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METHODOLOGY

Improved classification accuracy 
of powdery mildew infection levels 
of wine grapes by spatial-spectral analysis 
of hyperspectral images
Uwe Knauer1* , Andrea Matros2, Tijana Petrovic3, Timothy Zanker3, Eileen S. Scott3 and Udo Seiffert1

Abstract 

Background: Hyperspectral imaging is an emerging means of assessing plant vitality, stress parameters, nutrition 
status, and diseases. Extraction of target values from the high-dimensional datasets either relies on pixel-wise pro-
cessing of the full spectral information, appropriate selection of individual bands, or calculation of spectral indices. 
Limitations of such approaches are reduced classification accuracy, reduced robustness due to spatial variation of the 
spectral information across the surface of the objects measured as well as a loss of information intrinsic to band selec-
tion and use of spectral indices. In this paper we present an improved spatial-spectral segmentation approach for 
the analysis of hyperspectral imaging data and its application for the prediction of powdery mildew infection levels 
(disease severity) of intact Chardonnay grape bunches shortly before veraison.

Results: Instead of calculating texture features (spatial features) for the huge number of spectral bands indepen-
dently, dimensionality reduction by means of Linear Discriminant Analysis (LDA) was applied first to derive a few 
descriptive image bands. Subsequent classification was based on modified Random Forest classifiers and selective 
extraction of texture parameters from the integral image representation of the image bands generated. Dimension-
ality reduction, integral images, and the selective feature extraction led to improved classification accuracies of up 
to 0.998± 0.003 for detached berries used as a reference sample (training dataset). Our approach was validated by 
predicting infection levels for a sample of 30 intact bunches. Classification accuracy improved with the number of 
decision trees of the Random Forest classifier. These results corresponded with qPCR results. An accuracy of 0.87 was 
achieved in classification of healthy, infected, and severely diseased bunches. However, discrimination between visu-
ally healthy and infected bunches proved to be challenging for a few samples, perhaps due to colonized berries or 
sparse mycelia hidden within the bunch or airborne conidia on the berries that were detected by qPCR.

Conclusions: An advanced approach to hyperspectral image classification based on combined spatial and spectral 
image features, potentially applicable to many available hyperspectral sensor technologies, has been developed and 
validated to improve the detection of powdery mildew infection levels of Chardonnay grape bunches. The spatial-
spectral approach improved especially the detection of light infection levels compared with pixel-wise spectral data 
analysis. This approach is expected to improve the speed and accuracy of disease detection once the thresholds for 
fungal biomass detected by hyperspectral imaging are established; it can also facilitate monitoring in plant phenotyp-
ing of grapevine and additional crops.
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Background
Hyperspectral imaging
Hyperspectral imaging is a remote sensing technology 
that is becoming widely used in plant breeding, smart 
farming, material sorting, and quality control in food 
production [1], as well as identification of grapevine 
varieties from the air, detection and diagnosis of stresses 
caused by disease or nutrient imbalances and other 
applications in viticulture [2]. The generic behavior of 
the material to reflect, absorb, or transmit light is used 
to characterize its identity and even molecular composi-
tion. A hyperspectral camera records a narrowly sampled 
spectrum of reflected or transmitted light in a certain 
wavelength range and produces a high-dimensional pat-
tern of highly correlated spectral bands per image pixel. 
Often, the direct relationship between this pattern and 
the target value, for example a nutritional or infection 
value, is unknown. In the simple case, exact spectral 
bands are known to correlate with the presence of certain 
chemical compounds. If such direct knowledge is una-
vailable, machine learning algorithms are used to learn 
a classification or regression task from labeled reference 
data [3].

Current sensor technology enables hyperspectral imag-
ing at different scales. For imaging of small objects such 
as leaf lesions or seeds, frame-based hyperspectral cam-
eras can be mounted on a microscope or line-scanning 
cameras can be equipped with macro lenses [4]. A com-
mon set-up for monitoring plants in the laboratory is a 
hyperspectral camera mounted to the side or above a 
conveyor belt or a translation stage [5]. While these set-
ups have been partially adapted for outdoor measure-
ments, for hyperspectral imaging of field trials, typically, 
vehicle-mounted hyperspectral cameras are used, for 
example on unmanned aerial vehicles (UAVs) [6]. The 
current limitations of this approach relate to the availabil-
ity of lightweight sensors and loss of spectral and spatial 
resolution. Airborne and spaceborne hyperspectral imag-
ing are options for the monitoring of production areas 
and large scale assessment of vegetation parameters.

Approaches for analysis of hyperspectral data
Typically, the extraction of relevant information from 
hyperspectral datasets consists of the following steps. 
First, the hyperspectral data is normalized with respect 
to sensor parameters and illumination. Second, map-
ping between image pixels and known object positions is 
established, either by annotation of the acquired images 
or by automatically assigning coordinates (e.g. GPS 
measurements) to the image pixels. Third, preprocess-
ing of images ensures extraction of meaningful entities 
by segmentation of objects (e.g. individual plants, leaves, 
fruits). As it is not possible to reliably detect individual 

objects in all cases, preprocessing can be restricted to 
suppression of the background information (e.g. soil sur-
face). Low spatial-resolution of the hyperspectral dataset 
may require additional steps such as separation of the 
spectral information into components which character-
ize the mixture of different materials within the same 
pixel. In the remote sensing literature, this is known as 
spectral unmixing or endmember extraction [7].

Finally, the hyperspectral data (or derived measures 
such as indices) of a certain object or pixel is mapped to 
a target category/value provided by experts or laboratory 
analysis. Common indices such as Normalized Differ-
ence Vegetation Index (NDVI), Photochemical Reflec-
tion Index (PRI), Anthocyanin Reflectance Index (ARI) 
and others are sensitive [8, 9] but are not specific for 
plant diseases, which has necessitated the development 
of spectral disease indices (SDI) [10]. Disease indices are 
developed for specific host-pathogen combinations based 
on clearly defined reference data, but typically utilize a 
limited number of wavelengths and normalized wave-
length differences. For example, in [10] a Powdery Mil-
dew Index (PMI) for sugar beet has been proposed as 
PMI = R520−R584

R520+R584
+ R724 where the Rxxx denote normal-

ized reflectances for certain wavelengths. Indices may fail 
due to changes in the properties of the biochemical back-
ground matrix.

