
Li et al. Plant Methods  (2018) 14:76  
https://doi.org/10.1186/s13007-018-0344-1

RESEARCH

Estimation of area‑ and mass‑based leaf 
nitrogen contents of wheat and rice crops 
from water‑removed spectra using continuous 
wavelet analysis
Dong Li, Xue Wang, Hengbiao Zheng, Kai Zhou, Xia Yao, Yongchao Tian, Yan Zhu, Weixing Cao and Tao Cheng*

Abstract 

Background:  The visible and near infrared region has been widely used to estimate the leaf nitrogen (N) content 
based on the correlation of N with chlorophyll and deep absorption valleys of chlorophyll in this region. However, 
most absorption features related to N are located in the shortwave infrared (SWIR) region and the physical mechanism 
of leaf N estimation from fresh leaf reflectance spectra remains unclear. The use of SWIR region may help us reveal 
the underlying mechanism of casual relationships and better understand the spectral responses to N variation from 
fresh leaf reflectance spectra. This study combined continuous wavelet analysis (CWA) and water removal technique 
to improve the estimation of N content and leaf mass per area (LMA) by reducing the effect of water absorption and 
enhancing absorption signals in the SWIR region. The performance of the wavelet-based method was evaluated for 
estimating leaf N content and LMA of rice and wheat crops from fresh leaf reflectance spectra collected over a 2-year 
field experiment and compared with normalization difference (ND)-based spectral indices.

Results:  The LMA and area-based N content (Narea) exhibited better correlations with the determined wavelet fea-
tures derived from the water-removed (WR) spectra (LMA: R2 = 0.71, Narea: R2 = 0.77) than those from the measured 
reflectance (MR) spectra (LMA: R2 = 0.62, Narea: R2 = 0.64). The wavelet features performed remarkably better than the 
optimized ND indices for the estimations of LMA and Narea with MR spectra or WR spectra. Based on the best estima-
tions of LMA and Narea with wavelet features from WR spectra, the mass-based N content (Nmass) could be retrieved 
with a high accuracy (R2 = 0.82, RMSE = 0.32%) in the indirect way. This accuracy was higher than that for Nmass 
obtained in the direct use of a single wavelet feature (R2 = 0.68, RMSE = 0.42%).

Conclusions:  The enhancement of absorption features in the SWIR region through the CWA applied to water-
removed (WR) spectra was able to improve the spectroscopic estimation of leaf N content and LMA as compared 
to that obtained with the reflectance spectra of fresh leaves. The success in estimating LMA and N with this method 
would advance the spectroscopic estimations of grain quality parameters for staple crops and individual dry matter 
constituents for various vegetation types.
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Background
Rice and wheat are two major staple crops in the world 
and provide primary dietary calories and protein for the 
global population [1, 2]. Leaf nitrogen (N) content is an 
important indicator of crop photosynthetic capacity [3] 
and is needed by agronomists for making fertilization 
recommendations [4]. Quantification of leaf N content 
could provide valuable information for monitoring crop 
physiology [5], and practicing precise farming [6] so as to 
improve the use efficiency of nitrogen fertilizers. Remote 
sensing has been widely used as a non-destructive 
approach for estimating leaf N content in the past few 
decades [7–9]. The common practice is to establish linear 
or nonlinear relationships between leaf N content and 
spectral features derived from leaf reflectance spectra.

Curran [10] listed 42 absorption features caused by 
bending and stretching of foliar chemical bonds in the 
400–2400 nm range and identified many of them related 
to N in the shortwave infrared region (SWIR) region 
(1000–2400  nm). Based on a number of N-sensitive 
wavelengths in the SWIR region, leaf N can be esti-
mated accurately from the reflectance spectra of dried 
and ground leaves [11, 12]. However, these absorption 
features are masked by water absorption and hence not 
clearly visible in the SWIR reflectance spectra of fresh 
leaves, thereby leading to weaker signals of N in the 
entire spectra [13–15]. This has been proven by the find-
ings that the accuracy of N estimation from the reflec-
tance spectra of fresh leaves is lower than that of dry 
leaves or dried and ground leaves [11]. Therefore, the 
SWIR region in the reflectance spectra of fresh leaves has 
seldom been used for N estimation. Instead, the visible 
and near infrared (VNIR) region has been widely used for 
this purpose [8, 16, 17] because nitrogen and chlorophyll 
are well related [3, 18] and the latter has deep absorption 
valleys in this region [19, 20]. To date, most studies built 
N estimation models with the spectral information of 
fresh leaves in the VNIR region alone [21–23] or VNIR 
and SWIR regions [9, 24, 25]. A few studies made use of 
SWIR reflectance alone [12] but their focus was on the 
spectra of dried leaves or leaf powder, rather than fresh 
leaves that are easier to handle for reflectance measure-
ments. How accurately the N content could be estimated 
from reflectance spectra of fresh leaves in the SWIR 
region alone is poorly understood.

As a group of N-containing compounds in fresh leaves, 
chlorophylls account for only a portion of the total nitro-
gen [3, 26]. The physical mechanism underlying the spec-
troscopic estimation of leaf N content remains unclear 
due to the use of indirect N-sensitive wavelengths in 
the VNIR region. The use of SWIR region may help us 
reveal the mechanism and better understand the spec-
tral responses to N variation [10, 11]. A major problem 

constraining the satisfactory estimation of N content is 
the effect of leaf water absorption on reflectance spec-
tra, which was claimed to be removed to within 10% by 
Kokaly and Clark [11]. Recently, a few studies adopted a 
water removal technique originally proposed by Gao and 
Goetz [27] to remove the effect of water absorption so as 
to improve the estimation of N content [15, 28] and N to 
phosphorous ratio [29]. These studies compared water 
removal to traditional spectral transformation tech-
niques, but did not decompose the water removal pro-
cess for understanding the underlying mechanism of this 
technique. To make use of the spectral information in 
the SWIR region, they applied traditional methods such 
as stepwise multiple linear regression and partial least-
squares regression to the spectra after the water removal 
process. Based on these methods, some of the selected 
wavelengths were not related to the absorption features 
of the chemical being examined [12] and the regressions 
were often faced with model overfitting and indirect rela-
tionships [10]. In addition, how to enhance the causal 
absorption features in WR spectra for the improved esti-
mation of leaf N content is poorly understood.

