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Deep convolutional neural 
network for automatic discrimination 
between Fragaria × Ananassa flowers and other 
similar white wild flowers in fields
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Abstract 

Background: The images of different flower species had small inter-class variations across different classes as well 
as large intra-class variations within a class. Flower classification techniques are mainly based on the features of color, 
shape and texture, however, the procedure always involves too many heuristics as well as manual labor to tweak 
parameters, which often leads to datasets with poor qualitative and quantitative measures. The current study pro-
posed a deep architecture of convolutional neural network (CNN) for the purposes of improving the accuracy of iden-
tifying the white flowers of Fragaria × ananassa from other three wild flower species of Androsace umbellata (Lour.) 
Merr., Bidens pilosa L. and Trifolium repens L. in fields.

Results: The explored CNN architecture consisted of eightfolds of learnable weights including 5 convolutional layers 
and 3 fully connected layers, which received a true color 227 × 227 pixels flower image as its input. The developed 
CNN detector was able to classify the instances of flowers at overall average accuracies of 99.2 and 95.0% in the train-
ing and test procedure, respectively. The state-of-the-art CNN model was compared with the classical models of the 
scale-invariant feature transform (SIFT) features and the pyramid histogram of orientated gradient (PHOG) features 
combined with the multi-class support vector machine (SVM) algorithm. The proposed model turned out to be much 
more accurate than the traditional models of SIFT + SVM at overall average accuracies of 82.9 and 55.6% in the train-
ing and test procedure and PHOG + SVM at overall average accuracies of 78.3 and 63.1%, respectively.

Conclusions: The proposed state-of-the-art CNN method demonstrates that artificial intelligence is capable of pre-
cise classification of the white flower images, whose accuracy is comparable to traditional algorithms. The presented 
algorithm can be further used for the discrimination of white wild flowers in fields.
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Background
The distribution and yield of flowers in fields are of sig-
nificant agronomic importance, being the precursor of 
quality of fruits and seeds [8, 24, 33]. Despite exploiting 
several systems to manage them in the past decade, the 
development of fine flower detection systems is still one 
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of the important issues in modern smart agriculture [13, 
15, 30]. Discrimination of flower species is a difficult mis-
sion for the current detection algorithms, because there 
are great variations in viewpoint and scale, illumination, 
partial occlusions, multiple instances etc. in the typical 
flower images [6, 22, 34]. The complex backgrounds also 
make the discrimination task more difficult, for risking 
probably discriminating background scenes rather than 
the object itself [18, 23]. Perhaps the greatest challenge 
originates from the intra-category versus inter-category 
diversification, i.e. there is a slighter difference between 
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images of different categories than within a category 
itself, and yet subtle variation between instances deter-
mine their species [5, 6, 19].

The traditional flower classification is mainly based 
on the three features: color, shape and texture. This 
case requires people to select features for classification. 
An approach using the various features including color, 
shape, and texture was proposed to distinguish the flower 
categories [25]. However, Nilsback’s approach only used 
a single scale to extract the flower features. The multiple 
scale features such as scale-invariant feature transform 
(SIFT) and Gabor-based descriptors were proposed to 
improve the identification accuracy. A new method using 
multiple color SIFT features was proposed to improve 
the performance of flower image classification [32]. Guru 
et  al. [14] presented a model extracting the grey-grade 
co-occurrence matrix, color texture moments and Gabor 
descriptors from the flower images for dealing with the 
flower classification issues [14]. In order to fuse multiple 
features from one image, the visual vocabulary method is 
presented to map certain feature through the clustering 
process and the image can be represented by histogram 
representation based on independent features. Hu et  al. 
[16] explored a visual vocabulary methods to describe the 
four kinds of color-SIFT features for the discrimination 
of flower images [16]. In addition to improving recogni-
tion accuracy in feature extraction algorithms, scholars 
also attempted to improve recognition performance on 
feature recognition algorithms. A marginalized kernel 
algorithm was developed by utilizing the responses of 
the logistic regression-based fusion model for detecting 
the flower images [11]. Those models have demonstrated 
effectiveness for image classification to a certain degree. 
However, plenty of parameters of feature extraction algo-
rithms needed to be tuned and many different types of 
features needed to be reshaped to species semantics. The 
spatial information and correlations sometimes were 
neglected when considering the local features. Besides, 
the encoding of local features causes some informa-
tion loss which also hinders the final image classifica-
tion performance. These algorithms always involve too 
many heuristics as well as manual labor to tweak param-
eters according to the domain to reach a decent level of 
accuracy.