Spectral Angle Mapping (SAM, [11]) takes all wave-
length bands into account and is capable of discrimi-
nating between healthy tissue and tissue with powdery 
mildew disease symptoms at the microscopic scale. How-
ever, differentiation between sparse and dense mycelium 
remains difficult. As SAM does not weight the different 
wavelengths, the spectral angle is also sensitive to all 
changes in appearance even if they are unrelated to the 
symptoms (background matrix). In addition, large data-
sets for the dynamics of the pathogenesis of powdery 
mildew on barley have been investigated with data min-
ing techniques [4]. Simplex volume maximization has 
been effectively used to automatically extract traces of 
the hyperspectral signatures that differ significantly for 
inoculated and healthy barley genotypes. While manual 
annotation of hyperspectral data by experts, as used in 
our study, provides accurate reference data, the approach 
of Kuska [4] effectively addresses the problem of large, 
automatically recorded hyperspectral datasets in time 
series analysis.

Spatial‑spectral segmentation with random forest 
classifiers
This paper addresses common challenges for the analysis 
of hyperspectral imaging data by investigating the classi-
fication performance of a novel approach to hyperspec-
tral image segmentation. It is based on the tight coupling 
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of Random Forest classifiers [12] with the integral image 
representation [13] of a dimensionality-reduced hyper-
spectral image.

There are two reasons for this approach. First, Random 
Forest classifiers are well established and combine fast 
and robust classification. Second, dimensionality reduc-
tion can bridge the gap between traditional pixel-wise 
classification of spectral information and texture-based 
image processing approaches for single band and color 
image segmentation which takes neighboring pixels into 
account and typically increases the accuracy of the image 
segmentation.

In general, image segmentation approaches can 
be roughly divided into pixel- [14] and region-based 
approaches [15]. Numerous approaches have been pre-
sented which treat image segmentation as a classifica-
tion problem using different strong classifiers [16–19]. 
Other methodologies have been biologically motivated 
by principles of the human visual system [20, 21]. How-
ever, classification in high-dimensional feature spaces 
with the most sophisticated classification algorithms may 
not be an option for some approaches. For example, for 
many real-time image segmentation problems (online 
processing), either the number of features used must be 
limited to a few that are meaningful [22], a rather weak 
classification technique must be used, or both limitations 
are accepted in combination to meet the processing time 
constraints [23, 24]. Even if online processing of the data 
is not required, often the analysis results must be pro-
vided within a certain period to enable decision making 
in precision farming, disease control, nutrition manage-
ment, and other applications.

Tree-based image segmentation has been reported [25], 
but for several years application seems to have been lim-
ited to certain fields, such as the segmentation of aerial 
or satellite imagery to identify land use. In recent years, 
Random Forest classifiers have been identified as a valu-
able tool in these fields as well as for related fields such as 
object detection [26]. New and demanding applications 
have led to several modifications and improvements of 
the original Random Forest approach to further improve 
the method and to match the application requirements. 
For example, Rotation Forest classifiers have been pro-
posed as a method for improved classification of hyper-
spectral data [27] by adding transformations of the input 
feature space and hence contributing to the diversity of 
ensemble decisions. Also, semi-supervised sampling has 
been reported to improve the segmentation performance 
of conventional Random Forest classifiers [28].

Feature relevance
Identification of relevant features for classification is 
a crucial task for effective processing as well as for a 

better understanding of the problems and their solutions. 
In [29] the performance of different feature selection 
approaches and classifiers for tree species classification 
from hyperspectral data obtained at different locations 
and with different sensors was reported. The authors 
conclude that the selection of 15–20 bands provides the 
best classification results and that the location of the 
selected bands strongly depends on the classification 
method. However, best classification results for all data-
sets have been obtained with Minimum Noise Fraction 
(MNF) transformation and selection of the first 10–20 
principal components of MNF as input features for clas-
sification. In [30] the input feature space is extended by 
parallel extraction of spectral and spatial features. Then, 
a so-called hybrid feature vector is created and used for 
training of a Random Forest classifier. Finally, results 
are improved by imposing a label constraint which is 
based on majority voting. Other recent developments in 
hyperspectral image classification are reviewed in [31]. 
The authors present a Statistical Learning Theory (SLT) 
based framework for analysis of hyperspectral data. 
They highlight the ability of SLT to identify relevant 
feature subspaces to enable the application of more effi-
cient algorithms. The review categorizes existing spa-
tial-spectral classification approaches into spatial filters 
extraction, spatial-spectral segmentation, and advanced 
spatial-spectral classification.

Scope of the spatial‑spectral segmentation approach
In this paper we present an improved texture-based 
spatial-spectral approach to hyperspectral image classifi-
cation which can potentially be applied to images from 
all available scales. This approach addresses the prob-
lem that pixel-wise processing of spectral data, even of 
derived information such as SDI, does not incorporate 
information about the spatial variation of the spectral 
properties of healthy and diseased material. Hence, tak-
ing this variation into account aims to improve classifica-
tion accuracies for prediction of disease severity.

As a model system we selected the classification of 
powdery mildew infection levels of Chardonnay grape 
bunches, because the current approach of visual assess-
ment of infection levels (% of surface area affected of a 
bunch) is subjective. Many Australian wineries use a 
rejection threshold of 3–5% surface area affected by 
powdery mildew based on visual assessment [32]. Thus, 
objective assessment of disease-affected bunches and 
quantification of pathogen (Erysiphe necator) biomass 
are required. Hyperspectral imaging was investigated as a 
means of detecting powdery mildew-affected bunches at 
the beginning of bunch closure, after routine assessment 
of disease in the field. Powdery mildew is more read-
ily assessed by visual inspection at this stage than later 
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in bunch development, providing a proof of concept for 
subsequent investigation of the disease on bunches closer 
to harvest.

We acquired hyperspectral images from powdery 
mildew affected and non-affected Chardonnay grape 
bunches. After preprocessing, the data sets were reduced 
in dimensionality by means of Linear Discriminant Anal-
ysis (LDA) to retain only a few highly descriptive image 
bands. Subsequent application of Random Forest classi-
fiers and selective extraction of texture parameters led to 
improved classification accuracies for powdery mildew 
infection levels and, hence, disease severity level predic-
tion (SLP) of wine grapes.