Recently, continuous wavelet analysis (CWA) has been 
widely used to estimate chlorophyll content [30–32], 
water content [33, 34], dry matter content [35], and leaf 
area index [36] from leaf and canopy reflectance spectra. 
After the application of continuous wavelet transform, 
a reflectance spectrum is decomposed into a number of 
scale components, which have the same length as the 
reflectance spectrum and are composed of wavelet fea-
tures as a function of wavelength and scale [33]. Wavelet 
features have been proven to be superior to vegetation 
indices (VIs) in the characterization of absorption by 
foliar chemicals in reflectance spectra [33, 35, 37]. How-
ever, none of previous studies have used CWA and water 
removal techniques collectively and have investigated the 
application of CWA to WR spectra for examining dry 
matter and nitrogen related absorption characteristics. 
In contrast to the continuum removal operation used in 
Schlerf et al. [15] and Ramoelo et al. [28], the continuous 
wavelet transform (CWT) is a linear operation and ena-
bles us to decompose the CWT of WR spectra into that 
of spectral addition or subtraction. Combining CWA and 
water removal has the potential to improve the estima-
tion of N content by reducing the effect of water absorp-
tion and enhancing N absorption signals.

Common measures for expressing leaf N content are 
either area-based (Narea, g/m2) or mass-based (Nmass, 
%). Because of its tight correlation with photosynthetic 
capacity [3] and the widespread use in fertilization 
management [38, 39], Nmass has been extensively stud-
ied and estimated from remotely sensed data [7, 23–
25, 40]. Both Narea and Nmass can be directly obtained 
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in a destructive way, but remote sensing usually works 
better for estimating Narea. The leaf biochemistry for 
dried ground samples is usually expressed as concen-
tration (mass-based, mass per unit dry weight). For 
intact fresh leaves, the biochemistry is often expressed 
as content (area-based, mass per unit leaf area) [41]. 
The use of chemical content may be more suitable 
for remote sensing applications because it is a better 
representation of the interaction between matter and 
light per unit surface area. For example, the units of 
biochemical parameters used in PROSPECT model are 
all area-based [19, 42]. It may be proven by the higher 
correlations of many VIs with Narea than Nmass docu-
mented in Hansen and Schjoerring [22] and Jay et  al. 
[43]. Although the interaction of leaves with light per 
unit leaf area is directly related to such area-based 
traits as Narea [41, 44], few studies paid attention to 
the estimation of Narea [13, 43, 45]. As pointed out by 
Wright et  al. [46], Nmass and Narea are interconverted 
via leaf mass per area (LMA, g/m2). To the best of our 
knowledge, only one study made use of this connec-
tion and derived Narea indirectly from estimated Nmass 
and LMA [25]. Based on our understanding of Nmass 
and Narea, this study will investigate first estimating 
the two area-based factors (Narea and LMA) and then 
indirectly estimating Nmass instead. The SWIR region 
encompasses all of the major absorption features of 
dry matter and N and may provide sufficient spectral 
information to estimate LMA, Narea and Nmass.

Therefore, the objectives of this study were (1) to 
determine the wavelet features most sensitive to LMA 
and Narea from both leaf reflectance spectra and WR 
spectra in the SWIR region, (2) to evaluate the feasi-
bility of improving LMA, Narea and Nmass estimations 
with the integration of CWA and the water removal 
technique, and (3) to compare the CWA and normali-
zation difference (ND) index approaches in the perfor-
mance of LMA, Narea and Nmass estimations.

Methods
Experimental design
Four experiments were conducted at the experimental 
station in Rugao, Jiangsu of eastern China (120°45′E and 
32°16′N) with two for rice and two for wheat. Both crops 
were chosen as they were grown in rotation in this exper-
imental area. We intended to develop robust models for 
both of them despite their differences in biochemical 
parameters and surface properties [47]. The pooled data 
represented a wider range of samples and were beneficial 
to test the stability of the method proposed in this study. 
The treatment in each experiment represented variations 
in cultivar type, nitrogen fertilization rate and planting 
density with three replications. These treatments were 
applied to create wide ranges for Nmass, Narea and LMA, 
which includes the extremely high and low values. There 
were a total of 36 plots with the same size of 5 m × 6 m 
for each experiment. Details about the experiments and 
sampling dates are shown in Table  1. Rice was trans-
planted and grown in a grid pattern with a plant spacing 
of 15 cm and two row spacings of 30 and 50 cm. Wheat 
was sowed in drill with different row spacings and the 
rows were oriented in a south-north direction. The 2-year 
experimental data for rice and wheat were combined to 
form RICE and WHEAT datasets, respectively.

Measurements of reflectance spectra and chemical 
constituents
Three leaves per plot were collected and each leaf made 
a sample. Their reflectance spectra were measured using 
an ASD FieldSpec Pro spectrometer (Analytical Spec-
tral Devices, Boulder, CO, USA) assisted with a leaf clip 
accessory. Reflectance spectra were taken per leaf for 
three leaf positions and these spectra were averaged to 
represent the leaf sample spectrum. The spectrometer 
collects data at 1.4  nm and 2  nm sampling interval in 
the 350–1000  nm and 1000–2500  nm spectral regions, 
respectively. The spectral data were obtained at a 1  nm 
spectral interval.

Table 1  Summary of designs and ground samplings periods of the field plot experiments

*, **Denote erect-leaf and drooping-leaf cultivars, respectively

Dataset Year of data 
collection

Cultivar Nitrogen rate (kg hm−2) Planting density (cm) Growth stages for sampling Number 
of samples

Rice 2015 Yliangyou 1*
Wuyunjing 24**

0, 100, 200, 300 30 × 15, 50 × 15 Jointing, booting, heading 95

2016 Yliangyou 1*
Wuyunjing 24**

0, 150, 300 30 × 15, 50 × 15 Jointing, booting 74

Wheat 2016 Yangmai 18* 0, 80, 150, 220 20, 30, 40 Jointing, booting, heading 127

2017 Yangmai 15*
Yangmai 16**

0, 150, 300 25, 40 Late-jointing, heading, anthesis 104
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After collection of reflectance spectra, the surface area 
(A, m2) and fresh weight (FW, g) were measured imme-
diately for every leaf sample. The leaf area (A, m2) was 
determined with a HP G4050 scanner (HP Development 
Company, L.P., USA) and calculated as the product of 
pixel count per leaf and the actual area represented by 
each pixel. The leaf dry weight (DW, g) was measured 
after the leaves were dried in the oven at 80 °C for 48 h. 
Finally, equivalent water thickness (EWT, g/m2), leaf 
mass per area (LMA, g/m2) and area-based leaf nitrogen 
content (Narea, g/m2) were calculated with the equations 
below:

where mass-based leaf nitrogen content (Nmass, %) was 
determined using Kjeldahl method with SEAL AutoAn-
alyzer 3 HR (SEAL Analytical, Ltd., German). Note that 
the unit g/m2 of EWT can be interconverted to cm (1 g/
m2 = 10−4 g/cm2 = 10−4 cm) via the density of water (1 g/
cm3: 1 g water = 1 cm3 water) [48].