Recently, the biologically inspired two-dimensional 
convolutional neural network (CNN), has been used as 
an effective tool for extracting the image features, giv-
ing superior accuracy on the classification, segmentation 
and retrieval tasks [21]. The basic idea of CNN is to build 
invariance properties into neural networks by creating 
models that are invariant to certain inputs transformation 
[35]. The proposed CNN architecture consists of alter-
natively stacked convolutional layers and spatial pooling 

layers. The convolutional layer is used to extract feature 
maps by linear convolutional filters followed by nonlin-
ear activation functions such as the rectified linear units. 
Spatial pooling is performed to group the local features 
together from spatially adjacent pixels, which is typically 
done to improve the robustness to slight deformations of 
objects [10]. Our network consists of eightfolds of units 
which is similar to the AlexNet network structures [27] 
with learnable weights: 5 convolutional layers, and 3 fully 
connected layers. The convolutional layers and the max 
pooling layers in the whole CNN are presented to cope 
with the deep-level information of flower images. The 
intractable over-fitting case in the process of determining 
the characteristic parameters of network is solved by the 
stochastic gradient descent methods. The classical algo-
rithms of SIFT and pyramid histogram of oriented gradi-
ents (PHOG) [4] combined with the multi-class support 
vector machine (SVM) [3] are compared with the state-
of-the-art algorithm using multi-level convolutional 
architecture of CNN on the flower dataset to exhibit the 
advantage of the proposed architecture.

One of the main goals is that we want to build an arti-
ficial intelligent flower recognition system to accurately 
and automatically distinguish different species of flowers 
in the Fragaria × Ananassa fields. The presented system 
transferred the true color 227 × 227 pixels white flower 
images to 8 layers with learnable weights including 5 con-
volutional layers and 3 fully connected layers. Therefore, 
the input level has 51,529 neuron units at the beginning, 
and the following convolutional layers have a set of 96 fil-
ters. The subsampling layers contain rectified linear units 
layers and pooling layers. The final level is the fully con-
nected layer with 4 neurons. The intractable over-fitting 
problem in determining the characteristic parameters of 
the network is solved by the stochastic gradient descent 
method. To this end, our team has set up a CNN archi-
tecture to recognize flower dataset which consists one 
flower species of Fragaria ×  ananassa and other three 
different wild flower species of Androsace umbellata 
(Lour.) Merr., Bidens pilosa L. and Trifolium repens L. 
There are blur, scale-variant, intra-class variant and inter-
class similar objects among the experimental image data-
set. The photographs of flowers are all captured in natural 
settings with rich and complex backgrounds. Although 
the background usually serves as distractor to detec-
tion model, sometimes it can supply useful information, 
so background content is also considered as the feature 
information for detection target. The rest of the paper 
is organized as follows: firstly, we presented the experi-
mental data and device; The experimental methods are 
introduced subsequently; Then, the experimental results 
are analyzed and discussed. The conclusions are drawn 
finally.
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Experiment
Experiment data
The experimental database composes of four distinct flower 
varieties of Androsace umbellata (Lour.) Merr., Bidens pilosa 
L., Trifolium repens L. and Fragaria × ananassa. These pho-
tos of white flowers were taken from the digital cameras in 
wild. The flower objects with petals and sepals were cropped 
individually from the raw digital photos by hand. There are 
blur, scale-variant, intra-class variant and inter-class similar 
objects among the experimental image dataset. The photo-
graphs of flowers were all captured in natural settings with 
rich and complex backgrounds. Although the background 
usually serves as distractor to detection model, sometimes it 
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can supply useful information, so background content is also 
considered as the feature information for detection target. 
Some primary properties of these white flowers are summa-
rized in Table 1. There are a total 400 flower images in the 
database, where each variety contains 100 images. For mode-
ling the relationship between the flower features and the cor-
responding logical attributes, the experiment employed 60 
and 40 images for both training and test aims for each type, 
respectively.

