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Abstract 

Background:  Maize (Zea mays L.) is the third most consumed grain in the world and improving maize yield is of great 
importance of the world food security, especially under global climate change and more frequent severe droughts. 
Due to the limitation of phenotyping methods, most current studies only focused on the responses of phenotypes on 
certain key growth stages. Although light detection and ranging (lidar) technology showed great potential in acquir-
ing three-dimensional (3D) vegetation information, it has been rarely used in monitoring maize phenotype dynamics 
at an individual plant level.

Results:  In this study, we used a terrestrial laser scanner to collect lidar data at six growth stages for 20 maize varieties 
under drought stress. Three drought-related phenotypes, i.e., plant height, plant area index (PAI) and projected leaf 
area (PLA), were calculated from the lidar point clouds at the individual plant level. The results showed that terres-
trial lidar data can be used to estimate plant height, PAI and PLA at an accuracy of 96%, 70% and 92%, respectively. 
All three phenotypes showed a pattern of first increasing and then decreasing during the growth period. The high 
drought tolerance group tended to keep lower plant height and PAI without losing PLA during the tasseling stage. 
Moreover, the high drought tolerance group inclined to have lower plant area density in the upper canopy than the 
low drought tolerance group.

Conclusion:  The results demonstrate the feasibility of using terrestrial lidar to monitor 3D maize phenotypes under 
drought stress in the field and may provide new insights on identifying the key phenotypes and growth stages influ-
enced by drought stress.
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Background
In recent decades, the global climate change has brought 
more and more frequent heat-waves and severe droughts 
[17], which has become an explicit threat to the global 
food security [22]. Maize (Zea mays L.) is the third most 
consumed grain in the world and studying how to secure 
maize yield under drought stress is of great significance. 
Beyond improving the irrigation technology, cultivating 
maize varieties with high drought resistance potential is 
another effective way to reduce the influence of drought 

stress [47]. Crop phenotyping can provide crop trait 
estimations and help to identify the traits influenced by 
drought stress, which is a critical step for crop breeding 
[45, 47, 67].

Field-based method is the most commonly used for 
acquiring phenotype measurements currently [16] and 
has been widely used to assess the drought resistance of 
different crops [10, 64]. For example, Faroop et  al. [24], 
Getnet et  al. [26] and Xu et  al. [66] found that drought 
stress can influence crop physiological metabolism, leaf 
size and yield based on field phenotype observations. 
Among various crop phenotypes, plant height and leaf 
area have been proved to be the key indictors related to 
drought stress [11, 23, 34, 52, 58, 71]. Maize plants have 
to reach a sufficient height to have enough photosynthate 
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for yields, and drought stress can delay the plant develop-
ment to influence yields [57]. The structure of crop leaves 
can influence the water and light use efficiency, which are 
important factors indicating the drought resistance [4, 38, 
63]. The vertical structure of crop leaves is often repre-
sented by the leaf area density (LAD) and leaf area index 
(LAI) [33]. LAD is defined as the one-sided leaf area per 
unit of a horizontal layer volume [65], and the sum of 
LAD along the vertical profile is LAI [33]. The horizontal 
structure of crop leaves can be represented by the pro-
jected leaf area (PLA), which is defined as the percentage 
of the vertically projected canopy area to the total ground 
area. However, taking field measurements is very time-
consuming and labor-intensive, and destructive harvest-
ing methods are frequently used to obtain LAD and LAI. 
This limits most current studies only focusing on certain 
key growth stages, such as the tasseling stage and the rip-
ening stage, which cannot reflect the cumulative impact 
of drought stress on crops through the growing period 
[14, 53, 71]. Therefore, it is of great significance to moni-
tor the response of maize phenotypes to drought stress 
during the whole growing period using new crop pheno-
typing technology.

The development of near-surface remote sensing tech-
nology provides new opportunity for non-destructive, 
high-efficiency and high-resolution (both temporal and 
spatial) phenotyping. Vegetation indices derived from 
multispectral/hyperspectral imagery (e.g., normalized 
difference vegetation index and enhanced vegetation 
index) have been proven to be correlated to crop pheno-
types, such as LAI, biomass, yield, and crop physiologi-
cal processes [13, 30, 31, 48, 49]. Photogrammetry and 
computer vision technologies can be further used to esti-
mate three-dimensional (3D) crop phenotypes [1, 7, 8, 
15]. For example, Meyer and Davison [44] used images 
taken from two perpendicular directions to reconstruct 
3D crop models and measure crop phenotypes (e.g. stem 
diameter and leaf angle) from the 3D models; Paproki 
et  al. [50] successfully used 64 images taken from dif-
ferent angles to reconstruct 3D surface models of cot-
ton plants; Duan et  al. [19], Rovira-Más et  al. [56] and 
Chen et al. [14] used the structure-from-motion method 
to derive 3D crop point cloud and measure crop pheno-
types; Kise et  al. [37] proved that the computer vision-
based methods can be used to retrieve plant height at a 
centimeter-level accuracy. However, these imagery-based 
remote sensing methods are easily influenced by light 
conditions and cannot penetrate crop canopy, which lim-
its their applications in field practices [42, 46].