The adjusted water‑removal technique
The water removal technique was originally proposed by 
Gao and Goetz [27] with the assumption that there is a 
linear spectral background level and a nonlinear combi-
nation of a reflectance spectrum of leaf water and that of 
leaf dry matter for fresh leaves. However, the assumption 
of linear spectral background is only valid for small wave-
length regions [27] and this technique is often performed 
on spectral segments, such as 1500–1780 nm and 2100–
2200 nm [15, 27]. The use of narrow and discrete spec-
tral segments may limit the utility of full-range spectral 
information. Therefore, this technique was adjusted in 
this study to obtain full-range water removed (WR) spec-
tra by adopting PROSPECT-5B [42] for modeling leaf 
reflectance spectra. The input parameters of PROSPECT-
5B include chlorophyll content (Cab), carotenoid content 
(Cxc), EWT, LMA, and structural parameter (Nstruc) [42]. 
To estimate the WR spectra, the first step was to find the 
best combination of input parameters for PROSPECT-5B 
by minimizing the following merit function:

where Rλ and R̃� are the measured reflectance (MR) 
and modeled reflectance values of a spectrum at wave-
length λ, respectively. The mathematical optimization 

(1)EWT = (FW− DW)/A

(2)LMA = DW/A

(3)Narea = Nmass × LMA

(4)min =
n∑

�=1

(
R� − R̃�

)2

was performed with the ‘CONSTRAINED_MIN’ func-
tion in IDL 8.3 (Exelis Visual Information Solutions, 
Boulder, CO, USA), which gives the best combination 
of parameters that minimizes the difference between 
modeled and measured reflectance for the specified 
spectral range. Since most nitrogen and dry matter 
related absorption features are located in the short-
wave infrared (SWIR) region [10], the spectral range 
1000–2400 nm was used in this study for implementing 
PROSPECT model inversion as well as the determina-
tion of WR spectra. In addition, the Cab and Cxc were 
fixed at 30 and 3  μg/cm2, respectively, because these 
pigments have no absorption in this spectral region 
[42, 47].

After the PROSPECT model inversion process, the sec-
ond step was to model the leaf water reflectance spectra 
by inputting the inverted parameters into PROSPECT-5B 
with zero LMA values. Since pigments have no influences 
on the reflectance in this spectral region, the parameters 
Cab and Cxc were fixed at 30 and 3  μg/cm2, respectively 
[42, 47]. As water was the only absorbing chemical left 
in fresh leaves for this purpose, the modeled leaf water 
reflectance spectra were named as water-only (WO) 
spectra. The residual spectra, namely the WR spectra, 
were estimated as below:

where Rλ
wo was the reflectance of a WO spectrum at 

wavelength λ. R̄ was the mean reflectance of a MR spec-
trum over all wavelengths.

After the absorption of dry matter was removed, the 
amplitude of modeled leaf water reflectance increased 
for all wavelengths except for the strong water absorption 
region around 1900 nm (Fig. 1a). Many nitrogen-related 
absorption features that were not obvious in the MR 
spectrum became visible in the WR spectrum, such as 
the feature at 2180 nm (Fig. 1b). Note that the reflectance 
values have physical meanings and cannot be negative, 
but the amplitudes of WR spectra were relative values 
estimated from MR spectra and the negative MR values 
only meant the negative differences between a reflectance 
spectra and the corresponding water-only spectrum. 
Similar terminology is also seen in “derivative spectra”, 
which represents the derivative data of reflectance spec-
tra and encompasses negative and positive values [49].

Continuous wavelet analysis (CWA)
Mathematically, continuous wavelet transform (CWT) 
is a linear operation that performs the convolution of 
reflectance spectrum with a scaled and shifted mother 
wavelet. The realization process is shown as below:

(5)WR� =
(
R� − Rwo

�

)
/R̄
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where ψ(�) is the mother wavelet function and ψa,b(�) 
is the scaled and shifted version of ψ(�) . Wr(a, b) is the 
wavelet coefficient (or wavelet feature, denoted as WFb,a) 
for the scaling factor a and the shifting factor b. The 
scaling factor indicates the width of the scaled mother 
wavelet, which can be comparable with the width of an 
absorption feature. Narrow absorption features can be 
captured by a low scaling factor while broad features need 
high scaling factors. The scaling factor used in this study 
is at dyadic scales 23 (scale 3), 24 (scale 4), 25 (scale 5), 
and 26 (scale 6). The shifting factor determines the cen-
tral wavelength of shifted mother wavelet, which is used 
to capture the peak or valley of an absorption feature. 
Taking the absorption feature of nitrogen at 2180 nm as 
an example, the three scaled and shifted mother wave-
lets (Scale 3, Scale 4, and Scale 5) are displayed in Fig. 1b. 
The spectral width of the corresponding wavelet feature 
increases with the scaling factor. Different with a spectral 
index calculated with two discrete wavelengths, a wavelet 

(6)ψa,b(�) =
1
√
a
ψ

(
�− b

a

)

(7)Wr(a, b) =
+∞∫

−∞

r(�)ψa,b(�)d�

feature represents the information for a continuous spec-
tral sub-region that determined by scaling and shifting 
factors. Although CWA is known to be resistant to sig-
nal noise, noise reduction is not the focus of this study. 
Rather, we took the advantage of CWA in capturing and 
enhancing the absorption features by nitrogen and dry 
matter. The multiscale property of CWA is well suited for 
characterizing the absorption changes that may occur in 
different widths over different wavelength ranges.

The one-dimensional reflectance spectra are converted 
into two-dimensional wavelet power (magnitude of wave-
let coefficient) datasets after the application of CWT. 
Hence, a scalogram of coefficients of determination (R2) 
was obtained at all wavelengths and scales [33]. Moreo-
ver, the regions that compromised the top 1% R2 values 
were extracted from the comprised scalograms and finally 
the wavelet feature with the highest R2 was selected. In 
this study, the mother wavelet function was determined 
as the second derivative of the Gaussian function because 
of its similarity to the shapes of leaf absorption features 
[35]. CWT was conducted using the ‘WV_CWT’ func-
tion in IDL 8.3 (Exelis Visual Information Solutions, 
Boulder, CO, USA). Since the wavelet is linearly additive 
[37], the wavelet power derived from a WR spectrum 
equals the difference in wavelet power between the MR 
spectrum and the WO spectrum divided by the mean of 
reflectance over all wavelengths as follows:

where WP represents the wavelet power and other sym-
bols are the same as in Eq. (5).