Experimental devices
The classification algorithm of CNN was trained on the 
flower image dataset with a hardware solution of a Alienware 
17 R4 laptop (DELL, USA) consisting of a NVIDIA GeForce 
GTX 1070 integrated RAMDAC 16  GB graphics card and 
Intel Core(TM) i7-6700H CPU. The algorithms were per-
formed in Matlab R2017a (The Math Works, Natick, USA) on 
Windows 10 (Microsoft, USA) operating system. Caffe origi-
nally developed by the Berkeley vision and learning center 
was used as the deep learning framework [17]. The univer-
sal purpose computing on graphics processing units with 
NVIDIA GPUs using the parallel computing platform and 
application programming interface CUDA 8 with the deep 
neural network library CUDNN 7 were supported by Caffe. 
In our experiment, we took advantage of the NVIDIA GTX 
1070 graphics card with 8 GB memory and 1024 kernels.

Methods
Scale invariant feature transform (SIFT) descriptor
The algorithm of SIFT intends to extract distinctive 
invariant features to represent the image. It uses the dif-
ference of Gaussian function of DoG
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space to discover potential interest points:
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 . The gradient magni-
tudes and orientations of the adjacent pixels around the 
candidate interest point are used to construct the gradi-
ent-orientation histogram. In experiments, 4×4 arrays of 
8 bin histogram is used, a total of 128-dimensional SIFT 
descriptor for representing the key point [32].

Pyramid histogram of orientated gradient (PHOG) 
descriptor
PHOG is a spatial pyramid extension of the histogram 
of gradients (HOG) descriptors. HOG is an effective 
method to characterize the target edge or gradient ori-
entation by extracting the magnitude and orientation 
of gradient distribution in a localized area of an image 
I
(
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)

 . Magnitude M
(
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)

 and orientation φ
(

x, y
)

 of the 
gradient on a pixel are computed as:

Nevertheless, HOG descriptor does not take into 
account the division of the image at different spatial 
scales. The PHOG descriptor is computed by using each 
edge orientation weighted according to its magnitude at 
different spatial levels. PHOG descriptor extend HOG 
descriptor for descriptions of the global shape and the 
local details of image [4].

Support vector machine (SVM)
SVM aims to assign labels to instances based on the 
binary SVM, where the labels are drawn from a finite set 
of several elements. Given training dataset � , a set of N  
points is:
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where yi belongs 1 to M , indicating the class to which the 
point xi attaches. The multi-class method builds binary 
classifiers which distinguish between one of the labels 
and the rest (one-versus-all). The ith class is trained 
with all the training instances of the ith class with posi-
tive labels, and all the rest with negative labels. The one-
versus-all approach takes the advantage of the decision 
hyper plane fi(x) = ωT

i ϕ(x)+ bi to evaluate the class by 
solving the following optimization problem:

where C is the tuning parameter and ζ ij  is the slack 
variable. If yj belongs to the ith class, ŷj = 1 , otherwise 
ŷj = −1 . Finally, the ith class to which an unknown 
instance x̂ belongs can be determined according the cor-
responding largest value of fi(x) [4]:

CNNs architecture
The typical CNN for classification target usually con-
sists of the architecture of the input layer, convolutional 
layers, rectified linear units (ReLU) layers, pooling lay-
ers, fully connected layers and dropout layer [10, 35]. 
The overall deep architecture of CNN for detecting four 
species of white flowers including Fragaria × ananassa, 
Androsace umbellata (Lour.) Merr., Bidens pilosa L. and 

� =
{(

xi, yi
)∣

∣xi ∈ Rp, yi ∈ {1, 2, . . .M}
}N

i=1

(4)
minimize:Ω

(

ω, ζ ij

)

= 1
2
�ωi�

2 + C
∑

ζ ij

subject to: 1− ζ ij ≤ ŷ
(

ωT
i ϕ(x)+ bi

)