Methods
Plant material and fungal biomass
Grapes from a non-commercial vineyard (Waite Cam-
pus, University of Adelaide, South Australia) (E 138° 38′ 
3.844″, S 34° 58′ 3.111″) were used in this study. In-field 
assessment of powdery mildew on vines was conducted 
according to [33]. Subsequently, 10 visually healthy and 
20 bunches naturally infected by Erysiphe necator with 
no signs of other diseases and/or abiotic/biotic damage, 
were selected from Chardonnay vines (Vitis vinifera L., 
clone I10V1). Bunches were collected at the lag phase of 
berry development (i.e. when berry growth is halted and 
the seed embryos grow rapidly), otherwise described as 
growth stage E-L 30-33 (beginning of bunch closure) [34] 
when total soluble solids had reached 5° Brix (December 
4, 2014).

Bunches were assessed in laboratory conditions using a 
magnifying lamp and assigned to three categories: visu-
ally healthy, infected, and severely diseased. Bunches des-
ignated severely diseased were considered likely to have 
been infected at E-L 23-26 when grape clusters are highly 
susceptible to the pathogen. Berries on those bunches 
were significantly lighter (0.53± 0.045 g, p = 0.03) and 
slightly smaller (9.92± 0.34 mm) than berries on healthy 
bunches (weight 0.75± 0.045 g; diameter 11.20± 0.34 
mm). However, morphology of all bunches was similar, 
regardless of powdery mildew status. After hyperspectral 
imaging of the upper and lower surface of each bunch, 
bunches were stored at −20 ◦C. Each surface of the fro-
zen bunch was matched with the corresponding anno-
tated reference image (Fig. 10) and berries were detached 
and grouped according to bunch and surface (30 bunches 
× 2 surfaces). The 60 samples were homogenized sepa-
rately, then DNA was extracted using a Macherey-Nagel 
NucleoSpin® Plant II Kit and quantified using a Quanti-
Fluor® dsDNA System. A modified duplex quantitative 
polymerase chain reaction(qPCR) assay using a TaqMan® 
MGB probe (FAMTM dye-labelled) was used to quantify 
E. necator biomass [35]. Reaction efficiency was assessed 

by generating a standard curve for E. necator and abso-
lute quantification of E. necator biomass was achieved 
using the standard curve. The number of copies of the 
amplified E. necator DNA fragment per conidium was 
calculated based on the DNA extracted from a known 
number of E. necator conidia. Consequently, the num-
ber of copies of the E. necator DNA fragment obtained 
for the DNA extracted from 100 mg of berry tissue was 
expressed as number of E. necator conidia and then cor-
rected for the average weight of berries for each bunch. 
Log-transformed data is presented (Fig. 4).

Hyperspectral imaging
Figure 1 provides an overview of the measurement set-up 
and the experimental design. For the hyperspectral image 
acquisition, samples of grapes were positioned along with 
a standard optical PTFE (polytetrafluoroethylene) cali-
bration pad on a translation table. Spectra were acquired 
either from the visible and near-infrared range (VNIR) 
of 400–1000 nm at 3.7 nm resolution or from the short-
wave infra-red range (SWIR) of 970–2500  nm at 6  nm 
resolution yielding a 160 dimensional or 256 dimensional 
spectral vector per pixel, respectively. Hyperspectral 
images were recorded using HySpex VNIR 1600 (VNIR 
camera) and HySpex SWIR-320m-e (SWIR camera) line 
cameras (Norsk Elektro Optikk A/S). The VNIR cam-
era line has 1600 spatial pixels. Spectral data along this 
line can be recorded with a maximum frame rate of 
135  frames per second (fps). The SWIR camera line has 
320 spatial pixels. Spectral data can be recorded with a 
maximum frame rate of 100 fps. Radiometric calibration 
was performed using the vendor’s software package and 
the PTFE reflectance measure.

As part of the controlled environment, artificial broad-
band illumination was used as the only light source. 
Before the recordings started, two custom made lamps 
were adjusted to focus the light to a line overlapping the 
fields of view (FOV) of the hyperspectral cameras.

Two hyperspectral images containing either only visu-
ally healthy or only severely diseased detached berries, 
manually dissected from two bunches, were recorded. 
Those images alone were used for SLP model devel-
opment. Next, 60 images of two sides of 30 complete 
bunches were recorded, comprising 10 visually healthy 
bunches, 10 powdery mildew infected bunches, and 10 
severely diseased bunches. These images were used to 
assess the accuracy of the SLP method under realistic 
conditions. Results of qPCR analysis of berries detached 
from all bunches served as reference values. Figure 2 illus-
trates the scanning result. It shows the hyperspectral data 
cube with two spatial and the spectral dimension. Each 
horizontal slice corresponds to a single wavelength image. 
The 1000 nm band of the VNIR camera is plotted on top.
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Development of disease severity level prediction models
Figure  3 summarizes the approach for the development 
of models for SLP based on pixel-wise powdery mildew 
detection. For the development of prediction models and 
initial tests of parameters, only the small subset of images 
obtained from detached berries was used. First, this facil-
itates the generation of class information as the image 
contains either severely diseased or healthy berries. 
Second, the derived models can later be tested with the 

Fig. 1 Overview of the measurement set-up and the experimental design. The measurement set-up consists of two hyperspectral line scanning 
cameras for VNIR (a) and SWIR (b) wavelength range, artificial broadband illumination (c), and translation stage with stepper motor (d). Hyperspec-
tral images of PTFE reference plate (e) and 30 bunches (f), visually assigned to three categories (visually healthy, infected and severely diseased, blue 
shading represents powdery mildew), were recorded in laboratory conditions. Berries of two bunches were detached to be used as reference data 
for classifier training

Fig. 2 Hyperspectral image. Visualization of a hyperspectral image 
cube with grape bunch, PTFE reference plate, and background 
materials. The hyperspectral image consists of different layers which 
directly correspond to the reflection of narrow wavelength bands. 
The PTFE reference plate is calibrated and used for data normalization

Fig. 3 Systematic approach and development of powdery mildew 
detection models. Based on hyperspectral images of visually healthy 
and severely diseased detached berries a dataset containing spectra 
of both classes is generated. Two different feature spaces are investi-
gated for classification of spectral data; first, dimensionality reduction 
with subsequent spatial-spectral feature extraction and second, 
classification of complete spectral signatures. The path on the right 
corresponds to the first row of Table 1, whereas the left hand side cor-
responds to the remaining rows



Page 6 of 15Knauer et al. Plant Methods  (2017) 13:47 

complete set of hyperspectral images. This ensures inde-
pendent samples for validation of the approach. Preproc-
essing of the spectral data was undertaken to compensate 
for the specific contributions of the sensor as well as the 
illumination to the measured signal.