Evaluation of estimation accuracy
The widely used normalization difference (ND) indices 
were calculated in this study for comparison with the 
wavelet features in the evaluation of estimation accu-
racy. The ND index wavelengths were determined as the 
best band combination from R2 scalograms except these 
combinations with difference between two wavelengths 
within 10  nm [50, 51]. Since the aim of this study was 
to build a robust model across rice and wheat crops, the 
most sensitive wavelet features and ND indices to LMA, 
Narea and Nmass were determined separately from pooled 
data. These spectral features were used to represent their 
regression relationships and generate direct estimates 
of those traits. Since area-based foliar traits are directly 
related to the interaction of foliar constituents with light 
and can be more easily estimated with spectral features 
than mass-based traits [41, 44], Nmass was also estimated 
in an indirect way as the ratio of estimated LMA and 
Narea values as below:

(8)WP(WR�) = WP
(
R�)/R̄−WP(Rwo

�

)
/R̄

Fig. 1  a Represents a measured reflectance spectrum and the 
modeled water-only spectrum for a fresh leaf and b represents 
the corresponding water-removed spectrum. The vertical dashed 
lines correspond to the absorption features of nitrogen centered at 
1510 nm, 1690 nm, 2060 nm, 2180 nm, and 2300 nm. In addition, 
three scaled and shifted mother wavelets (labeled as S3, S4, and S5) 
at scales 3–5 with the shifting factor of 2180 nm are presented in (b)
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The indirect estimation of Nmass, based on two wavelet 
features separately sensitive to Narea and LMA, might 
outperform the direct estimation with a single wavelet 
feature.

The estimation accuracies were evaluated with the met-
rics R2 and root mean square root (RMSE):

where yi and y′i are the measured and estimated trait val-
ues for sample i. ȳ is the arithmetic mean of trait and n is 
the number of samples. Due to the intrinsic discrepancy 
between rice and wheat leaves, the best feature for rice 
may not be exactly the same as that for wheat and vice 
versa. A generic model that would work best across rice 
and wheat samples was preferred over that specific to one 
crop alone. Therefore, the selected features were deter-
mined from the pooled data of rice and wheat. These 
evaluation metrics were calculated from two commonly 
used validation processes. One is a 10-fold cross valida-
tion procedure applied to the pooled data, and the other 
is the leave-one-out (LOO) method. In the LOO process, 
three sub-datasets were used for model calibration and 
the left one was used for validation. This validation pro-
cess was repeated for the every one of the four sub-data-
sets (Rice 2015, Rice 2016, Wheat 2016, and Wheat 2017) 
in Table 1. Since many studies also used the VNIR region 
to calculate the Red-Edge Chlorophyll Index (CIred edge) 
for leaf N content estimation [16, 52], a brief comparison 
between SWIR and VNIR regions was presented.

Results
Descriptive statistics of foliar traits
Differences in foliar traits between the two datasets could 
be observed in terms of range and magnitude (Fig.  2). 
Compared with RICE, the WHEAT dataset exhibited 
a higher mean and a wider range for EWT, Narea and 
Nmass (p < 0.01) but a lower mean and a narrower range 
for LMA (p < 0.01). In addition, Narea was positively cor-
related with Nmass for both RICE (r = 0.79, p < 0.01) and 
WHEAT (r = 0.92, p < 0.01) (Table 2). Narea was positively 
correlated with LMA for WHEAT (r = 0.65, p < 0.01) but 

(9)Estimated Nmass =
Estimated Narea

Estimate LMA
× 100%

(10)R2 = 1−
∑

i

(
yi − y′i

)2
∑

i

(
yi − ȳ

)2

(11)RMSE =

√∑
i

(
yi − y′i

)2

n

not correlated with EWT for both datasets. Nmass was 
correlated with LMA for RICE (r = − 0.56, p < 0.01) and 
WHEAT (r = 0.31, p < 0.01) but correlated with EWT 
only for RICE (r = − 0.30, p < 0.01).

As one of the most important factors in this experi-
ment, the effect of N treatment on leaf reflectance spec-
tra is displayed in Fig.  3 by taking the WHEAT 2017 
samples as an example. The Nmass, Narea, and LMA val-
ues for WHEAT 2017 increased with the N fertiliza-
tion rate, and EWT was almost invariant for N1 and N2 
(Fig.  3a–d). The leaf reflectance spectra under three N 
treatments exhibited marginal differences in the SWIR 
region (Fig. 3e). This phenomenon was expected for fresh 
leaves, which demonstrated the need of water removal 
technique to remove the water absorption and CWA 
to enhance the absorption features of nitrogen and dry 
matter.

Relationships of Narea with optimal wavelet features 
and ND indices
The highest R2 values between Narea and wavelet fea-
tures for pooled data were 0.64 and 0.77 for MR and WR 
spectra, respectively (Fig. 4a, b). The two feature regions 
determined for MR spectra were centered at 2060  nm 
and 2180  nm, and both of them matched up with the 
absorptions of protein and nitrogen [10]. As for the WR 
spectra, a similar feature region with longer wavelengths 
was found, and a minor one exhibited much shorter 
wavelengths than the counterpart for the MR spectra.

The R2 contour maps for the relationship between Narea 
and ND indices are shown in Fig. 4c, d for MR (maximum 

Fig. 2  Stacked frequency distributions of a EWT, b LMA, c Narea, and 
d Nmass for the two datasets RICE and WHEAT. The statistics before and 
after slash (/) in each distribution plot are shown for RICE and WHEAT, 
respectively
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R2 = 0.40) and WR (maximum R2 = 0.37) spectra, respec-
tively. Seven wavelength regions most sensitive to Narea 
were observed for the MR spectra and five of them were 
close to the diagonal line, which indicates the presence 
of similar wavelengths in an ND index. As for the WR 
spectra, the majority of wavelength combinations were 
located in the 1700–1800 nm region in which both λ1 and 
λ2 fall.