, 0 ≤ ζ ij

(5)î = arg max
i=1,2,...,M

fi(x) = arg max
i=1,2,...,M

ωT
i ϕ(x)+ bi

Trifolium repens L. are illustrated in Fig. 1. The network 
specifies the fixed 227 × 227 pixels of a true color image 
as its input. The following convolutional operation esti-
mates the outcome of neurons connect to local regions 
in the input layer. The input image is to be convolved 
with 96 filters of receptive field size 11 × 11 × 3 at stride 
4. Iterating this process in the input at stride of 4 gives 
55 locations along both width and height, leading to an 
output matrix of size 11 × 11 × 3 × 55 × 55. The result of a 
convolution is equivalent to performing one large matrix 
multiply, which evaluates the dot product between every 
filter and every receptive field location. The output of this 
operation would be 96 × 55 × 55, giving the output of 
the dot product of each filter at each location. The next 
ReLU layer uses an elementwise maximum value activa-
tion function with thresholding at zero. The ReLU is pre-
sented to take the place of the earlier standard Sigmoid 
units in the architecture of neural networks, because 
the classical Sigmoid function sometimes produces the 
vanishing gradient issues when calculating the deriva-
tive in the saturating region. The ReLU function avoids 
such issues over and learns much faster than the Sig-
moid function, so it was arranged after each and every 
convolutional and fully-connected layers. The following 
pooling layer will take a downsampling action along the 
width and height spatial dimensions. The subsequent 
fully connected layer is employed to produce a category 
score corresponding to the input attributes. In this layer 
each neuron will be linked to all the numbers in the pre-
vious neurons. The final dropout layer appears after every 
fully connected layer. It separately applied a probabil-
ity score at every neuron of the response map and ran-
domly switches off the activation with the probability to 

Fig. 1 The overall deep architecture of convolutional neural network for detecting four species of white flower species including Androsace 
umbellata (Lour.) Merr., Bidens pilosa L., Trifolium repens L. and Fragaria × ananassa. The arrangement of system is presented from left to right in 
the order: original image data is waiting for analysis at the input level on the left, the feature extraction procedure is performed in the middle layer 
surrounded the pink dashed rectangle and the determined flower attributes are completed in the final level bounded right green dashed rectangle
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diminish the over-fitting problems. The mentioned deep 
structure of CNNs for will be applied to automatic dis-
crimination between the Fragaria  ×  ananassa flowers 
and other similar white wild flowers in fields.

Feature extraction
The first step of pipeline of a standard CNN architec-
ture is the feature extraction. CNN deals with an input 
white flower image and uses a convolutional feature map 
φH×W×D with the input image to generate different level 
features for the final classifiers, where the parameters of 
H , W  and D are the height, width and the number of fil-
ters. In order to quickly learn effective features in a new 
classification task using a relative small number of train-
ing images, we use the transfer learning methods to fine 
tune the pre-trained network. This training method is 
usually much faster and easier than training a network 
with randomly initialized weights from scratch. Most 
of these have been trained on the ImageNet dataset, 
which has 1000 object categories and 1.2 million train-
ing images. An analogous illustration has been used 

previously in discriminative tasks taking on high recog-
nition performance based on CNNs related detectors. 
Thereby, the network structure originally trained on Ima-
geNet for the task of image classification is used for the 
feature extraction [20]. The layers property of the CNN 
architecture is listed Table  2. The network consists of 
twenty-five layers, which are summarized into 8 layers 
according to the local function to process the features. 
There are eight folds with learnable weights comprising 
of five convolutional layers and three fully connected 
layers.