Light detection and ranging (lidar), an active remote 
sensing technology, can provide accurate 3D informa-
tion through measuring the time of flight of an emitted 
laser pulse between the sensor and the target. Besides, 

the focused short-wavelength laser pulse used by lidar 
sensors can effectively penetrate vegetation canopy and 
less influenced by the light condition [12, 21, 61]. There-
fore, it has shown great potential for field-based high-
throughput crop phenotyping [2, 3, 29, 32, 41, 51, 60, 
62, 69]. However, lidar is still a relatively new technology 
to the field of crop phenotyping. Recently, more efforts 
have been spent on developing algorithms to automati-
cally extract crop phenotypes from lidar data. For exam-
ple, Jin et al. [35, 36] proposed methods combining deep 
learning algorithms with geometric principles to accu-
rately extract 3D maize phenotypes (e.g., plant height, 
stem diameter, crown diameter, leaf area, leaf inclination 
angle, leaf length, and leaf width) from terrestrial lidar 
data. These studies further proved that lidar is an ideal 
tool for monitoring crop growth dynamics non-destruc-
tively in field practices. Nevertheless, to the best of our 
knowledge, no study has been conducted to explore the 
responses of 3D maize phenotypes to drought stress 
using lidar technology. The feasibility of lidar in monitor-
ing maize phenotype dynamics and how maize pheno-
types respond to drought stress cumulatively still need to 
be evaluated and analyzed.

The aim of this study is to evaluate the performance of 
lidar in monitoring time-series maize phenotypes in field 
practices and analyze the growth dynamics of different 
maize varieties under drought stress. Specifically, three 
questions were addressed. First, how accurate is lidar 
for maize phenotype extraction in field practices, and 
how do maize phenotypes change under drought stress 
during the whole growing period? Second, what maize 
phenotypes are associated with drought stress, and how 
can they indicate the occurrence and development of 
drought in 3D? Third, what are the key phenotypes that 
lead different maize varieties to have different drought 
resistance?

Materials and methods
Study site and field measurements
The study site is located in the Institute of Botany, Chi-
nese Academy of Sciences, Beijing, China (39°59′10″N, 
116°12′21″E) with an area of 800 m2 (40 m × 20 m), and 
the soil type is yellow brown soil. To simulate a growth 
environment under drought stress, the study site was 
installed with a rain shelter. As can be seen in Fig. 1a, b, 
a layer of plastic film was installed at a height of 4 m to 
block natural rainfall. The rain shelter was opened all the 
time unless there were rainfalls. Moreover, a water-resist-
ant barrier was installed below the ground to prevent 
water from surrounding soils penetrating to the study 
site.

To further reduce the influence of wind and edge effect, 
we sowed 20  maize varieties in the middle of the study 
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site (10 m × 3 m) on May 10th, 2016, and we harvested 
them on September 20th, 2016. All maize individu-
als were planted in a regular grid. The distance between 
each column was 50  cm, and the distance between two 
adjacent plants along a column was 30 cm. Each column 
represented one maize variety with 10 individual plants 
(Fig. 1c). All maize varieties were watered during the first 
20 days from sowing (before May 30th, 2016) to ensure 
the survival rate. The soil moisture was maintained at a 
level of higher than 30% (volumetric water content) dur-
ing this stage. Since May 31st, 2016, all maize varieties 
were not watered anymore, and that day was counted as 
Day 0 (D0) under drought stress hereafter.

To collect ground truth measurements of maize pheno-
types, 34 maize individuals were randomly chosen, and 
their plant height, plant area index (PAI) and PLA were 
manually measured. Their plant heights were measured 
with a staff at six key growth stages separately, covering 
from the early leaf emergence stage to the final mature 
stage (Table 1). A DJI Mavic Pro was used to capture an 
image right above each plant at a height of 5 m above the 
ground at the ripening stage D70. Each individual plant 
was then cropped out to calculate the PLA using the 
method proposed by Richardson et  al. [55]. Moreover, 
each individual plant was divided into five height strata 
(Fig. 2). All leaves at each height layer of each individual 
plant were harvested separately (after the stage D95) and 

scanned using a Canon LiDE 220 scanner. If a leaf was 
intersected with two or more height layers, it was broken 
off from the thresholding height and each layer only har-
vested the part belonging to it. The scanned images were 
processed by the software of WinFOLIA to derive plant 
area density (PAD) at each height layer and therefore cal-
culate PAI for each plant. Note that PAD and PAI were 