Figure 5 shows the relationships of Narea with four opti-
mal spectral features (WF2060,3, WF2181,4, ND2192,2202 and 
ND1749,1773) determined from the top 1% correlations in 
Fig.  4. The two optimal wavelet features (WF2060,3 and 

WF2181,4) used the spectral information over two spec-
tral sub-regions that matched well with the absorption 
features centered at 2060  nm and 2180  nm (Fig.  4a, b). 
Nevertheless, the two optimal ND indices (ND2192,2202 
and ND1749,1773) used the spectral information at four 
individual wavelengths 1749 nm, 1773 nm, 2192 nm and 
2202 nm (Fig. 4c, d). All of the relationships for WHEAT, 
RICE and pooled data were linear. After the application 
of the WR process, the Narea ~ WF correlation exhibited 
a pronounced improvement (R2 increased from 0.71 to 
0.83) over that from the MR spectra for the WHEAT 
dataset but a slight increase for RICE dataset (Fig.  5a, 

Table 2  Pearson’s correlation matrix for EWT, LMA, Narea and  Nmass (top-right triangle for RICE and bottom-left triangle 
for WHEAT)

EWT LMA Narea Nmass

**03.0−60.0**65.0TWE

LMA 0.08  0.04 − 0.56** 

Narea 0.05 0.65**      0.79** 

Nmass 0.01 0.31**     0.92**  

**Significant correlations with p < 0.01

Fig. 3  The boxplots of a Nmass, b Narea, c EWT and d LMA as well as e averaged leaf reflectance spectra under three nitrogen treatments (N0: 
0 kg hm−2, N1: 150 kg hm−2, N2: 300 kg hm−2) for WHEAT 2017 samples
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b). Overall, this caused an increase of R2 from 0.64 to 
0.77 for the pooled data. For Narea ~ ND correlations, the 
combination of an increase for RICE and a decrease for 
WHEAT resulted in an overall decrease in R2 (Fig. 5c, d).

Because of the linearly additive property of CWT, the 
final regressions from the WR spectra could be decom-
posed into intermediate regressions to understand how 
the effect of water absorption was removed. Taking the 
Narea estimation as an example, Fig. 6 shows the interme-
diate and final regressions based on Eq.  (8) to illustrate 
the advantages of the water removal technique. Narea was 
well correlated to the WF2181,4 derived from the MR spec-
tra (Fig. 6a) but not to the WF2181,4 derived from the WO 
spectra for both RICE and WHEAT datasets (Fig.  6b). 
The WF2181,4 ~ Narea relationship in the MR spectra was 
weaker than that in the WR spectra (Fig.  6c, d). After 
the removal of water absorption information in the WO 
spectra (Fig.  6e), the WR-derived WF2181,4 that equaled 
the difference between MR-derived and WO-derived 
WF2181,4 values contained no more water information 
(p < 0.001) (Fig.  6f ). Clearly, the WR-derived WF2181,4 
showed improved relationships with Narea with increases 

of R2 values by 0.23 and 0.18 for RICE and WHEAT data-
sets, respectively.

Relationships of Nmass with optimal wavelet features 
and ND indices
The highest R2 between Nmass and wavelet features for 
pooled data were 0.71 and 0.68 for MR and WR spec-
tra, respectively (Fig.  7a, b). The three feature regions 
determined for MR spectra were centered at 2050 nm, 
2120 nm and 2170 nm, all of which corresponded to the 
absorption wavelengths of protein and nitrogen [10] 
but showed an offset about 10 nm. As for the WR spec-
tra, only one feature region sensitive to Nmass was found 
and its center wavelength (2110 nm) was 20 nm off the 
known absorption feature.

The R2 contour maps for the relationships between 
Nmass and ND indices are shown in Fig.  7c, d for MR 
(maximum R2 = 0.32) and WR (maximum R2 = 0.37) 
spectra, respectively. Regardless of MR and WR spec-
tra, wavelength regions sensitive to Narea were dis-
persed on the contour map and a majority of them were 
close to the diagonal line.

Figure 8 shows the linear relationships of Nmass with 
four optimal spectral features (WF2053,3, WF2113,4, 

Fig. 4  Coefficients of determination (R2) for the relationships of Narea with a MR spectra and b WR spectra derived wavelet features, and c MR 
spectra and d WR spectra derived ND indices. Regions highlighted in red on the scalograms represent the top 1% R2 for wavelet features or ND 
indices. The downward arrows on the top of the figure indicate the wavelength locations of absorption features with both 2060 nm and 2180 nm 
for protein and nitrogen
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ND2281,2291 and ND2147,2161) determined from the 
top 1% regions in Fig.  7. With the WR technique, the 
Nmass ~ WF correlation exhibited a decrease over that 
from the MR spectra for the individual datasets and 
for the pooled data (Fig. 8a, b). Narea ~ ND correlations 
increased from MR spectra to WR spectra but the R2 
values were still substantially lower than those for the 
Nmass ~ WF correlations (Fig. 8c, d).

Relationships of LMA with optimal wavelet features 
and ND indices
The highest R2 between LMA and wavelet features for 
pooled data were 0.62 and 0.71 for MR and WR spectra, 
respectively (Fig.  9a, b). The two feature regions deter-
mined for MR spectra were centered at 2210  nm and 
2270  nm. The former did not coincide with any known 
absorption feature but the latter matched up with the 
absorption features of cellulose, sugar and starch [10]. 
After the water removal process, a similar feature region 
was found with longer wavelengths and a narrower range 

of scales. In addition, a new feature region with shorter 
wavelengths was found and exhibited a wavelength cen-
tered at 1580  nm that was associated with the absorp-
tions of starch and sugar [10].

The R2 contour maps for the correlations between 
LMA and ND indices for pooled data are shown in 
Fig. 9c, d for MR (maximum R2 = 0.60) and WR (maxi-
mum R2 = 0.60) spectra, respectively. Three wavelength 
regions most sensitive to LMA for the MR spectra 
were represented by center wavelengths λ1 at 1450 nm, 
1870  nm and 2230  nm, and λ2 at 2240  nm. As for the 
WR spectra, the most significant wavelength combina-
tions were located in the regions with both λ1 and λ2 
shorter than 1800 nm. The ND index regions represent-
ing the top 1% R2 with LMA were generally more scat-
tered than the wavelet feature regions, and therefore 
more difficult to relate with major absorption features 
documented in the literature.

Figure  10 shows the relationships of LMA with four 
optimal spectral features (WF2273,4, WF1578,4, ND2236,2247 

Fig. 5  Relationships of Narea with wavelet features (top row) and ND indices (bottom row) derived from MR spectra (left column) and WR spectra 
(right column). Red, blue and black lines represent linear fits on RICE, WHEAT and pooled data, respectively. All regressions are statistically significant 
(p < 0.001)
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and ND1716,1727) determined as the best candidates from 
the top 1% correlations in Fig. 9. These relationships were 
linear for WHEAT, RICE and pooled data. With the WR 
technique, the LMA ~ WF correlation exhibited a pro-
nounced improvement (R2 increased from 0.45 to 0.66) 
over that from the MR spectra for the RICE dataset but 
did not change for WHEAT (Fig. 10a, b). This caused an 
increase of R2 from 0.62 to 0.71 for the pooled data. For 
LMA ~ ND correlations, the combination of a decrease 
for RICE and an increase for WHEAT led to no change in 
R2 for the pooled data (Fig. 10c, d).

