
high accuracy when trained with the entire set of multi-
modal features. From this analysis, the SVM classifier 
with a quadratic kernel shows the highest cross valida-
tion and test set accuracy from the tested methods, indi-
cating good generalization. The confusion matrices for 
the trained SVM models on the test dataset are shown 
in Fig. 12. This model is quick to train and multiple hun-
dred predictions can run in real time on a robot or high 
throughput phenotyping system if required. Please note 
the main objective of this section is to present a baseline 
based on data driven approaches, and a thorough com-
parison of machine learning approaches is beyond the 
focus of our evaluations.

Results and analysis
Effect of stress on yield
In order to study the impact of the different treatments 
on beet yield, the beet roots were extracted and weighed 

(6)cost =
1

N

∑

i

∑

j

CMijwij
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Fig. 12  Confusion matrices for the SVM classifier models on the test dataset for a Water Input, b Nitrogen availability and c Weed pressure. The 
rows correspond to the true target class and the columns to the predicted class labels. The entries of the matrix show the percentage accuracy for 
each target-prediction combination followed by the number of query observations will fall into that category

Table 2  Indicator-statistic pairs used as  features 
for  training the  machine learning based classification 
models

Indicator Statistic

Canopy cover Mean

Volumetric estimate Mean

Height Mean and variance

MS* (all 25 channels) Mean and variance

Days after sowing –

Table 3  Stress factor-level pairs listing the possible output 
classes for this dataset

For an ideal classifier, given input features extracted from a plant box, the output 
classes should correspond to the provided treatments listed in Table 1. For 
the water stress classifier, the correct target label was “Sufficient” for all boxes 
till 28 days after sowing and “Drying” for the boxes with limited water supply 
afterwards (Fig. 3)

Stress factor Severity level

Water input Sufficient, limited

Nitrogen input Low, medium, high

Weed pressure None, medium, high

Table 4  Non uniform misclassification cost matrix 
for the nitrogen and weed stress classifiers

Predicted class

Low/none Medium High

Actual class

Low/none 0 1 2

Medium 1 0 1

High 2 1 0
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at the completion of the experiment. Additionally, the 
dataset also contains dry and fresh weights of the above 
ground biomass (leaf material). The three investigated 
stresses, N deficiency, weed pressure and water limita-
tion had varying impact on the total biomass production 
(Fig. 13). The fresh biomass weight at the conclusion of 
the experiment i.e the sum of both above (shoot) and 
below (root) ground biomass is used here as a proxy for 
the yield potential since the plants did not reach matu-
rity. Figure 13a–c depict the variation in yield as a func-
tion of the three stress factors-water, nitrogen and weeds, 
respectively, while the levels of the other stress factors 
was kept constant for each case.

One can see the adverse impact of drought stress on 
yield in Fig. 13a where the average fresh biomass weight 
per box drops from about 2000g to 700g, with sufficient 
Nitrogen availability and no weeds present. This is in 
accordance with the expectation that water limitation 
reduces biomass accumulation in sugar beet [56, 57]. 
From Fig.  13b we can observe that the medium level 
N treatment was found to be sufficient for the sugar 
beet growth during the two months of the experiment 
reflected by the increase in biomass production from 
approximately 900g to above 2000g, for the low and 
medium N fertilization treatment, respectively. On the 
other hand, additional N input supplied in the High N 
availability treatment had little yield increasing impact. 
This represents an optimal N supply level, which in 
field sugar beet production is very much related to 
extractable sugar yield, and is compromised by both too 
low and to high N fertilization levels [6, 32, 58]. Low 

weed pressure might be tolerated by a sugar beet crop 
but high weed pressure as created in this experiment 
reduces the sugar beet biomass production (Fig.  13c). 
Under field conditions such competition with weeds 
has also been reported to have lead to reduced sugar 
yield [59, 60]. One insight that can be derived from 
these stress reaction plots (Fig.  13a–c) is that under 
the stress conditions established during this experiment, 
drought stress had the most severe impact on fresh bio-
mass yield, followed by Nitrogen availability and then 
weed pressure.

Figure 13d clearly shows that that under realistic field 
conditions, stresses occurring simultaneously interact 
with each other and have a combined effect on bio-
mass production and yield. These interactions make 
the determination of the individual stresses and their 
severities using remotely sensed data more complex. 
However, since different stresses affect yield by differ-
ent amounts, having data about how each stress factor 
affects yield independently along with the impact of 
certain combinations should make this task computa-
tionally tractable.