Fig. 1  a The maize growth site with a rain shelter for simulating drought conditions; b the internal view of the study site and an illustration of the 
laser scanner setup for collecting lidar data; and c an example of the collected lidar point cloud on June 20th, 2016

Table 1  The six maize key growth stages used in this study 
and their corresponding dates

a  Days of drought stress were counted since May 31st, 2016 (D0) when all maize 
plants were not watered anymore
b  The growing stage was determined by the standard provided by Bondesio 
et al. [9]. V6 represents the stage that plants have 5 leaves, growth point is 
20–25 mm below the ground, and cob and tassel is at initiation stage; V10–
V11 represents the stage of cob development with around 10–11 leaves; 
VT represents the beginning of pollination stage; R1 represents the end of 
pollination stage; R2–R3 represents the stage of kernel development; R6 
represents the end of mass grain stage and plants are ready for being harvested

Date Days 
since sowing

Days 
of drought 
stressa

Growth stageb

2016-06-20 40 D20 V6

2016-07-05 55 D35 V10–V11

2016-07-14 65 D45 VT

2016-07-29 80 D60 R1

2016-08-07 90 D70 R2–R3

2016-09-01 115 D95 R6
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commonly used to replace LAD and LAI when leaves can 
be hardly separated from other organs [33].

To analyze the drought tolerance level of each maize 
variety, we planted a control group with the same 20 
maize varieties in a field nearby the study site. Maize indi-
viduals of the control group were sowed and harvested 
in the same day as the group under drought stress and 
the same rules were used to manage them, except that 
they were watered all the time to keep the soil moisture 
higher than 30% (volumetric water content). After being 
harvested, the yields of all plants from both the control 
group and the group under drought stress were collected, 
dried, weighted and recorded. In this study, plant yields 
represent grain yields instead of biomass yields.

Terrestrial lidar data collection and preprocessing
To cover the whole growing period, we collected six sets 
of terrestrial lidar data under drought stress at six key 
growth stages of maize (Table 1). A FARO Focus3D X120 
laser scanner in the high-resolution mode was used to 
acquire lidar data at five scanning positions surrounding 
the maize plants at each growth stage. The specification 
of the laser scanner is listed in Table  2. The five scan-
ning positions were fixed for the lidar scans of all growth 
stages, and each scan was set up at a height of 1.5  m 
above the ground (Fig. 1b). To register the point clouds 
from different scanning positions, we put 10 target balls 

with a high reflectance in the scene, and at least four tar-
get balls were ensured that could be visually seen at each 
scanning position. The FARO SCENE 5.4.4 software was 
used to register the point clouds from different scanning 
positions for each growth stage, and the final registering 
error was around 2 mm on average.

Noise points are inevitable in lidar data due to object 
occlusion, wind and so on. In this study, we used the 
outlier removal algorithm integrated in the Green Valley 
International LiDAR360 software to reduce noise points 
in the collected lidar data (Fig. 3). This algorithm identi-
fies outliers based on the rule that whether the distance 
of a point to its surrounding neighbors is larger than 
avg. + n × std. (where avg. and std. is the average distance 
of points to their surrounding neighbors, and n is a user-
defined threshold). Then, the improved progressive trian-
gulated irregular network densification filtering algorithm 
proposed by Zhao et al. [70] was used to classify ground 
points and non-ground points (i.e., vegetation points 
in this study) for the lidar data of each growth stage. A 
digital terrain model (DTM) in 5 cm resolution was cal-
culated from the lidar ground returns using the ordinary 
kriging method [28]. The obtained DTM was used to nor-
malize the lidar point cloud by subtracting the ground 
elevation from the original lidar elevation. Moreover, 
although the same data collection setting was used for all 
the six growth stages, the collected lidar point density still 
increased with the growth of maize plants because of the 
increase of environmental complexity. To make the lidar 
data of the six growth stages be comparable to each other, 
we resampled the lidar point cloud to make sure all lidar 
data have the same average point distance.