Stochastic gradient descent method
The algorithm of gradient descent [28] is performed to 
optimize the network parameters in order to minimize 
the back-propagation error on the training dataset. The 
gradient descent algorithm updates the parameter vec-
tor so as to minimize the loss function by taking small 
steps in the direction of the negative gradient of the loss 
function:

(6)χi+1 = χi − �∇ψ(χi)

Table 2 Layers property of  the  CNN architecture. The network consists of  twenty-five layers. There are eight layers 
with learnable weights: five convolutional layers, and three fully connected layers

No. Layer name Description

1 Image input 227 × 227 × 3 true color images with zerocenter standardization

2 1st-level convolution 96 channels, 11 × 11 × 3 convolutions

3 ReLU Rectified linear units

4 Cross channel standardization Cross channel standardization with 5 channels per element

5 Max pooling 3 × 3 max pooling

6 2nd-level convolution 256 channels, 5 × 5 × 48 convolutions

7 ReLU Rectified linear units

8 Cross channel standardization Cross channel standardization with 5 channels per element

9 Max pooling 3 × 3 max pooling

10 3rd-level convolution 384 channels, 3 × 3 × 256 convolutions

11 ReLU Rectified linear units

12 4th-level convolution 384 channels, 3 × 3 × 192 convolutions

13 ReLU Rectified linear units

14 5th-level convolution 256 channels, 3 × 3 × 192 convolutions

15 ReLU Rectified linear units

16 Max pooling 3 × 3 max pooling

17 6th-level fully connected layer 4096 fully connected layer

18 ReLU Rectified linear units

19 Dropout 50% of dropout

20 7th-level fully connected layer 4096 fully connected layer

21 ReLU Rectified linear units

22 Dropout 50% of dropout

23 8th-level fully connected layer 4 fully connected layer

24 Softmax Softmax

25 Comprehension output Crossentropyex with Androsace umbellata (Lour.) Merr., Bidens 
pilosa L., Trifolium repens L. and Fragaria × ananassa
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where � is the learning rate, χ is the parameter vec-
tor, ψ(χ) is the loss function and i denotes the iteration 
number. The standard gradient descent algorithm some-
times oscillates along the steepest decreasing route to 
search the optimum. In order to reduce the oscillation, a 
momentum item is supplemented to the above gradient 
descent function:

where τ ∈ [0, 1] is the momentum coefficient. The normal 
gradient descent algorithm estimates the gradient of the 
loss function ψ(χ) using the entire dataset at once. The 
stochastic gradient descent algorithm estimates the gra-
dient of the loss function ψ(χ) and renews the parame-
ters using a stochastic subset of the dataset. In this paper, 
the number of stochastic subset using to train the CNN 
model is set as 10.

Training networks
The CNN uses a receptive field-like layout in which each 
neuron receives connections only from a subset of neu-
rons in the lower layer. The receptive field of a neuron in 
one of the lower layers encompasses only a small region 
of the image. The convolutional layer is sensitive to the 
size of receptive field of image. When the original image 
sizes are around 200 × 200–700 × 700, the area of recep-
tive field can be set between the sizes of 7 × 7 and 15 × 15 

(7)χi+1 = χi − �∇ψ(χi)+τ (χi−χi−1)

[27]. The neurons of structure properties are sometimes 
generated by using the large convolutional kernels, while 
the texture properties are captured by using small convo-
lutional kernels. Generally, the decent size kernels might 
reach the balance between two tendencies. Figure 2 illus-
trates the 96 channels of captured rich structure and tex-
ture feature information from the Fragaria ×  ananassa 
flower image in the first convolutional layer by using size 
of 11 × 11 convolutional kernels. These images contain 
from a different variety of frequency-, orientation- and 
color-selective features. There were 256, 384, 384 and 256 
channels of captured more rich structure and texture fea-
ture information from the second to fifth convolutional 
layer. The layers in the network can produce more com-
plex structure and texture features of flower image for the 
subsequent neurons. These features further exhibit the 
superior performance in the task of identifying the white 
flower images.