Image preprocessing
The preprocessing of hyperspectral images consists of the 
following steps:

1. Conversion from raw images (photon count, digital 
numbers) to radiance (at sensor)

2. Conversion from radiance (at sensor) to reflectance 
(at surface)

3. L2-normalization (spectra are treated as vectors and 
normalized to have equal length)

4. Dimensionality reduction

Dimensionality reduction aims to achieve the following 
goals:

1. Reduction of computational costs
2. Avoid problems inherent in dimensionality (known 

as the curse of dimensionality [36] and particularly 
Hughes phenomenon [37] in machine learning and 
computational intelligence)

We implemented different options for dimensionality 
reduction:

1. Canonical band selection (inspired by human per-
ception and bands of other existing imaging sensors),

2. Relevance-based band selection based on importance 
histograms,

3. Synthesis of orthogonal bands based on Principal 
Component Analysis (PCA),

4. Target class specific synthesis based on adapted data 
sampling before PCA,

5. Synthesis of orthogonal bands based on LDA.

Depending on the classification task at hand, each option 
provides a different trade-off between transformation speed 
and discriminative power of the original spectral data.

For canonical band selection the image bands used by 
the software PARGE (ReSe Software) were selected. For 
VNIR cameras such as NEO HySpex VNIR 1600, the red-
channel of the resulting RGB-image was mapped to the 
651 nm band, the green-channel to 549 nm, and the blue-
channel to 440 nm. Another option for canonical band 
selection is close infrared (CIR), where the three channels 
were mapped to the 811, 640, and 498 nm bands, respec-
tively. In the short-wave infrared, the following mapping 
was used: (1081, 1652, 2253 nm).

The relevance-based band selection was based on 
supervised pixel-wise classification of spectral informa-
tion with Random Forest classifiers. During the construc-
tion of a decision tree, many different optimizations (with 
respect to a measure of information gain) take place for 
feature selection. Hence for each classification, the tree 
nodes visited were checked for which feature (band) was 
used to create a histogram of band importance. Finally, 
the three highest ranked bands were selected.

PCA was used to derive a new orthogonal base of the 
original feature space. The resulting bands represent lin-
ear combinations of all original bands. Random subsets 
of spectra were used to calculate the projection matrices. 
For target class-specific PCA the input spectra were sam-
pled from predefined pixels only. Closely related is the 
application of LDA for deriving a task-specific projection.

Spatial‑spectral classification
Our approach for texture-based classification (spa-
tial component) relies on the data structure of integral 
images [13]. This representation enables a cache-like fast 
look-up of feature values for arbitrary rectangular image 
regions of a single image band. Three base features are 
used, which require calculation of three integral images 
per image band:

1. Mean intensity
2. Standard deviation
3. Homogeneity

The choice of the base features is motivated by their 
known support for the integral image representation [13, 
38].

These base features are calculated for 25 differently 
sized squared image blocks centered on the current pixel 
and all image channels (of the dimensionality reduced 
hyperspectral image) separately. Here, a 225-dimensional 
(3× 3× 25) feature vector is used per pixel. Even if the 
dimension of the feature vector is approximately the 
same as for the spectral data, each feature now consists 
of a spatial (mean, standard deviation or homogeneity of 
rectangular image area) and a spectral component (from 
PCA, LDA or band selection).

In the training phase, feature vectors were selected at 
random locations within the image. Class labels were 
assigned based on given reference data. Next, a modified 
Random Forest classifier was trained. In contrast to the 
default Random Forest classifier, each tree node holds 
additional information which is needed to quickly access 
the tested feature from the set of integral images. Hence, 
there is no need to calculate a full feature vector in the 
application phase of the model. For each pixel only a sub-
set of dimensions of the feature space must be calculated. 



Page 7 of 15Knauer et al. Plant Methods  (2017) 13:47 

This speeds up the classification process. A significant 
reduction in the time needed for calculation of features 
can be obtained for single decision trees (in the order of 
log2N , where N is the total number of considered fea-
tures) and Random Forests with a small number of trees. 
A related investigation of the trade-off between classifi-
cation accuracies, ensemble size, and number of features 
used for different hyperspectral classification tasks can 
be found in [39].

Cross‑validation procedure
N-fold cross-validation was used to calculate an estimate 
for the classification accuracy (N = 10 was used for all 
experiments). The training data was randomly parti-
tioned into 10 groups (folds) of equal size. This means 
that each feature vector was assigned to only one of the 
folds. While N − 1 folds were used to train a classifica-
tion model, the remaining fold was used to test the accu-
racy of the resulting model. This was repeated N times. 
The average accuracy and the standard deviation of the N 
classification models were then compared.

Results
Fungal biomass
The differentiation between visually healthy, infected 
and severely diseased bunches proved to be accurate for 
the majority of bunches (75%) based on fungal biomass 
(via qPCR) as reference (Fig.  4). Of the visually healthy 
bunches, four were negative in the qPCR assay so the 

fungus was not detected on either side of the bunch. 
However, the fungal biomass among the remaining six 
visually healthy bunches varied considerably. Fungal 
biomass from infected and severely diseased bunches 
showed less variation. Maximum fungal biomass for 
visually healthy and infected bunches overlapped with 
biomass for infected and severely diseased bunches, 
respectively (Fig. 4). Overlap in fungal biomass was more 
evident for visually healthy and infected bunches than for 
infected and severely diseased bunches. This indicates 
that bunches visually assessed to be healthy had colo-
nized berries hidden within the bunch, sparse mycelial 
growth missed under the magnifying lamp or that air-
borne conidia had landed on the berry surface. Uneven 
distribution and density of E. necator mycelium and con-
idiophores on berries in infected bunches is likely to have 
caused the overlap in fungal biomass between infected 
and severely diseased bunches (Fig. 4).

Dataset
The dataset consists of 60 hyperspectral images cor-
responding to two scans (top and bottom view) of 30 
bunches (see Fig.  1). From two of these bunches, 128 
visually healthy and 136 severely diseased berries were 
selected and detached for recording of an additional data-
set for classifier training and initial validation. Detached 
berries were arranged in Petri dishes and two additional 
hyperspectral images were recorded which contained 
either severely diseased or healthy berries. Furthermore, 
the small time gap between the two recordings ensured 
constant conditions for the measurements. Figure  5 
shows the mean spectra as well as the standard devia-
tions obtained from these reference images for healthy 
and severely diseased detached berries. Here, the spectral 
signatures of each image pixel have been normalized with 
respect to the reflectance of the PTFE calibration pad.