Phenotype extraction from lidar data
It has been found that phenotypes related to maize plant 
height and leaf area are highly correlated to drought 
stress [11, 52, 71]. Therefore, in this study, we calculated 

Fig. 2  A demonstration of the division of maize vertical layers in this 
study. Note that the root layer (L0) was not included in the following 
analysis of this study

Table 2  Specifications of  the  FARO Focus3D X120 laser 
scanner used in this study

Field of view Horizontal: 0°–360°

Vertical: 30°–330°

Emission point density 976,000 points

Scan speed 122.000–922.000 Hz

Laser scan resolution 0.009°

Scanning accuracy 2 mm @ a 25 m distance

Scan distance 0.6–153.49 m

Laser wavelength 905 nm

Camera resolution 70 million pixels

Tilt sensor ± 5°

Scanner weight 4.9 kg
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the plant height, PAI, PAD and PLA for each maize 
individual from the lidar data of each growth stage for 
drought stress analysis. To derive these four parameters 
for each individual maize, we need to first identify and 
segment each individual plant from lidar point clouds. 
Because all maize individuals were planted in a regular 
grid with large intervals, we created a simple grid with a 
size of 50 cm × 30 cm and treated the points in each pixel 
as one maize individual.

The height of each plant was calculated as the maxi-
mum height from the ground in the corresponding pixel. 
PAI was calculated from the voxelized lidar data using 
the voxel-based canopy profiling method proposed by 
Hosoi and Omasa [33]. The point cloud at each growth 
stage was first voxelized with a given voxel size, and the 
attribute of each voxel was determined by whether there 
was at least one vegetation point in it. If there was one 
or more than one vegetation points in a voxel, its corre-
sponding attribute was assigned as 1; otherwise, it was 
assigned as 0. Then, we divided a maize individual into 
five height strata, as shown in Fig. 2. The PAD of a height 
layer was calculated using the following equation,

(1)PADk =
cos θc

G(θc)
×

1

�H
×

nl(k)

nl(k)+ np(k)

in which, θc represents the incident angle of a laser pulse, 
nl(k) and np(k) represent the number of voxels with an 
attribute of 1 and 0 at the kth height layer, respectively, 
�H represents the height difference of each height layer, 
and G(θc) represents the extinction coefficient. Since 
voxel size has a great influence on the PAD estimation 
[29], we selected three maize individuals from the control 
group and repeatedly estimated their PAD values at each 
height layer using a voxel size varying from 1 to 12 mm 
with a step of 0.5  mm. The estimated PAD values were 
compared with field measurements to find the optimized 
voxel size for PAD estimation. Finally, the PAI of a plant 
individual was calculated as the sum of PAD from the five 
height layers, which can be described as,

PLA is defined as the projected area of vegetation canopy 
on the ground. In this study, we first projected the lidar 
points of each maize individual to the X–Y plane. Then, 
the minimum point distance on the X–Y plane was used 
as the pixel size to rasterize the projected lidar points. 
Pixels with point(s) were marked as 1, and pixels without 
point were marked as 0. The proportion of pixels with a 

(2)PAI =

5∑

k=1

PADk

Fig. 3  Scheme for processing the collected lidar point clouds and analyze the phenotype dynamics under drought stress. PAI, PAD, PLA, YRR, 
DSI and DRI represent plant area index, plant area density, projected leaf area, relative yield decrease, drought susceptibility index and drought 
resistance index, respectively
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value of 1 to the total number of pixels of a maize indi-
vidual on the X–Y plane was the PLA estimation.

The lidar-derived plant height, PAI and PLA esti-
mations for the 34 independent maize samples were 
compared with field measurements. Two statistic meas-
urements, i.e. coefficient of determination (R2) and root-
mean-square error (RMSE) were calculated to assess the 
estimation accuracy.

where xi is the ground truth measurement, x̂i is the lidar-
derived estimation, x̄ is the average lidar-derived estima-
tion, and n is the number of validation samples.

Analysis of the influence of drought stress on maize 
phenotypes
Classification of drought tolerance level
Many drought tolerance indices have been proposed to 
evaluate crop drought resistance capability. However, 
most of these indices have their own limitations, and can-
not be used alone to classify drought tolerance level [14]. 
In this study, to avoid the limitations of single drought 
tolerance indices, a distance-based clustering algorithm 
was used to classify drought tolerance level from three 
commonly-used drought tolerance indices, i.e., yield 
reduction rate (YRR), drought susceptibility index (DSI) 
and drought resistance index (DRI). They were calculated 
from the field grain yield measurements using the follow-
ing equations [6, 25, 40],

where Ya represents the yield of a maize variety under 
drought stress, Ym represents the corresponding yield 
of the control group, YA represents the average yield of 
all maize varieties under drought stress, and YM repre-
sents the average yield of all maize varieties of the con-
trol group. YRR is a direct measurement of yield decrease 
but cannot evaluate the sensitivity under different stress 
severities [39]. DSI and DRI considers the stress severity 

(3)R2
= 1−

(n− 1)
∑n

i=1
(xi − x̂i)

2

(n− 2)
∑n

i=1
(xi − x̄)2

(4)RMSE =

√∑n
i=1

(xi − x̂i)2

n− 2

(5)YRR =
Ym − Ya

Ym

(6)DSI =
1− Ya/Ym

1− YA/YM

(7)DRI =
(Ya)

2

Ym
×

YM

(YA)2

in their calculations, but they might be problematic to 
use under sever environmental stresses [43]. The dis-
tance-based clustering function integrated in the SPSS 
(Statistical Product and Service Solutions) software was 
therefore used to classify the maize varieties into three 
groups (i.e., high drought tolerance, medium drought tol-
erance, and low drought tolerance) [14]. Note that among 
the 20 maize varieties, three of them were not included in 
the drought stress analysis due to the incomplete samples 
in the group under drought stress (certain maize individ-
uals died during the growth period).