Assessment for the estimations of LMA, Narea and Nmass
Table  3 shows the estimation accuracy for LMA, Narea 
and Nmass over the pooled data with the 10-fold cross-
validation. In particular, Nmass was estimated with the 
determined wavelet features as shown in Fig.  10 (the 
direct way) and with the ratio of estimated Nmass and 
LMA values (the indirect way). In all cases, wavelet fea-
tures outperformed ND indices substantially in the 
estimations of Narea and Nmass for both MR and WR 
spectra. For the estimation of Narea, the accuracy with 
the best correlated wavelet features was improved from 
MR spectra (R2 = 0.64 and RMSE = 0.22  g/m2) to WR 
spectra (R2 = 0.77 and RMSE = 0.18  g/m2), but that 
with ND indices even decreased slightly. For the direct 

estimation of Nmass with the best correlated wavelet fea-
tures and ND indices, there was no significant difference 
in estimation accuracy before and after the application 
of water removal. As the ratio of wavelet-derived Narea 
and LMA, Nmass could be better estimated from WR 
spectra (R2 = 0.82 and RMSE = 0.32%) than from MR 
spectra (R2 = 0.71 and RMSE = 0.40%). As can be seen 
in Fig. 11, the scatter plot of estimated versus measured 
Nmass is closer to the 1:1 line, especially for samples in the 
WHEAT dataset. This indirect estimation of Nmass from 
WR spectra was also more accurate than the direct esti-
mation. The improvement in the indirect estimation of 
Nmass from MR spectra to WR spectra was not seen for 
ND indices. The performance of these wavelet features 
derived from the SWIR region (R2 = 0.77 and 0.82 for 
Narea and Nmass, respectively) was better than CIred edge 
from the VNIR region (R2 = 0.76 and 0.71 for Narea and 
Nmass, respectively), especially for Nmass.

In addition to the 10-fold cross validation, the LOO 
validation accuracies are listed in Table 4. Generally, the 
estimation accuracy from the LOO process was lower. 
However, both wavelet features and ND indices derived 
from the WR spectra still produced higher R2 for LMA, 
Narea and the ratio of Narea to LMA (Nmass in an indirect 
way) than those from the MR spectra. As for Nmass esti-
mation, the indirect way with wavelet features (R2 = 0.79 

Fig. 6  Relationships between WF2181,4 and (a, b, c) Narea and (d, e, f) EWT derived from MR spectra (left column), WO spectra (middle column) and 
WR spectra (right column). Particularly, the WF2181,4 at right column was equal to the difference between WF2181,4 at left column and middle column. 
Red and blue lines represent linear fits on RICE and WHEAT, respectively. All regressions are statistically significant (p < 0.001) except for that in (b, f)
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and RMSE = 0.34%) still worked better than the direct 
way (R2 = 0.61 and RMSE = 0.46%).

Discussion
Difference in sensitive spectral features derived from MR 
and WR spectra
When comparing the spectral features specifically sen-
sitive to LMA, Narea and Nmass, we found that the differ-
ence in wavelet feature was less significant between MR 
and WR spectra than that in ND index. The highlighted 
feature regions for ND indices were generally more dis-
persed across the scalograms, which complicated the 
selection of the best ND indices and was also seen in the 
studies by le Maire et al. [51] and Wang et al. [53]. Two 
dispersed index regions with even similar R2 values would 
lead to substantially different wavelength combinations, 
not to mention many of them as highlighted in Figs. 4, 7 
and 9. The sensitive wavelet features were mostly concen-
trated in no more than two feature regions, from which 
it would be easier to select the best wavelet features in 
less than three scales and wavelength ranges. The mis-
match of the wavelengths selected by ND indices with the 
absorption centers suggested the weakness of ND indi-
ces and the strength of wavelet features in capturing the 

changes in nitrogen absorption features. This might be 
attributed to the different calculation principles for ND 
indices [54] and wavelet features [33]. The former was 
determined by the reflectance values at two wavelengths 
and was sensitive to the amplitude of reflectance spectra, 
but the latter mainly captured the shape of a spectral seg-
ment [35]. Before and after water removal, the amplitude 
of spectra changed but the shapes of absorption features 
retained and became even more obvious. Therefore, com-
mon sensitive wavelet features can be observed between 
MR and WR spectra, but not for ND indices.

Necessity of removing the effect of water absorption 
with CWA​
The absorption of leaf water is strong in the SWIR 
region [19, 42, 48], hence the subtle absorption features 
of such dry matter constituents as protein and nitro-
gen are masked in the reflectance spectra of fresh leaves 
(Fig.  1). Many studies have shown that this masking 
effect reduces the estimation accuracy of these chemical 
constituents [14, 15, 55]. This is supported by our find-
ings that the estimations of LMA and Narea were sig-
nificantly improved through the wavelet-based method 
after the effect of water absorption had been removed. 

Fig. 7  Coefficients of determination (R2) for the relationships of Nmass with a MR spectra and b WR spectra derived wavelet features and c MR 
spectra and d WR spectra derived ND indices. Regions highlighted in red on the scalograms represent the top 1% R2 for wavelet features or ND 
indices. The downward arrows on the top of the figure indicate the wavelength locations of absorption features with both 2060 nm and 2180 nm 
for protein and nitrogen and 2130 nm for protein
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Particularly, Kokaly and Clark [11] modeled the esti-
mation accuracy of leaf chemistry under eight levels of 
water content in percentage of fresh weight and found 
that the accuracy decreased rapidly when leaf water con-
tent exceeded 30%. To date, the effect of water absorp-
tion on ND indices and wavelet features is still poorly 
understood. Here we present an exploration of their per-
formance for Narea estimation under different water con-
tent levels in EWT. To avoid the confounding factors of 
leaf surface property and internal structure, the WHEAT 
dataset with a wider range of EWT was selected to gener-
ate three subsets with EWT levels of 130–140 g/m2 (W1), 
150–160 g/m2 (W2), and 170–180 g/m2 (W3).

The optimal index ND2192,2202 was well correlated 
to Narea only at the lowest EWT level (Fig.  12a), but 
WF2060,3 bore stronger relationships with Narea at every 
EWT level (Fig.  12b). In contrast to the close relation-
ships of Narea and ND2192,2202 under three EWT levels, the 
Narea ~ WF2060,3 relationship was sensitive to EWT level. 