For validation of the proposed spatial-spectral 
approach these spectral signatures have been used to 
train a reference Random Forest classifier. Figure 6 shows 
the relevance profile derived for individual wavelengths 
within the classification process. For the dimensional-
ity reduction step in spatial-spectral segmentation, one 
option is to select the most relevant bands from this 
result. Additionally, a number of low-dimensional repre-
sentations of the hyperspectral images have been derived 
to investigate the classification performance of the spa-
tial-spectral image segmentation approach in different 
feature spaces.

Classification models
In order to maintain speed of the proposed segmentation 
algorithm, dimensionality reduction is the first process-
ing step. The fastest and simplest approach is focusing 

Fig. 4 Quantitation of Erysiphe necator biomass in Chardonnay grape 
bunches. Boxplot of E. necator biomass as measured by an E. necator-
specific qPCR assay of bunches assigned to three visual categories 
(visually healthy, infected, and severely diseased). Four bunches or 
40% of scanned bunch profiles of visually healthy bunches were 
confirmed to be pathogen-free according to qPCR
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on a few (typically three) predefined image bands and 
skipping processing of all the others. Several such selec-
tions, for both VNIR and SWIR wavelength ranges, are 
compared to the more sophisticated reduction methods 
in Table 1. The mean accuracy values and their standard 
deviations are given for 10-fold cross-validation experi-
ments for random sets of 4000 pixels from two training 
images (containing healthy and infected grapes). Results 
indicate that successful classification is possible in both 
wavelength ranges. However, with an accuracy of 0.98, 
pixel-wise spectral classification in VNIR performs sig-
nificantly better than in SWIR (accuracy 0.85). The 
introduction of texture features by the spatial-spectral 
classification approach can nearly compensate for the 
effects of dimensionality reduction for all variants and 
improve classification accuracy to 0.99 (especially in 
the SWIR region this is a significant improvement). The 
transformations investigated for reduction of dimension-
ality (PCA, LDA, adaptive PCA) incorporate all image 
bands, potentially minimizing the loss of information 
inherent in dimensionality reduction, while band selec-
tions (Custom, RGB, CIR, SWIR) have been tested to 
exploit the potential of less expensive standard (RGB, 
SWIR, CIR) or customized (Custom) camera systems. 
The customized band selection was based on the analysis 
of the relevance of individual bands for a Random Forest 
classifier. To obtain a measure of relevance, during clas-
sification all nodes visited in the decision trees within 
the Random Forest voted for the corresponding feature. 
Three local maxima of the relevance curve were then 

Fig. 5 Illustration of reflectance spectra. Spectral signatures of 
healthy detached berries and detached berries with severe powdery 
mildew infection (a) and the differences between mean spectra 
of healthy and diseased berries (b). The standard deviations of the 
spectral signatures are shown as error bars in a. Spectrally localized 
differences are observed in the green peak region (550 nm) of the 
spectra and just above the red edge region (680–730 nm). Throughout 
the shortwave infrared region a shift between the mean spectral 
signatures occurs due to higher reflectance of the diseased berries

Fig. 6 Relevance spectrum. Relevance of the individual spectral bands was derived from the structure of the Random Forest classifiers. More 
relevant wavelength features are used more often and hence contribute more to the final decision. The images of the two hyperspectral cam-
eras have been processed independently and result in the blue and the red relevance profile, respectively. For each camera a number of highly 
relevant bands are found. Three local maxima in the relevance profiles are highlighted. Limiting classification to only the three highlighted relevant 
wavelengths yields mean accuracies of 0.98 (VNIR camera) and 0.99 (SWIR camera) for detached berries and in combination with textural features 
extracted from these image bands
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selected. A threshold ensures a minimum distance of 20 
bands between selected local maxima.

Table 2 shows the investigation of block size (of spatial-
spectral features) vs classification accuracy. LDA-based 
reduction and two predefined band selections (denoted 
as RGB and SWIR) have been compared. The results, 
especially for SWIR, indicate that good performance 
is already achieved with small maximum block sizes. 
The baseline accuracy for individual pixel classification 
(block size 1 pixel) is 0.78 for the VNIR camera and 0.94 
for SWIR camera. This result shows the value of using 
disease-specific LDA based projection to constitute a 
low-dimensional representation for further processing. 
Classification accuracies for a representation by three 
default bands from the VNIR camera (RGB) or SWIR 
camera are 0.76 and 0.62 (block size 1 pixel), respec-
tively. By increasing the maximum block size, additional 
features (mean, standard deviation, and homogeneity of 

intensity distribution) are taken into account which are 
not defined for a single pixel. For a maximum block size 
of 100 ×  100 pixels in the VNIR camera image, which 
corresponds to the approximate size of a single berry, 
an accuracy of 0.99 is achieved. For image blocks of 
20 × 20 pixels of the SWIR camera, accuracy of 0.99 was 
achieved also. As the sample in this experiment consists 
of detached berries which are covered by mycelium, the 
block size and classification performance can be further 
increased. However, in practice early detection of a pow-
dery mildew-affected surface requires the use of small 
block sizes (to detect small infection spots).

Classification results correspond to the mean spectra 
plotted in Fig. 5 and with results from the literature [10]. 
Especially, in the SWIR domain the mycelium leads to 
a shift of the spectral signatures due to a higher reflec-
tance over the complete wavelength range between 1000 
and 2500 nm. While such a shift has been reported for 
powdery mildew-affected sugar beet in VNIR, the mean 
spectra show a different performance for grapes. We 
observed a reduced reflectance at the green peak region 
(550 nm) as well as in the plateau region after the red 
edge (750–900 nm). This is due to the high reflectance 
of healthy grapes compared to the reflectance of healthy 
leaves, which has been the subject investigated in previ-
ous studies [10, 11].