Analysis of maize phenotype dynamics under drought stress
The average plant height, PAI and PLA and the corre-
sponding standard deviations of maize varieties with 
the same drought tolerance level were calculated at 
each growth stage, and the change rates of each param-
eter compared to the previous stage were calculated. 
These statistics were used to analyze the change dynam-
ics of phenotypes with different drought tolerance lev-
els. Moreover, the statistical test was used to evaluate 
whether the differences in plant height, PAI and PLA 
were significant among different growth stages for each 
drought tolerance level. The null hypothesis was that 
there was no difference between the values of a pheno-
type from two growth stages. Besides, we further cal-
culated the average PAD at each height layer for maize 
varieties with the same drought tolerance level. The time-
series vertical PAD profiles from maize varieties with dif-
ferent drought tolerance levels were compared to analyze 
the responses of maize vertical structures to drought 
stress.

Results
Lidar‑derived maize phenotypes
The influence of voxel size on the PAI estimation from 
lidar is shown in Fig. 4. As can be seen, voxel size had a 
significant influence on the PAI estimation for all three 
testing maize individuals. With the increase of voxel size, 
PAI estimation first increased rapidly and then stayed rel-
ative stable after voxel size reaching a certain size. If the 
voxel size was too small, the voxel-based method under-
estimated the PAI; and if the voxel size was too big, the 
voxel-based method overestimated the PAI. In this study, 
we found that when the voxel size was set to 1.5 times 
of the average point distance, the estimated PAD at each 
height layer was close to the field measurements, and the 
final PAI reached a relative high accuracy as well. There-
fore, a voxel size of 1.5 times of the average point distance 
of each maize point cloud was used to estimate the PAI of 
all maize individuals at each growth stage.

Table  3 shows the statistics of plant height, PAI and 
PLA for all maize individuals at each growth stage. 
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Plant height, PAI, and PLA all reached their peaks at the 
growth stage of D60. The maximum plant height, PAI, 
and PLA can be three to four times higher than those at 
the beginning stage under drought stress. From D60 to 
D95, the average plant height, PAI and PLA decreased 
by 8%, 40%, and 20%, respectively. Moreover, the varia-
tions in plant height and PAI increased with the growth 

of maize plants. The standard deviations of plant height 
and PAI for the last three growth stages (i.e., D60, D70, 
and D95) were around three times higher than those of 
the growth stage D20. The variation of PLA stayed rela-
tively stable during the growth period, and the smallest 
standard deviations appeared in the stage of D45. The 
proportion of standard deviation to average plant height 

Fig. 4  The influence of voxel size on the estimation of PAI (left column) and PAD at different height strata (right column). Each row represents 
a selected maize individual at the final growth stage. The PAD estimated from ground truth was compared with the lidar-derived estimations at 
different height strata on the right column. The five height layers correspond to the same five layers in Fig. 2, and the 0.5 times, 1.5 times and 5.0 
times represent using a voxel size of the corresponding times of average point distance to estimate PAD from lidar data
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was the lowest among the three phenotypes, which was 
only around 15% on average.

The estimated phenotypes were evaluated using field 
measurements of the 34 independent maize samples. 
Overall, all three lidar-derived phenotypes showed 
good agreements with field measurements (Fig.  5). 
Plant height had the highest estimation accuracy among 

the three phenotypes (R2 = 0.96, RMSE = 0.15  m) 
(Fig. 5a). Lidar-derived PLA showed a very high estima-
tion accuracy as well with a R2 of 0.92 and a RMSE of 
0.05 m2/m2 (Fig. 5b). Lidar-estimated PAI had the low-
est accuracy among the three phenotypes with a R2 of 
0.70 and a RMSE of 0.15 m2/m2 (Fig. 5c).