Temporal evolution of plant trait indicators
We refer to plant trait indicators as numeric values, rep-
resenting a spatial or spectral property of plants associ-
ated with an image patch, in this case of the box. They 
are extracted from the calibrated spectral point clouds 
by taking a statistical measure, such as the mean or var-
iance of the quantity of interest over all points labeled 
as vegetation. Examples of useful plant trait indicators 

Table 5  Mean cross validation accuracies for different machine learning algorithms on the dataset [2]

For detailed descriptions of the machine learning methods evaluated we refer the reader to the cited papers. The SVM classifier showed the best overall performance 
from the tested methods, on both the training and test data, indicating good generalization to novel inputs. The implementations for the classification methods 
provided by the MATLAB® Statistics and Machine Learning Toolbox were used. The specific parameters for each of the classifiers can be found within the 
MATLAB® functions provided in the accompanying software suite
a Linear discriminant analysis
b Support vector machine
c k−nearest neighbor
d Randomly undersampled boosted trees

Method Cross validated training accuracy Test set accuracy

Water Nitrogen Weeds Water Nitrogen Weeds

Decision trees [49] 93.39 63.66 60.36 86.90 47.62 65.48

LDAa [50] 96.10 68.47 75.68 94.05 78.57 75.00

SVM
b [51] 93.09 75.68 83.18 95.24 80.95 77.38

KNNc [52] 92.79 62.16 69.97 92.86 55.95 65.48

BaggedTrees [53] 94.89 67.57 71.47 91.67 63.10 69.05

Subspace discriminant [54] 94.59 70.57 75.08 94.05 75.00 72.62

Subspace KNN [54] 93.39 60.66 64.26 97.62 66.67 72.62

RUSBoostedTrees
d [55] 95.20 69.37 69.37 97.62 63.10 71.43
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would be the total canopy cover, average height and 
normalized narrow-band reflectances. Based on the 
vegetation segmentation, described in section "Data 
pre-processing and plant trait extraction", a set of plant 
trait indicator values, listed in Table 6 is extracted from 
the spectral point clouds. These plant trait indicators 
can be used to monitor the development of the plants 
and observe the effect of the different stresses on multi-
ple aspects of plant growth (Fig. 14). A variety of effects 
may be observed from the plots, such as:

•	 the canopy cover for weed infested boxes is signifi-
cantly higher than the boxes with no weeds and the 
vegetation canopy closes earlier

•	 drought stress has a significant affect on plant 
height. The affect of stopping regular water supply 
at 28 DAS becomes apparent in the average plant 
curve at 36 DAS.

•	 the NIR reflectance of the boxes under Nitrogen 
stress is slightly reduced compared to the control 
group.

Since we have shown that the three stress factors affect 
yield (section "Effect of stress on yield"), one of the goals 
of remote stress phenotyping is to find remotely detect-
able plant trait indicators which allow the differentiation 
of these stress factors. The presented plots indicate that 
indeed such indicators or indicator combinations may be 
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Fig. 13  Violin plots visualizing the effect of the different stress factors: a water limitation, b N availability, c weed pressure and d their interaction, on 
fresh biomass weight measured at the conclusion of the experiment. The bold line in the middle of each lobe represents the mean, the white dot is 
the median and the lobe extents along the Y-axes are the 95% confidence intervals for the data corresponding to each lobe. The total fresh biomass 
weight including both above and below ground biomass serves as a good proxy for plant performance, stress reaction and subsequently for yield 
potential. The interaction plot d shows the relative impact of the three different stress types. Under the conditions established during this study, 
water limitation has the highest impact on yield, followed by Nitrogen availability and then weed pressure
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found using a combination of spatial, spectral and tem-
poral cues. The identification of such plant trait indica-
tors can be supported by using a variety of statistics 
from the point clouds, such as those listed in Table 7. An 
Analysis of Variance (ANOVA) procedure may be used to 
detect statistically significant differences, corresponding 
to the stress treatments, within these remote trait indi-
cators. Such analyses are made simple and straightfor-
ward through the provided dataset and accompanying 
software and may be used to find promising indicators 
and their combinations which are indicative of particu-
lar stress factors, which are not only limited to this data-
set but generalize to the field as well. Plant growth is 
typically faster under greenhouse conditions and, higher 
plant density in the boxes than in the field results in com-
paratively faster canopy closure. However, in field trials, 
it is typically difficult and expensive to accurately control 
soil conditions such as N availability and water content. 
The greenhouse dataset, with defined nutrient and water 
inputs, provides an ideal test bed to establish and validate 
frameworks for determining probable causes of stress 
from remotely measured data using statistical machine 
learning tools. Such a framework can then be deployed 
on the field after data augmentation from conducting 
much smaller and hence inexpensive field trials.