Severity level prediction
Having an automated inspection system either in quality 
control or in plant phenotyping in mind, it is not feasible 
to scan detached berries and the scanning of complete 
bunches is much more challenging. An automated 
inspection system would deliver a score corresponding 
to the severity level or surface area affected by powdery 
mildew. Despite the promising results of cross-validation 
experiments within the training datasets (detached ber-
ries), the spatial-spectral classification of the complete 
bunch images yields different results. Their 3D structure 

Table 1 Classification accuracy using different dimension-
ality reduction methods

Principal Component Analysis (PCA) and standard band selections (RGB, CIR, 
SWIR) are compared to adaptive reduction methods. Adaptive PCA is based 
on stratified sampling based on class labels, custom band selection is based 
on relevance profiles and uses only three most relevant individual bands, 
while Linear Discriminant Analysis (LDA) is used to find an optimal subspace 
projection of the data

* Pixel-based segmentation of normalized spectra as reference, all other are 
spatial-spectral-based

Feature space Bands VNIR SWIR

Normalized spectral* All 0.980 ± 0.006 0.853 ± 0.027

PCA All 0.968 ± 0.008 0.999 ± 0.002

Adaptive PCA All 0.969 ± 0.007 0.996 ± 0.004

Custom 3 0.981 ± 0.008 0.997 ± 0.003

RGB 3 0.972 ± 0.009 –

CIR 3 0.971 ± 0.009 –

SWIR 3 – 0.999 ± 0.003

LDA All 0.998 ± 0.003 0.998 ± 0.005

Table 2 Classification accuracy versus maximum block size for spatial feature extraction

With increasing maximum block size (from left to right) a gain in accuracy was achieved by introducing additional spatial-spectral features. Due to the different 
resolution of the cameras for the VNIR and SWIR domains, 100 × 100 pixels in the VNIR camera image match 20 × 20 pixels in the SWIR camera image of the same 
bunch. These two block sizes correspond to the approximate size of a single berry in the measurement set-up used. The rows RGB and SWIR refer to spatial features 
derived from selected bands, while rows LDA VNIR and LDA SWIR refer to texture features derived from projected images. For the VNIR wavelength range the spatial 
component contributes most to the accuracy gain, while in the SWIR wavelength range classification of spatial features from projected images outperformed 
classification based on spatial features from selected bands. Even by introducing only a few spatial features (maximum block size 5 pixels), a significant gain in 
classification accuracy was observed. Due to the different spatial resolution of VNIR and SWIR images, which is related to the different number of pixels and pixel sizes, 
the increase of the block size was limited to the approximate size of a single Chardonnay berry (VNIR 100 × 100, SWIR 20 × 20 pixels)

1 5 20 50 100

RGB 0.767 ± 0.013 0.938 ± 0.014 0.952 ± 0.011 0.964 ± 0.01 0.972 ± 0.009

LDA VNIR 0.782 ± 0.016 0.865 ± 0.016 0.951 ± 0.015 0.984 ± 0.007 0.998 ± 0.003

SWIR 0.617 ± 0.027 0.729 ± 0.047 0.872 ± 0.019

LDA SWIR 0.948 ± 0.017 0.986 ± 0.009 0.993 ± 0.006
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imposes some additional problems with shadow and the 
focal plane compared to the recording of selected indi-
vidual berries which were used for model generation. So 
far, in the SWIR wavelength range successful classifica-
tion was not possible using the independently generated 
models for detached berries. Obviously, the observed 
shift in the hyperspectral signatures (Fig. 5) is the domi-
nating discriminating feature and is impossible to detect 
in the presence of the aforementioned factors.

Figure  7 shows the results of severity level prediction 
for the VNIR camera. The severity level is estimated by 
the surface area which is classified as powdery mildew-
affected. The results are presented from the aforemen-
tioned application perspective. The most relevant 3 cases 
are shown. First, segmentation results solely based on 
pixel-wise classification of the hyperspectral data are 
shown. In practice, this represents the default approach 
to hyperspectral image segmentation. The images have 
been grouped according to the expert’s decision about 
the infection level. For each of the groups of healthy, 
infected, and severely diseased grapes a boxplot of auto-
matically estimated infection level is given in the upper 
diagram (A). While severely diseased biological material 
can be detected, detection of low infection states is not 
possible at a statistically significant level. Surprisingly, 
a Random Forest classifier cannot reliably handle the 
detection of healthy material as indicated by the mean 
offset for the estimated infection level if only normal-
ized spectral data is used as feature vector. However, 
this is also related to the chosen training strategy. Train-
ing data comprised a sample from an independent set of 
two images from selected infected and healthy grapes. 
By recording the complete bunches, occlusions, shadows 
and blurring of image regions occur.

Given the same set of hyperspectral images, the pro-
posed spatial-spectral segmentation of a projected hyper-
spectral image performs much better. Using LDA, a 
projection can be found which keeps the most relevant 
spectral information for the detection of powdery mil-
dew infection. By calculating spatial features of the pro-
jected images a better discrimination between healthy 
bunches and bunches with only a few infected grapes is 
possible (middle diagram, B). Fig. 7c shows the improve-
ments made by increasing the ensemble size to 50 ran-
dom decision trees. Separation between healthy and 
infected bunches was further improved.

Figure  8 shows a different visualization of the clas-
sification performance for the complete dataset of 60 
grape bunch images. Receiver Operating Characteris-
tic (ROC) curves [40] are used to highlight the different 
trade-offs between true positive and false positive rates 
that exist for different threshold values. Thresholds are 
applied to the calculated fraction of diseased pixels to 

differentiate between healthy, infected, and severely dis-
eased bunches. As the dataset contains two images of 
each bunch (top and bottom view), the mean of the two 
scores was calculated prior to application of thresholds. 
ROC curves and derived index values are often used for 
comparison of diagnostic tests [41] and can be used for 
optimal selection of operating points [42]. Diagrams 
ROC-1 correspond to the classification performances for 