This is probably because WF2060,3 made use of the spec-
tral information in the 2020–2100 nm range [33], which 
is the right wing of the water absorption valley centered 
at 1950 nm [19] and whose shape changes as a function 
of water content [11]. In spite of the tight Narea ~ WF2060,3 
relationships, the sensitivity of WF2060,3 to EWT reduced 
the model transferability, e.g., from subset W1 to subset 
W3. Therefore, it was essential to remove water absorp-
tion for building a robust model that can be directly 
applied to datasets with different EWT levels.

How did the water removal technique improve 
the estimations of Narea and Nmass?
The accuracies of LMA and Narea estimations using 
wavelet features were improved when the effect of 
water absorption was removed with the water removal 
technique. Some recent studies used WR spectra 
through spectral indices or partial least squares regres-
sion to improve the estimations of LMA and Nmass [15, 

Fig. 8  Relationships of Nmass with (a, b) wavelet features and (c, d) ND indices derived from MR spectra (left column) and WR spectra (right column). 
Red, blue and black lines represent linear fits on RICE, WHEAT and pooled data, respectively. All regressions are statistically significant (p < 0.001)
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28, 29, 56], but they did not provide explanations as 
to why those improvements were obtained. This study 
reported the application of CWA to the WR spectra for 
estimating foliar traits by removing the effect of water 
absorption and enhancing the absorption features of 
foliar traits. The better WF2181,4 ~ Narea relationships in 
the WR spectra than in the MR spectra (Fig. 6a, c) could 
be explained by the information on EWT in WF2181,4, 
which was derived from the MR spectra (Fig.  6d) but 
not from the WR spectra (Fig. 6f ).

With regard to the water removal technique for Nmass, 
the wavelet-based direct way did not improve the esti-
mation accuracy but the indirect way exhibited a signif-
icant improvement (Table  3). This could be attributed 
to the improved estimations of both LMA and Narea. 
Kokaly and Clark [11] suggested any remote sensing 
algorithm for retrieving foliar chemicals from fresh leaf 
spectra should remove the influence of water absorp-
tion. Wang et  al. [56] used the normalized dry matter 
index (NDMI) from WR spectra to estimate the LMA 
but only obtained slight improvement over MR spectra 
as for the use of ND indices in this study (Fig. 10c, d). 
The wavelet features determined for LMA estimation 
by Cheng et al. [35] from a wide range of plant species 

performed better than NDMI, but they might still suf-
fer from the effect of water absorption and be hard to 
be applied to other datasets with different water con-
tent levels. Therefore, the difficulty in LMA estimation 
hampered the indirect estimation of Nmass due to the 
dominant role of LMA as the denominator in Eq.  (9). 
For the first time, this study obtained improved estima-
tions for LMA as well as Narea by applying CWA to the 
WR spectra and eventually increased the estimation 
accuracy for Nmass in the indirect way.

The close fits of data points to the linear regression and 
the 1:1 lines in Figs.  5 and 11 suggested the best mod-
els worked well for the whole ranges of Narea and Nmass. 
Although the rice and wheat plants in this experiment 
were deliberately treated in the field, the data were col-
lected in natural light conditions and the models should 
be applicable to plants growing in the same condi-
tion and without any N treatment. To take advantage 
of the proposed strategy of combining CWA and water 
removal, it is imperative to have a dataset exhibiting weak 
covariance of EWT with LMA and Narea. Generally, this 
applies to leaf level but may not apply to canopy level 
where the traits are determined as the products of leaf 
traits and leaf area index and high correlations often exist 

Fig. 9  Coefficients of determination (R2) for the relationships of LMA with a MR spectra and b WR spectra derived wavelet features and c MR 
spectra and d WR spectra derived ND indices. Regions highlighted in red on the scalograms represent the top 1% R2 for wavelet features or ND 
indices. The downward arrows on the top of the figure indicate the wavelength locations of absorption features reported in [10] with 1580 nm for 
starch and sugar and 2270 nm for cellulose, sugar and starch
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between EWTcanopy and other traits. In that case, it is dif-
ficult to find a wavelet feature insensitive to EWTcanopy 
but sensitive to another canopy trait. Therefore, the water 
removal procedure would have limited contribution to 

the improvement of Nmass or Narea estimation. To test 
the suitability of our strategy at canopy level, one would 
need to avoid crop datasets with high correlations of 
canopy EWT and nitrogen related traits. Alternatively, 

Fig. 10  Relationships of LMA with (a, b) wavelet features and (c, d) ND indices derived from MR spectra (left column) and WR spectra (right 
column). Red, blue and black lines represent linear fits on RICE, WHEAT and pooled data, respectively. All regressions are statistically significant 
(p < 0.001)

Table 3  Assessment of LMA, Narea and Nmass estimations generated with the direct and indirect ways

The R2 and RMSE values were obtained using a 10-fold cross-validation

Note the units of RMSE were g/m2 for LMA and Narea and % for Nmass

Dependent variables Explanatory variables MR spectra Explanatory variables WR spectra

R2 RMSE R2 RMSE

LMA WF2273,4 0.62 4.95 WF1578,4 0.70 4.38

ND2236,2247 0.60 5.12 ND1716,1727 0.59 5.13

Narea WF2060,3 0.64 0.22 WF2181,4 0.77 0.18

ND2192,2202 0.39 0.29 ND1749,1773 0.36 0.30

Nmass-direct WF2053,3 0.71 0.40 WF2113,4 0.68 0.42

ND2283,2286 0.31 0.62 ND2153,2154 0.36 0.60

Nmass-indirect WF2273,4, WF2060,3 0.71 0.40 WF1578,4, WF2181,4 0.82 0.32

ND2236,2247, ND2192,2202 0.31 0.62 ND1716,1727, ND1749,1773 0.33 0.61
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Fig. 11  The scatter plots of measured and estimated Nmass derived as the ratio of LMA and Narea estimated from (a, b) wavelet features and (c, d) 
ND indices from MR spectra (leaf column) and WR spectra (right column). The LMA and Narea estimations were generated from the 10-fold cross 
validation process

Table 4  Assessment of LMA, Narea and Nmass estimations generated with the direct ways and the indirect way

The R2 and RMSE values were obtained using a leave-one-out validation

Not the units of RMSE were g/m2 for LMA and Narea and % for Nmass

Dependent variables Explanatory variables MR spectra Explanatory variables WR spectra