Impact of input feature vector modality on classifier 
performance
Figure  15 shows the impact of input feature modal-
ity on classification performance for a SVM classifier. 
The RGB only classifier was trained using features that 

can be extracted using only the color imagery (i.e Can-
opy Cover), the RGB+3D classifier using features from 
color and stereo infrared imagery (i.e Canopy Cover, 
Height, Volume), the Hyperspectral only classifier was 
trained on data from the hyperspectral camera (i.e the 
25 HS reflectances), the RGB+3D+Hyperspectral clas-
sifier using features from all of the above modalities and 
the RGB+3D+Hyperspectral+Time classifier also had 
access to the time (in DAS) for each measurement. It can 
be observed that the spatio-temporal spectral combina-
tion of color imagery, 3D data, hyperspectral reflectances 
and time outperform the individual modalities, for each 
of the stress factors.

Conclusions and outlook
In this work we have provided a multi modal framework 
for systematically studying the effect of drought, nitrogen 
deficiency and weed stress on plant growth. Our frame-
work includes a dataset containing remotely sensed data 
measured in a greenhouse, which may also be measured 
with an unmanned aerial or ground vehicle on the field 
as well as associated standard reference measurements 
which are typically manually measured for evaluation 
and benchmarking. Furthermore, we included a pre- 
and post-processing software framework along with the 
dataset which includes functionality for radiometric nor-
malization, 3D point cloud extraction, plant trait extrac-
tion and machine learning based stress severity level 
classification. We showed an effective, generic and plant 
agnostic methodology for feature extraction and machine 
learning based stress severity level classification from 
multi-modal remotely sensed data, which can be readily 

Table 6  Selected plant trait indicators which may be computed using the collected dataset and provided post processing 
software

Due to the objective oriented nature of the software suite and comprehensive spatio-temporal nature of the data provided, users of the dataset can readily 
implement additional indicators of interest such as multichannel vegetation indices, temporal indicators e.g rate of growth for further analysis

Acronym Full name (unit) Description

Height Height (m) Height (=Z coordinate) above the soil reference height. Negative values are ignored

NDVI Normalized difference vegetation index (−) Defined as (NIR − R)/(NIR + R) , where NIR is the near infrared (803 nm)and R is the red (670 
nm) reflectance respectively [61]

HS* Hyperspectral reflectance (−) Hyperspectral reflectance, where * ∈ {1, . . . , 25} indicates the spectral band index

EGI Excess green index (−) Defined as ( 2G − R − B ), based on the color reflectance [62]

NEGI Normalized excess green index (−) EGI divided by (R + G + B)/3

NDRI Normalized difference red index (−) Defined as (G − R)/(G + R) , based on color values

ERI Excess red index (−) Defined as 1.4R − G , based on color reflectance

HSDiff*1_*2 Difference in hyper spectral reflectance (−) Difference in reflectance of two hyperspectral bands * 1–*2 , where * 1 , * 2 ∈ {1, . . . , 25} indi-
cates the spectral bands

CanCov Canopy cover (−) The percentage of points labeled as plants. Canopy cover is independent of the evaluation 
statistic

VolEst Volumetric estimate (m*pixels) The integral over the height of all points. Volumetric estimate is independent of the evalua-
tion statistic



Page 15 of 18Khanna et al. Plant Methods           (2019) 15:13 

applied to a wide variety of crops. We also showed that 
remotely measured spatio-temporal spectral plant trait 
indicators can indeed be used to accurately and simul-
taneously predict the presence and severity of multiple 
stress factors which is the predominantly occurring con-
dition on the field. This will pave the way for automated, 

timely, effective and precise intervention actions in order 
to maximize yield while minimizing environmental 
impact and additional resource input.

There are many interesting avenues for future work. 
For example, predicting yield based on the spatio-tem-
poral remote sensing data, using ground truth biomass 
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Fig. 14  Development of selected plant trait indicators over time for the control group as well as those subjected to the three abiotic stress 
factors. The translucent regions indicate one standard deviation from the mean for cultivation boxes subject to identical treatment conditions. The 
temporal evolution of two popular vegetation indices—Normalised Difference Vegetation Index (NDVI) and Normalised Difference Red-Edge Index 
(NDRE), averaged over the biomass in the boxes is also shown. The control group as well as plants subject to weed stress are observed to follow the 
standard phenological development [63], whereas the resource constrained plants do not reach senescence during the experimental period
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measurements which are available within the provided 
dataset. The precision and accuracy, especially for Nitro-
gen and Weed stress severity level classification, may be 
further improved by collecting larger datasets. Additional 
sensing modalities, such as thermal reflectance and flu-
orescence can be added to the combination of the fea-
ture vectors input to the machine learning models when 
available. These additional modalities can also be readily 
analyzed using the functionality provided by the accom-
panying software. Since the software suite supports indi-
cator ranking, the framework may also be extended to 
allow for a systematic evaluation of the most predictive 
features related to a particular stress factor. This would 
allow, for example, the selection of the most appropri-
ate wavelength bands and spectral vegetation indices for 
Nitrogen availability measurement, supporting the devel-
opment of dedicated lower cost sensors for detection 
of particular stress factors in both controlled and field 
situations.
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