Fig. 7 Classification accuracy of intact bunches depending on 
random forest classifier complexity. Boxplot of the predicted surface 
area affected for the three main categories of the experiment based 
on pixel-wise segmentation of LDA projected hyperspectral images 
(VNIR only). a Pixel-wise pure spectral classification with Random For-
est, b texture-based spatial-spectral segmentation with 10 trees ver-
sus c Random Forest with 50 trees. Severely diseased bunches can be 
detected with high accuracy, while discrimination between healthy 
and infected is challenging in a few cases. Classification accuracy 
increases with the complexity (number of decision trees) of the Ran-
dom Forest classifier. Results of the analysis of hyperspectral images 
are comparable and correspond well to qPCR results (see Fig. 4)
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the detection of healthy bunches versus overall infected 
(infected and severely diseased) based on spectral fea-
tures (top row) and spatial-spectral features (bottom 
row), respectively. For each threshold the fraction of cor-
rectly classified healthy bunches is plotted against the 
false positive rate for the same threshold. For example, 
using spatial-spectral features a successfull detection 
of >80% of all healthy bunches (true positive rate >0.8) 
was achieved with a lower misclassification of infected 
bunches compared to using spectral features. This mis-
classification (error) directly corresponds to the contami-
nation level when used for sorting a tranche of bunches. 
Diagrams in column ROC-2 show the inverse problem 
to separate any infected bunch (infected + severely dis-
eased) from the group of healthy bunches. Obviously, 
in ROC-1 and ROC-2 diagrams the axes are exchanged. 
This illustrates the trade-off for the threshold-based deci-
sion, because the false positive rate now corresponds 
to the loss of healthy bunches (e.g. when the classifier 
is used in a sorting-machine). ROC-3 diagrams show 

the easier detection of severely diseased versus healthy 
and infected bunches. Both ROC-3 curves show that 
a higher fraction of severely diseased bunches can be 
detected with lower error compared to ROC-1 (healthy) 
and ROC-2 (overall infected). The last column shows the 
color coded classification accuracies as a 2-dimensional 
function of the thresholds for separating between the 
three classes (healthy, infected, severely diseased). The 
gain in classification accuracy for detection of infected 
bunches by using spatial-spectral features is clearly visi-
ble in diagrams ROC-1 and ROC-2, where the area under 
curve (AUC), which is related to classification accu-
racy, is increased. These improvements led to a signifi-
cant gain in the overall classification accuracy from 0.76 
(using only spectral data) to 0.86 (using spatial-spectral 
features). A detailed analysis of the performance gain is 
given in Fig. 9. The spatial-spectral approach significantly 
improves the ability to separate the three classes, espe-
cially for the difficult detection of infected bunches with 
little fungal biomass.

Fig. 8 Receiver operating characteric curves and dependence of classification accuracy on selected thresholds. ROC curves visualize the trade-off 
between successful detection of healthy versus infected and severely diseased (ROC-1), infected and severely diseased versus healthy (ROC-2), and 
severely diseased versus all other bunches (ROC-3) and the corresponding error rates. ROC curves are calculated for the complete dataset of 60 
images. Class decision for each bunch is based on the average fraction of diseased pixels of two images (top and bottom view of the bunch). This 
combined score was calculated for each bunch prior to application of a threshold. The top row shows the results for classification based on spectral 
features, while the bottom row shows the results for spatial-spectral features with Random Forest classifiers (50 trees each). A true positive rate of 
1 means that all bunches of the corresponding class have been successfully assigned to the correct class. This is achieved at the price of a certain 
false positive rate, which denotes the fraction of bunches of the other classes falsely assigned to the same class. ROC-1 and ROC-2 are significantly 
improved by using spatial-spectral features. As two thresholds are needed to separate the 3 classes, the last column visualizes the accuracy as a 
function of the selected thresholds A and B. The optimal combination of thresholds is highlighted for both feature spaces and shows a significant 
gain in overall classification accuracy for our spatial-spectral approach
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Figure  10 illustrates the general segmentation perfor-
mance of the proposed method. The comparison with the 
manually annotated reference image highlights the capa-
bility of the Random Forest based segmentation approach 
to successfully detect powdery mildew affected grapes 
in VNIR hyperspectral images. Results for both spectral 
and spatial-spectral segmentation contain a number of 
pixels classified as false positive. As these pixels repre-
sent mainly background pixels which were not present in 
the original training dataset (detached berries only), the 
effect on the calculation of fractions of diseased/healthy 
pixels is comparable for all bunches of grapes. For this 
reason, we improved the approach by adding random 
samples from typical background regions (PTFE-plate, 
translation stage surface, paper labels, stem) of three 
additional hyperspectral grape bunch images to the train-
ing dataset. The pixels detected were then excluded from 

the count of diseased pixels. The accuracy values pre-
sented are based on the classification with background 
regions suppressed.

Discussion
Hyperspectral imaging and data analysis based on spec-
tral as well as spatial-spectral features have been applied 
here to test automated detection of powdery mildew 
infection of Chardonnay grape bunches within 12 h of 
routine in-field disease assessment. Hyperspectral imag-
ing has already been used to develop spectral indices 
for detection of plant diseases [10], quantification of the 
spatial proportions within leaf lesions [43] and quantifi-
cation of the intensity of sporulation and leaf coloniza-
tion [9]. Several host-pathogen model systems, such as 
sugar beet and barley powdery mildew and grapevine 
leaf downy mildew, have been studied previously and, 

Fig. 9 Classification results. Confusion matrices for thresholds corresponding to the operating points with maximum accuracy (see Fig. 8) of 
spectral (left) and spatial-spectral classification (right). For spatial-spectral classification, thresholds are found which allow perfect detection of 
healthy and severely diseased grape bunches. Also, the false detections of infected bunches as healthy and as severely infected are reduced by the 
spatial-spectral approach. The best automatically obtained decisions differ from visual assessment by experts only for 4 of the 10 infected bunches, 
with 3 classified as healthy and 1 classified as severely diseased. In addition, operating points can be adjusted according to application demands to 
provide a lower total accuracy but higher specificity/sensitivity for a certain class as needed

Fig. 10 Visual representation of the results from the various data analysis approaches. Images of a representative scanned Chardonnay grape 
bunch: a example of a manually annotated grape bunch with visually identified infection sites shown as red dots, b disease specific visualization of 
VNIR hyperspectral image based on LDA coefficients, c powdery mildew detection results based on spatial-spectral approach (Table 1, row 8), d 
detection results based on classification of hyperspectral signatures (Table 1, row 1)
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to our knowledge, we are first to report results for pow-
dery mildew on grape bunches and individual berries 
in a controlled environment (Fig.  1). The approach pre-
sented in [10] requires exhaustive testing of the possible 
combinations of two wavelengths to find the best dis-
ease-specific index. Those indices (e.g. PSSR, PRI) along 
with a change of reflectance in particular spectral range 
are useful as they may indicate the degree of reaction of 
the disease-affected cells in the resistant and susceptible 
genotypes [44]. However, the use of only two wavelengths 
can be a major drawback and the incorporation of more 
wavelengths would drastically increase the amount of 
time required to find a solution. In our spatial-spectral 
approach, a disease-specific projection based on LDA 
is used instead. This approach can be easily transferred 
to any other model system. The main advantage is that 
the resulting projection is a linear combination of all 
wavelengths.