Results and discussion
Momentum parameter determination
Figure 3 shows 5 curves of training loss function ψ(χ) of 
a twenty-five-layer architecture of CNN in the iteration 
optimization process with momentum coefficients of 
τ = 0.1, 0.3, 0.5, 0.7 and 0.9 on the white flower dataset. 
The correct use of stronger momentum (as determined 
by τ ) had a dramatic effect on optimization performance 

Fig. 2 Illustrate the 96 channels of captured rich structure and texture feature information from the Fragaria × ananassa flower image in the first 
convolutional layer by using size of 11 × 11 convolutional kernels. These images contain from a different variety of frequency-, orientation- and 
color-selective features
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for the CNNs. The momentum item is actually the con-
tribution of the previous gradient change. It can be seen 
that the contribution of the gradient changes from the 
previous iteration to the current iteration in the training 
set greatly affects the convergence of the loss function. 
Along with the growth of momentum coefficient values 
from τ =  0.1, 0.3 and 0.5 the convergence performance 
is gradually improved. Along with the growth of momen-
tum coefficient values from τ =  0.7 and 0.9 the conver-
gence performance become worse. It indicates that the 
attached momentum item is able to reduce the oscillation 
when algorithm searches the optimum along the convex 
route. Although the convergence speed of curve with 
τ = 0.7 is faster than the one with τ = 0.5 at the beginning 
stage, the convergence performance of curve with η = 0.7 
obviously shocks severely at the iteration locations 
between 50 and 90. Thereby, the momentum parameter 
τ = 0.5 in the stochastic gradient descent function is cho-
sen for training the CNN model.

Accuracy by CNNs
The bottom layer of the CNN framework was used as 
filters for capturing blob and edge features. These pri-
mary features were then processed by deeper network 
framework, which combined the early features to form 
higher-level semantic features. These higher-level seman-
tic features were better suited for following recognition 
tasks [7]. In this paper, we used a multiclass SVM clas-
sifier at the top of the CNN-based classification archi-
tecture for training the high-level CNN image features. 
The stochastic gradient descent algorithm was used for 
speeding up the training the high-dimensional CNN fea-
ture vectors. Firstly, we presented the accuracy achieved 

by using such CNN architecture. The training CNN work 
was implemented offline, i.e., before employing CNN for 
the classification of 240 white flower images. The identi-
fication process itself performed species identification on 
160 white flower images. The confusion matrix [9] dia-
gram is employed to summarize and visualize the results 
of the performance of an algorithm of classification per-
formance of white flower using the CNN algorithm. As 
shown on Fig. 4, the rows indicate the output class (pre-
dicted class), and the columns correspond to the target 
class (actual class). The green diagonal elements show 
for the number and the corresponding percentage of the 
instances where the CNN models correctly measure the 
categories of white flowers. For the training set, 59, 60, 
59 and 59 objects are correctly identified as the flower 
classes of Androsace umbellata (Lour.) Merr., Bidens 
pilosa L., Trifolium repens L. and Fragaria ×  ananassa, 
respectively. These corresponds to 24.6, 25.0, 25.0 and 
24.6% of all 240 training white flower images, respec-
tively. Similarly, for the test set, 38, 40, 37 and 37 objects 
are correctly classified as the flower classes of Androsace 
umbellata (Lour.) Merr., Bidens pilosa L., Trifolium 
repens L. and Fragaria ×  ananassa, respectively. These 
corresponds to 23.8, 25.0, 23.1 and 23.1% of all 160 test 
white flower images, respectively. The red non-diagonal 
elements show where the model has made wrong predic-
tion. For the training set, out of 60 Androsace umbellata 
(Lour.) Merr. cases, 1 object is mistakenly discriminated 
as the species of Fragaria × ananassa. This corresponds 
to 0.4% of all 60 Androsace umbellata (Lour.) Merr. 
instances. Out of 60 Fragaria × ananassa cases, 1 object 
is mistakenly detected as Trifolium repens L. instance. 
This corresponds to 0.4% of all 60 Trifolium repens L. 
objects. All of 60 Bidens pilosa L. objects and 60 Trifolium 
repens L. objects are correctly identified. Similarly, for 
the test set, out of 40 Androsace umbellata (Lour.) Merr. 
cases, 2 objects are mistakenly discriminated as the spe-
cies of Fragaria × ananassa. These correspond to 1.3% of 
all 40 Androsace umbellata (Lour.) Merr. instances. Out 
of 40 Trifolium repens L. cases, 3 objects are mistakenly 
detected as Fragaria × ananassa instances. These corre-
spond to 1.9% of all 40 Fragaria × ananassa objects. Out 
of 40 Fragaria × ananassa cases, 3 objects are mistakenly 
detected as Androsace umbellata (Lour.) Merr. instances. 
These correspond to 1.9% of all 40 Fragaria × ananassa 
objects. All of 40 instances of Bidens pilosa L. objects 
are correctly identified. The column with the white back-
ground on the far right of the diagram shows the accu-
racy for each output class. For the training set, all of 59 
Androsace umbellata (Lour.) Merr. and 60 Bidens pilosa 
L. predictions, 100% are true. Out of 61 Trifolium repens 
L. predictions, 98.4% are true and 1.6% are false. Out of 
60 Fragaria × ananassa predictions, 98.3% are true and 