Table 3  Statistics of the lidar-derived plant height, PAI and PLA for all maize individuals at each growth stage

a  Min, Max, Avg and Std represent the minimum, maximum, average and standard deviation of the corresponding phenotype of all plant individuals at each growth 
stage, respectively

Growth stage Height (m)a PAI (m2/m2)a PLA (m2/m2)a

Min Max Avg Std Min Max Avg Std Min Max Avg Std

D20 0.41 0.70 0.55 0.09 0.24 1.31 0.65 0.29 0.09 0.18 0.13 0.03

D35 0.67 1.32 1.00 0.16 0.68 2.00 1.18 0.36 0.14 0.19 0.17 0.02

D45 1.20 1.83 1.42 0.17 0.82 2.85 1.60 0.52 0.16 0.21 0.18 0.01

D60 1.34 2.35 1.80 0.28 1.04 4.02 2.09 0.62 0.16 0.23 0.20 0.02

D70 1.31 2.28 1.76 0.28 0.31 2.85 1.70 0.82 0.12 0.20 0.18 0.03

D95 1.26 2.08 1.66 0.27 0.29 2.66 1.26 0.64 0.11 0.19 0.16 0.03

Fig. 5  The comparison between the field-measured a plant height, b PAI and c PLA and the corresponding lidar-derived estimations
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Classification of drought tolerance level
Based on the distance-based clustering analysis results, 
nine of the 17 maize varieties were classified as low 
drought tolerance (L1), five were classified as medium 
drought tolerance (L2), and three were classified as high 
drought tolerance (L3) (Fig.  6). The yield of nine maize 
varieties with a low drought tolerance decreased by 85% 
on average, and certain individuals totally failed during 
the growth period (i.e., producing no yield at all). The 
yield of five maize varieties with a medium drought tol-
erance decreased by 48% on average, and no individuals 
failed during the growth period. The yield of three maize 
varieties with a high drought tolerance decreased only by 
27%, and the statistical test results showed that the yield 
of these three maize varieties had no significant differ-
ence with the control group (p > 0.05).

Maize phenotype dynamics under drought stress
The plant height of three drought tolerance groups all 
increased first and then decreased as the plant growth, 
and the height growth rate followed the same pattern 
(Fig. 7a). Before D20, the height differences among the 
three drought groups were the smallest, and the height 
growth rates were similar as well. From D20 to D45, 
maize individuals of all three drought tolerance groups 
increased significantly in plant height (p < 0.01), but 
the differences in plant height among three drought 

tolerance groups became larger (Figs. 7a, 8). From D45 
to D60, the low drought tolerance group still kept a rel-
ative high growth rate in plant height, but the growth 
rates for the medium and high drought tolerance 
groups dropped rapidly. From D60 to D70, all three 
drought tolerance groups had no significant change 
in plant height (p > 0.05) (Fig. 8). After D70, the plant 
height of all three drought tolerance groups began to 
decrease, and the high drought tolerance group had 
the smallest drop in plant height. The statistic test 
result showed that the high drought tolerance group 
was the only group having an insignificant change in 
plant height among the three groups during this stage 
(p > 0.05) (Fig. 8).

The PAI of three drought tolerance groups followed a 
similar changing pattern as the plant height across the 
growth period, which increased first and then decreased 
(Fig. 7b). Before D20, the PAI values of three drought lev-
els were close to each other, and the medium drought tol-
erance group had a relatively higher PAI than the other 
two groups. From D20 to D45, all three drought tolerance 
groups still had significant increases in PAI (p < 0.01), but 
the increase speed became much smaller (Figs. 7b, 8). The 
PAI of the medium drought tolerance group remained 
the highest among the three groups. From D45 to D60, 
the low drought tolerance group and high drought tol-
erance group still kept a relatively high PAI growth rate, 
but the PAI growth rate of the medium drought tolerance 
group began to decrease significantly. The low drought 
tolerance group replaced the medium drought tolerance 
group to have the highest PAI among the three groups, 
and it was also the only group having a significant change 
in PAI at this period (p < 0.05) (Figs. 7b, 8). From D60 to 
D95, the PAI of all three groups began to decrease, and 
the high drought tolerance group had the smallest change 
magnitude. The high drought tolerance group was also 
the only group having an insignificant change in PAI dur-
ing these stages (p > 0.05) (Fig. 8).

The PLA of all three groups also followed the pattern of 
increasing first and then decreasing (Fig. 7c). Before D20, 
the PLA of all three groups increased rapidly. The PLA 
growth rate during this stage was the highest among all 
growth stages. Among three drought tolerance groups, 
the medium and high drought tolerance groups had a 
slightly higher PLA growth rate than the low drought 
tolerance group. From D20 to D60, all three drought tol-
erance groups still had continuous increases in PLA, but 
the increase speed became much slower. The low drought 
tolerance group was the only group having a significant 
change in PLA during this period (p < 0.01) (Fig.  8). All 
three drought tolerance groups had the highest PLA at 
the stage of D60, and the highest PLA values were close 
to each other. From D60 to D95, the PLA of all three 