However, often the motivation for incorporating fewer 
wavelengths is to enable the application of simpler and 
cheaper sensor systems. For this it is important to iden-
tify the most relevant wavelengths from the hyperspec-
tral dataset. In [10] the RELIEF-F algorithm is used prior 
to exhaustive testing to constrain the search space for the 
final solution for computational reasons. We have shown 
that similar information can be derived from the struc-
ture of the Random Forest classifier. We also showed for 
an adapted selection of three relevant wavelengths that a 
gain in classification accuracy (for detached berries) can 
be achieved when used in combination with textural fea-
tures of image blocks instead of single pixels (Table  2). 
An alternative approach for identifying most relevant 
spectral features was reported in [45]. Here, Support 
Vector Machines (SVM) and Random Forest classifiers 
were coupled for classification of pine trees. An impor-
tant aspect of this work was the utilization of Random 
Forest variable importance to identify the most relevant 
wavelength bands. Importance is based on ‘out-of-bag’ 
error and measures the average loss of accuracy when a 
single variable is not used. Experiments reported in [46] 
also include dimensionality reduction of hyperspectral 
data. The authors concluded that identifying the most 
relevant wavelength bands prior to classification yielded 
results similar to classification based on the complete 
spectral data. These findings showed that feature reduc-
tion was possible without significant loss of accuracy. An 
alternative approach to incorporate feature relevance into 
the training of Random Forest classifiers was proposed in 
[47]. Here, the randomness was induced in a guided way 
by selecting features based on a learned non-uniform 
distribution.

The promising results for intact bunches in the VNIR 
wavelength range and from cross-validation experiments 

within the training datasets (detached berries), in either 
the VNIR or SWIR domain, warrant further testing in a 
controlled environment and an industry setting to cor-
roborate these findings. Results showed that a Random 
Forest with 50 random decision trees can be used to esti-
mate infection and discriminate healthy bunches from 
infected. However, variation of hidden E. necator bio-
mass and/or airborne conidia on the surface of berries 
in the visually healthy bunches indicates the need to set 
thresholds for characterization of healthy bunches.

The proposed algorithm for predicting powdery mil-
dew severity needs to be validated in controlled condi-
tions similar to those described by [48] for grape berries 
and bunches with intact conidia and during the latent 
period of E. necator development (i.e. between germi-
nation of the conidium and sporulation of the colony). 
This algorithm also needs to be validated using intact 
bunches harvested by hand at maturity, such as may be 
used for premium quality wines, small wineries, organic 
or biodynamic wines and dried products (e.g. raisins). 
Such validation will determine the sensitivity and preci-
sion of hyperspectral imaging under different conditions 
to assess its usefulness as a method to improve objective 
assessment of powdery mildew severity.

The proposed algorithm was developed for Chardon-
nay from a single vineyard at the beginning of bunch 
closure (E-L 30-33), when visually healthy and infected 
berries as well as the fungus differ in biochemical com-
position from that at harvest (E-L 38). Also, at harvest, 
skin and berry defects may be present due to biotic (e.g. 
other diseases and pests) and abiotic damage. It has been 
shown that LDA using data collected for berry color with 
an automated in-field phenotyping device (PHENObot) 
could not predict red and rose berries if RGB values were 
used [49]. Consequently, it can be expected that addi-
tional adjustments, such as using grape bunches collected 
at harvest from a range of white and black grape varieties 
and growing regions, bunches with diverse compactness 
and those affected by other economically important dis-
eases such as botrytis bunch rot [50], and validation in 
uniform light conditions, will improve the accuracy of 
hyperspectral imaging and prediction of powdery mildew 
severity on intact bunches. This approach may expand 
the application of hyperspectral discrimination of healthy 
and infected hand-harvested bunches in an industry set-
ting. Implementation of hyperspectral imaging for sort-
ing healthy and infected hand-harvested bunches in a 
single layer on a conveyor belt may be feasible.

Hyperspectral imaging has potential for real time 
assessment. However, substantial modification would be 
required to take into account differences between hand- 
and machine-harvested grapes. Machine-harvested 
grapes delivered to wineries comprise mainly individual 
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detached and damaged berries plus material other than 
grapes (e.g. leaves, fragments of canes and vine bark). 
These detached berries can be either completely or par-
tially covered with juice [51]. The presence of juice con-
taining E. necator mycelia and conidia that are washed 
from the surface of infected berries during machine-
harvesting might confound assessment due to reflec-
tion/scattering/shadow and the focal plane might differ 
from the recording of selected berries used for model 
generation. Therefore, classification models would need 
to be developed using detached berries covered with 
juice. High spatial resolution and variability within the 
juice-berry matrix make it necessary to define the most 
important characteristics of berry skin, where E. neca-
tor resides, to increase the reliability and sensitivity of 
the analysis. Consequently, sensitivity and accuracy of 
hyperspectral imaging will need to be tested in these 
conditions.

The qPCR results showed a need to establish thresh-
olds for fungal biomass in visually healthy bunches and 
the same approach applies for hyperspectral imaging of 
those bunches. In the future, fungal biomass thresholds 
might be tentatively proposed for white and black vari-
eties from different regions and validated through the 
perception of specific sensory characters in the resulting 
wine [32, 52].

Conclusions
In this paper an approach to fast image segmentation has 
been adapted for segmentation of hyperspectral image 
data. Especially for automated plant phenotyping facili-
ties, fast and robust algorithms are crucial for the analysis 
of imaging data from high-throughput experiments. Dif-
ferent dimensionality reduction methods have been tested 
to study the performance of spatial-spectral segmentation 
using Random Forest classifiers. The experimental results 
for the estimation of various powdery mildew infection 
levels on intact grape bunches show that the proposed 
spatial-spectral segmentation approach outperforms tra-
ditional pixel-wise classification of normalized spectral 
data by Random Forests. The use of a multiple classifier 
system, namely Random Forest, enables easy improve-
ments in classification accuracy by increasing the ensem-
ble size, fast feature extraction by calculating only the 
required features, as well as efficiency by parallel com-
putation of the trees within the ensemble. Altogether, 
the application of the proposed image processing work-
flow has the potential to improve speed and accuracy in 
disease detection and monitoring in plant phenotyping 
applications. Also, it is applicable to all scales and, thus, 
will broaden the scope for the application of hyperspectral 
imaging technologies for the assessment of diseases, plant 
vitality, stress parameters, and nutrition status.
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