R2 RMSE R2 RMSE

LMA WF2273,4 0.60 5.09 WF1578,4 0.63 4.88

ND2236,2247 0.46 5.93 ND1716,1727 0.50 5.71

Narea WF2060,3 0.56 0.25 WF2181,4 0.72 0.19

ND2192,2202 0.25 0.32 ND1749,1773 0.32 0.31

Nmass-direct WF2053,3 0.65 0.44 WF2113,4 0.64 0.44

ND2283,2286 0.29 0.63 ND2153,2154 0.14 0.69

Nmass-indirect WF2273,4, WF2060,3 0.61 0.46 WF1578,4, WF2181,4 0.79 0.34

ND2236,2247, ND2192,2202 0.01 0.74 ND1716,1727, ND1749,1773 0.26 0.64
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the strategy could be applied to natural plant types 
such as trees [15] and grasses [28, 29]. Although this 
research was conducted at leaf level, it represented a 
significant advance in the mechanistic understanding 
of water removal technique for removing water signals 
and enhancing nitrogen and dry matter signals in fresh 
leaves. The leaf-level analysis concentrated on chemical 
signals and laid the foundation of water removal applica-
tion for scaling up to the canopy level. To better under-
stand the mechanism at canopy level, the strategy should 
be examined in detail by considering other external fac-
tors such as canopy structure [57, 58], soil background 
[59, 60], solar zenith angle [61, 62], view zenith angle [7, 
43], and diffuse/direct light condition [63]. Finally, the 
signal to noise ratio should also be accounted for in case 
the nitrogen-related second overtones are suppressed 
by the spectral noise from instruments and atmospheric 
interference [10].

Physical interpretations of determined wavelet features
Low-scale wavelet features are able to capture the local 
shape of absorption features associated with biochemi-
cal parameters while high-scale ones characterize the 
broad continuum in leaf reflectance spectra [30, 33, 35]. 
The matching wavelet features could be found for Narea 
and LMA but not for Nmass, which might suggest that the 
area-based expressions (Narea and LMA) were better rep-
resentations of the interaction between matter and light 
per unit surface area [41].

The absorption feature at 2270 nm caused by bending 
and stretching of chemical bonds in cellulose, sugar and 

starch does not obviously appear in the reflectance spec-
tra (Figs. 1, 13a), but it is well represented in the wavelet 
power spectra of MR-derived WF2273,4 (Fig.  13c). Since 
LMA is equivalent to the dry matter content by defini-
tion, we could relate spectral variation to dry matter 
absorption from the perspective of spectroscopy of foliar 
chemistry as done in previous studies [35]. The ampli-
tude of reflectance in the 2200–2350 nm range increases 
with LMA (Fig.  13a), which contradicts the common 
sense that the reflectance should decrease with dry mat-
ter absorption. This might be attributed to the leaf inter-
nal scattering as well as the confounding effect of water 
absorption on leaf reflectance, which makes it difficult 
to derive the LMA with traditional techniques, such as 
ND index [55, 64]. In contrast, the depth of absorption 
center at 2270 nm in the wavelet power spectra follows 
the trend of LMA variation (Fig.  13c). Moreover, the 
absorption feature at 1580 nm by starch and cellulose are 
invisible in the MR spectra (Fig. 1), but it appears clearly 
in the WR spectra after water removal (Fig.  13b). The 
change in the amplitude at WR spectra-derived WF2273,4 
in the wavelet power spectra matches with the variation 
in LMA (Fig. 13d).

Similar to dry matter, the absorption of nitrogen at 
2060 nm and 2180 nm [10] could be well characterized by 
the optimal Narea sensitive wavelet features WF2060,3 (MR 
spectra) and WF2180,4 (WR spectra) (Fig.  14). The close 
matches in wavelength between the determined wavelet 
features and the documented absorption centers docu-
mented [10–12] convince us of the physical interpreta-
tions underlying the empirical WF-Narea relationships.

Fig. 12  Relationships of Narea with a ND2192,2202 and b WF2060,3 derived from the MR spectra at three levels of EWT (W1: 130–140 g/m2, W2: 
150–160 g/m2 and W3: 170–180 g/m2) in the WHEAT dataset. Red, blue and green lines represent linear fits for the data points from W1, W2 and W3, 
respectively. All regressions are statistically significant (p < 0.001)
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Conclusions
The enhancement of absorption features of nitrogen in 
the SWIR region would help improve the spectroscopic 
estimation of leaf nitrogen content from the SWIR reflec-
tance spectra of fresh leaves. This study evaluated the 
applicability of the water-removal technique for increas-
ing the estimation accuracies of LMA, Narea and Nmass 
with CWA and spectral index methods. After removing 
water absorption, the estimation accuracies for LMA 
and Narea were significantly improved with the use of 
individual wavelet features but not with ND indices. 
The two wavelet features WF1578,4 and WF2181,4 derived 
from the WR spectra produced the best estimations for 
LMA (R2 = 0.70, RMSE = 4.38 g/m2) and Narea (R2 = 0.77, 
RMSE = 0.18 g/m2), respectively. Compared to that from 
the MR spectra, the estimation of Nmass from the WR 
spectra only changed marginally with individual wave-
let features (MR spectra: R2 = 0.71, RMSE = 0.40%; WR 
spectra: R2 = 0.68, RMSE = 0.42%). However, a notable 

improvement was obtained when indirectly deriving 
Nmass as a ratio of Narea to LMA (MR spectra: R2 = 0.71, 
RMSE = 0.40%; WR spectra: R2 = 0.82, RMSE = 0.32%). 
Generally, the determined wavelet features performed 
remarkably better than the optimized ND indices for the 
estimations of all the three traits.

The results demonstrated the feasibility of improving 
the estimation of Narea and Nmass from the SWIR reflec-
tance spectra by applying CWA to WR spectra. This 
procedure could suppress the effect of water absorption 
and enhance the absorption features of foliar chemi-
cals. The characterization of nitrogen absorption vari-
ation in the SWIR region with wavelet features offers 
physical interpretations for the direct detection of leaf 
nitrogen content and complements the indirect detec-
tion of nitrogen content via the use of chlorophyll 
absorption bands in the red edge region. The integra-
tion of CWA and water removal provides a new insight 

Fig. 13  Effect of LMA on spectral variation between 2200 and 2350 nm (leaf panel) and 1500–1650 nm (right panel). a, c Represent the MR spectra 
and the corresponding wavelet power spectra at scale 4. b, d Represent the WR spectra and the corresponding wavelet power at scale 4. The 
location and width of the Gaussian-shaped wavelets for the best LMA-sensitive wavelet features WF2273,3 and WF1578,4 from MR and WR spectra are 
presented in (a) and (b), respectively. The black arrows in (c) and (d) point to the wavelength locations of WF2273,3 and WF1578,4, respectively
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for better understanding spectral responses to the vari-
ation in LMA and leaf nitrogen content and has the 
potential for applications to other crops and different 
vegetation types. The technique developed in this study 
could be useful for high throughput phenotyping of leaf 
nitrogen related traits and the non-destructive detec-
tion of nitrogen stress in crops.
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