Fig. 6  The distance-based clustering analysis for the maize drought 
tolerance level classification. L1, L2 and L3 represent the low drought 
tolerance level, medium drought tolerance level and high drought 
tolerance level, respectively
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Fig. 7  The growth dynamics of a plant height, b PAI and c PLA across the whole growth period (the right column), and the change rate of the 
corresponding parameter of each growth stage compared to its previous growth stage (the left column). Note that DTL represents the L1, L2 and L3 
drought tolerance levels in Fig. 6
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groups began to have significant decreases (p < 0.05) 
(Fig.  7c, 8). The medium drought tolerance group had 
a relatively larger decreasing speed than the other two 
groups, and its PLA value at the final stage was the small-
est among all three groups.

PAD vertical profile dynamics under drought stress
The PAD estimations at different height strata across the 
whole growth period were used to evaluate the verti-
cal structure dynamics of maize varieties under drought 
stress (Fig. 9). From the seedling stage to D20, the upper 
level canopy for the medium drought tolerance group 
grew the fastest among the three groups, and the lower 
canopy for the low drought tolerance group grew the 
slowest (Fig. 9a). At the stage of D35, the upper canopy 
PAD for the medium drought tolerance group remained 
the highest, and the lower canopy PAD became close to 

each other for the three groups (Fig.  9b). At the stage 
of D45, the upper canopy of the high drought tolerance 
group grew quickly and became close to the medium 
drought tolerance group (Fig.  9c). The lower canopy 
of all three groups remained close to each other. At the 
stage of D60, the upper canopy for the medium and high 
drought tolerance groups remained relatively unchanged 
compared to the previous stage, but that for the low 
drought tolerance group continued to grow (Fig.  9d). 
The upper level PAD for the low drought tolerance group 
became the highest among all three groups at this stage. 
At the stage of D70, both the upper and lower canopy 
PAD began to decrease for all three groups, but only the 
shape of the PAD profile for the high drought tolerance 
group stayed relatively stable (Fig. 9e). The PAD for the 
most top layer of the low drought tolerance group had 
no significant changes, but that for the second top layer 

Fig. 8  Statistic tests between phenotypes of one growth stage and other growth stages. L1, L2 and L3 represents the three drought tolerance 
levels in Fig. 6
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Fig. 9  The PAD vertical distribution at different height strata of the growth stage a D20, b D35, c D45, d D60, e D70, and f D95. The five height layers 
correspond to the five layers in Fig. 2, and L1, L2 and L3 represent the corresponding drought tolerance group in Fig. 6



Page 13 of 16Su et al. Plant Methods           (2019) 15:11 

decreased significantly. As to the medium drought toler-
ance group, the third top layer had the smallest decrease 
in PAD which made it be the layer with the highest PAD. 
At the stage of D95, the PAD of all layers for all three 
groups continued to decrease, and the vertical structure 
profiles became more random (Fig. 9f ).

Discussion
Sensitivity of maize phenotypes to drought stress
All phenotypes showed quick increases in the early 
growth stages and decreases in the final two growth 
stages. The decrease of plant height in the final two stages 
was caused by the fact that the loss of water in the rip-
ening stages made the tassel branches could be easily 
broken [20]. The decreases of PLA and PAI in the final 
two stages were possibly caused by the fact that the loss 
of water in the ripening stages resulted in the rolling 
of leaves [20]. Since the broken of tassel branches was 
mostly random in the last two growth stages, but the roll-
ing of leaves was systematic, the relative change of the 
plant height was the smallest compared to the relative 
decreases of PLA and PAI (Fig. 7).

The tasseling stage (D60) is the key maize growth stage 
which has the highest demand of moisture [18]. There-
fore, it is the most sensitive stage of maize to drought 
stress. Figure  10 demonstrated the comparison of the 
three phenotypes of each drought tolerance group at the 
stage of D60. As can be seen, compared to plants with 
low drought tolerance, plants with high drought toler-
ance tended to keep a lower plant height and PAI. Lower 

plant height and PAI could reduce the transpiration 
and therefore reduce the demand for moisture during 
drought stress at the key growth stage [68]. Meanwhile, 
the PLA of maize plants with high drought tolerance 
stayed close to that of plants with low drought toler-
ance, which could help to ensure their light use efficiency 
for photosynthesis. The combining effect of these three 
phenotypes might be one of the reasons leading the high 
drought tolerance group to have higher yields.