Fig. 3 Five curves of training loss function of a twenty-five-layer 
architecture of convolutional neural network in the iteration 
optimization process with momentum coefficients of τ = 0.1, 0.3, 0.5, 
0.7 and 0.9 on the white flower dataset
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1.7% are false. Similarly, for the test set, all of 40 Bidens 
pilosa L. and 37 Trifolium repens L. predictions are true. 
Out of 41 Androsace umbellata (Lour.) Merr. predic-
tions, 92.7% are true and 7.3% are false. Out of 42 Fra-
garia × ananassa predictions, 88.1% are true and 11.9% 
are false. The row with the white background at the bot-
tom of the diagram shows the accuracy for each target 
class. Out of 60 Androsace umbellata (Lour.) Merr. and 
Fragaria  ×  ananassa cases, 98.3% are correctly pre-
dicted as themselves and 1.7% are predicted as the false 
instances, respectively. All of 60 instances of Bidens 
pilosa L. and 60 Trifolium repens L. objects are correctly 
identified as themselves. Similarly, for the test set, out 
of 40 Androsace umbellata (Lour.) Merr., 40 Trifolium 
repens L. and 40 Fragaria ×  ananassa cases, 95.0, 92.5 
and 92.5% are correctly predicted as themselves and 5.0, 
7.5 and 7.5% are predicted as the false instances, respec-
tively. All of 40 instances of Bidens pilosa L. objects are 
correctly identified as themselves. The bright blue ele-
ments in the bottom right of the diagram illustrate the 
overall accuracy of the algorithm. Overall, 99.2 and 95.0% 
of the predictions are true and 0.8 and 5.0% are false on 
the white flowers training and test set, respectively.

Comparing performance of algorithms
The precision-recall metric [29] is used to estimate the 
algorithm quality of detecting the flower varieties. The 
precision-recall curve shows the tradeoff between preci-
sion and recall for different threshold. The high precision 
relates to a low false positive rate, and high recall relates 

to a low false negative rate. The large scores indicate that 
the classification model is returning accurate results as 
well as returning a majority of all positive results. We 
compared our method with category discovery meth-
ods of SVM combined with the traditional hand-engi-
neered features of SIFT and PHOG. As shown in Fig. 5, 
as the threshold of recall rates increase, the correspond-
ing precision rates of CNN are much higher than other 
two algorithms of SIFT + SVM and PHOG + SVM. The 
overall performance of the algorithms is measured with 
the mean average precision (mAP) score [12], which is 
the average precision at the ranks where recall changes. 
The geometric interpretation of mAP score is the area 
below the curve. A large area under the precision-recall 
curve denotes the overall superior performance of algo-
rithm with the high mAP score. The CNN-based model 
achieves the highest mAP scores of 0.983 and 0.974 on 
the training and test flower image dataset, respectively 
(See Table  3). The compared results illustrated that the 
improvement of the proposed model for classification 
of the white flower images with complex background 
on both of the training and test dataset is substantial. It 
appears that, more detailed features are abstracted effec-
tively from the original images of white flowers by using 
the deep learning methods of CNNs compared with 
other two algorithms.