From the 3D view, the PAI decrease at the key growth 
stage of D60 for the high drought tolerance group was 
caused by the relatively small PAD at the upper two 
height layers. As can be seen from Fig. 9d, the PAD of the 
upper two canopy layers become the lowest for the high 
drought tolerance group, while that of the lower canopy 
layers was close to each other. Although the upper levels 
of the high drought tolerance group had a similar num-
ber of leaves as the low drought tolerance group, the size 
of individual leaf at the upper levels of the high drought 
tolerance group was around 20% smaller than that of the 
low drought tolerance group. Zhang et al. [68] found that 
the transpiration rate and stomatal conductance of maize 
lower canopy in northern China was smaller than those 
of higher maize canopy due to the shading effect. There-
fore, reducing the upper canopy PAD might be more effi-
cient for maize plants to reach the goal of reducing water 
demand [54].

Considering the changing patterns of plant height, PLA 
and PAI of different drought tolerance groups across the 
growth period, the combination of low plant height and 

Fig. 10  The distribution of average plant height, PAI and PLA of maize varieties with different drought tolerance levels at the growth stage of D60. 
L1, L2 and L3 represent the corresponding drought tolerance group in Fig. 6
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low PAI (especially at the upper level canopy) at the tas-
seling stages might be a good indicator to identify maize 
varieties with high drought tolerance level and predict 
the maize yield under drought stress. However, in this 
study, the yield of each individual maize had weak cor-
relations with all three phenotypes (R2 < 0.3). The maize 
varieties selected in this study had different yield poten-
tials. As can be seen in Fig.  11, although certain maize 
varieties fell in the group of low drought tolerance (e.g., 
No. 2 variety in L1), their corresponding yields were still 
higher than certain maize varieties of high drought toler-
ance group. To develop of a robust model for predicting 
maize yield from phenotypes at different growth stages, 
more strict control experiment on maize varieties and 
environmental conditions needs to be conducted in the 
future.

The potential of lidar in field‑based phenotyping practices
This study showed that lidar can provide accurate estima-
tions of plant height and PLA. Although the estimation 
accuracy of PAI was relatively low compared to the other 
two phenotypes, the estimation accuracy still reached 
70% and the RMSE only counted for around 10% of the 
average PAI value. The relatively low accuracy of PAI esti-
mations might be caused by the following two reasons. 
First, there was a mismatch between field-based PAI 
measurements and lidar-derived PAI estimations. The 
stem, tassel and leaf sheath were very hard to be scanned, 
and it was difficult to break off leaves at the exact height 
threshold in the field if a leaf intersected with two height 
layers, which could possibly bring errors to the field-
based PAI measurements. Second, some leaves of one 
maize plant might grow into the cubic space of another 

plant, and some maize point clouds from the individual 
maize segmentation step were incomplete because of the 
occlusion of leaves, which might bring uncertainty in the 
lidar-derived estimations. Recently, Jin et al. [35] proved 
that the deep learning technique can reach an accuracy 
of over 90% in individual maize segmentation from lidar 
data, which has a great potential to further improve the 
phenotype estimation accuracy at the individual plant 
level [36].

The non-destructive and high-accuracy characteristics 
made lidar technology an ideal tool in phenotyping appli-
cations. Especially, lidar technology is not influenced by 
light conditions, and therefore it can be used in field phe-
notyping practices. However, currently, the methods to 
acquire lidar data are still very limited [29]. Although the 
terrestrial lidar sensor can collect lidar point cloud with 
high accuracy and high point density, the data collection 
and preprocessing (e.g., registration among lidar scans) 
could be very time-consuming and complicate. Moreo-
ver, the fusion of lidar with other remote-sensing sensors 
(e.g., thermal sensor, solar-induced fluorescence sensor, 
and hyperspectral sensor) are needed to acquire physi-
ology-related phenotypes beyond 3D structures [5, 27, 
59, 60]. Therefore, a new platform that can automatically 
collect and register multi-source remote sensing data for 
high-throughput field-based phenotyping practices is in 
great need [29].

Conclusion
This study used terrestrial lidar technology to extract 
temporal maize phenotypes. Overall, lidar showed a 
strong capability in estimating plant height and PLA 
non-destructively and accurately. Although the accuracy 
of PAI estimation from lidar was not as high as plant 
height and PLA estimations, it still reached a R2 of 0.70 
and a RMSE of 0.15  m2/m2. Through the whole growth 
period, the three phenotypes of all 17 maize varieties 
showed a pattern of increasing first and then decreas-
ing. In the heading and ripening stages, maize varieties 
with high drought tolerance tended to keep a low plant 
height and PAI without reducing PLA, which may help 
to both reduce the demand of water resources and ensure 
the photosynthesis rate. The relative low plant height and 
PAI at the tasseling stage would be useful indicators to 
identify maize varieties with high drought tolerance level 
during the growth period. Moreover, maize plants with 
high drought tolerance tended to keep lower upper level 
PAD than maize plants with low drought tolerance so 
that they could reduce the transpiration more efficiently.
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