In order for flower recognition task to be imple-
mented, the algorithm must have good ability in dealing 
with variability of flower appearance. The SIFT feature 
descriptor is invariant to uniform scaling, orientation 

Fig. 4 Confusion matrix diagrams of discriminating four different species of white flowers of Androsace umbellata (Lour.) Merr., Bidens pilosa L., 
Trifolium repens L. and Fragaria × ananassa images based on deep learning artifices of convolutional neural network on the training (a) and test (b) 
dataset, respectively



Page 10 of 12Lin et al. Plant Methods  (2018) 14:64 

and illumination changes. The SIFT descriptors are esti-
mated at points on a regular grid over the foreground 
flower patch. At each grid point the descriptors are 
computed over circular support patches. Key points are 
defined as maxima and minima of the result of difference 
of Gaussians function applied in scale space to a series 
of smoothed and resampled images. A 128-dimensional 
feature vector are generated from the grey image to indi-
cate the flower. The histogram of gradients descriptor 
technique counts occurrences of gradient orientation in 
localized portions of an image. The PHOG descriptors 
are spatial pyramid extension of the histogram of gradi-
ents descriptors. Thus, the local object appearance and 
shape of a flower image can be described by the distribu-
tion of intensity gradients or edge directions. The SIFT 
and PHOG features are further used as the input feature 
vectors of the nonlinear learning machine of multi-class 
SVM. The classification results of three kinds of meth-
ods are listed in Table  3. The algorithm of SIFT + SVM 
attains the comprehending accuracy in the training and 
test sets are 82.9 and 55.6%, respectively. The algorithm 

of PHOG + SVM achieves the detection accuracy in the 
training and test sets are 78.3 and 63.1%, respectively. 
The identification accuracy of CNNs is 99.2 and 95.0% 
in the training and test procedure, respectively, which 
is much higher than the above two methods. The SIFT 
and HOG features are low-level features which don’t 
make use of hierarchical layer-wise representation learn-
ing while the CNN is a hierarchical deep learning model 
which is able to learn low-level features similar to SIFT 
and HOG features from training examples alone for more 
and more abstract representations. The multi-level deep 
convolutional structure can attain more detailed features 
from images and improving the accuracy of measure-
ment results. The state-of-the-art proposal methods pro-
vides a superior alternative for the precise classification 
of the white flowers of Fragaria × ananassa from other 
three wild species of Androsace umbellata (Lour.) Merr., 
Bidens pilosa L. and Trifolium repens L. in fields.

Conclusions
In this investigation, we have presented a CNN architec-
ture for the deeply classifying four species of white flow-
ers including Androsace umbellata (Lour.) Merr., Bidens 
pilosa L., Trifolium repen L. and Fragaria  ×  anana-
ssa. The CNN-based algorithm achieved outstanding 
99.2% training and 95.0% test accuracy in the applica-
tion of identifying the white flower images, respectively. 
The proposed model in this study turns out to be much 
more accurate than traditional models of SIFT + SVM 
and PHOG + SVM. The state-of-the-art proposal CNN 
method demonstrated an artificial intelligence capa-
ble of precise classification of the white flower images 
with a level of competence comparable to general algo-
rithms. Our team plans to enlarge current flower dataset 

Fig. 5 Precision-recall curves of detecting four species of white flowers including Androsace umbellata (Lour.) Merr., Bidens pilosa L., Trifolium repens 
L. and Fragaria × ananassa based on deep learning methods of convolutional neural networks on the training (a) and test (b) dataset, respectively

Table 3 Accuracy and  mean average precision (mAP) 
scores of  detecting four species of  white flowers 
includingAndrosace umbellata (Lour.) Merr., Bidens 
pilosa L., and Trifolium repens L. and Fragaria × ananassa 
based on  deep learning methods of  convolutional neural 
network on the training and test dataset, respectively

Method Training set Test set

Accuracy (%) mAP Accuracy (%) mAP

SIFT + SVM 82.9 0.960 55.6 0.794

PHOG + SVM 78.3 0.900 63.1 0.744

CNNs 99.2 0.983 95.0 0.974
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which will consist of more wild flower species and num-
bers. Further research is also necessary to evaluate per-
formance in a real-time detection setting, in order to 
validate this technique across the full distribution and 
spectrum of Fragaria ×  ananassa flower fields encoun-
tered in typical practice. The technologies can be poten-
tially used to quickly and exactly check the number of 
strawberry flowers in fields from the images captured 
from unmanned ground vehicle.
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