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Abstract
Background  Clear cell renal cell carcinoma (ccRCC) is the dominant subtype of kidney cancer. Dysregulation of long-
chain acyl-CoA synthetase 1 (ACSL1) is strongly implicated in undesirable results in varieties of cancers. Nevertheless, 
the dysregulation and associated multi-omics characteristics of ACSL1 in ccRCC remain elusive.

Methods  We probed the mRNA and protein profiles of ACSL1 in RCC using data from the Cancer Genome Atlas, 
Gene Expression Omnibus, the Human Protein Atlas (HPA), and Clinical Proteomic Tumor Analysis Consortium 
(CPTAC) and verified them in our patient cohort and RCC cell lines. Correlations between ACSL1 expression and 
clinicopathological features, epigenetic modification and immune microenvironment characteristics were analyzed to 
reveal the multi-omics profile associated with ACSL1.

Results  ACSL1 was down-regulated in ccRCC tissues compared to adjacent normal tissues. Lower expression of 
ACSL1 was linked to unfavorable pathological parameters and prognosis. The dysregulation of ACSL1 was greatly 
ascribed to CpG island-associated methylation modification. The ACSL1 high-expression subgroup had enriched 
fatty acid metabolism-related pathways and high expression of ferroptosis-related genes. In contrast, the ACSL1 
low-expression subgroup exhibited higher immune and microenvironment scores, elevated expression of immune 
checkpoints PDCD1, CTLA4, LAG3, and TIGIT, and higher TIDE scores. Using data from the GDSC database, we 
corroborated that down-regulation of ACSL1 was associated with higher sensitivity towards Erlotinib, Pazopanib, and 
PI3K-Akt-mTOR-targeted therapeutic strategies.

The multi-omics analyses of acsl1 reveal 
its translational significance as a tumor 
microenvironmental and prognostic 
biomarker in clear cell renal cell carcinoma
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Introduction
Renal cell carcinoma (RCC), the most prevalent form of 
kidney cancer, arises from renal tubular epithelial cells 
and comprises more than 80% of adult renal malignan-
cies [1]. RCC is the sixth and the ninth most frequently 
occurring malignancy in men and women, respectively. 
Estimates suggest that there will be around 79,000 new 
cases of RCC in the US in 2022 [1]. Clear cell renal 
cell carcinoma (ccRCC) is the most commonly occur-
ring subtype of RCC, making up about 75% of all cases 
[2]. Surgical procedures can serve as an effective thera-
peutic procedure for ccRCC during localized or locally 
advanced stages. Systemic treatment provides relief but 
no cure for patients with advanced diseases [3]. Over the 
past decade, RCC has been regarded as a metabolic dis-
ease [3, 4]. For example, RCC retains the ability to rewire 
the normal metabolism to cope with oxygen deprivation 
despite the inactivation of Von Hippel Lindau (VHL). 
Although under the normoxia, ccRCC produces the 
aberrant transcription factors hypoxia-inducible factor 
(HIF)1α and HIF2α [5, 6], which in turn stimulate the 
pathways involved in fatty acid, glycolysis, and glycogen 
synthesis [7–9]. Moreover, a recent study suggested that 
targeting metabolic pathways in kidney cancer would be 
the potential therapy [10].

Long-chain acyl-CoA synthetase 1 (ACSL1), which can 
activate the long-chain fatty acids (LCFA; 12–20 carbons) 
to fatty acyl-CoAs by esterification, is a member of the 
ACSLs family [11, 12]. The lipid metabolism network can 
play various kinds of metabolic roles, including energy 
production, temperature regulation, and molecular sig-
nal synthesis[13, 14]. Dysregulation of fatty acid metab-
olism gives rise to an overload of lipid biosynthesis and 
deposition, which ultimately leads to the development 
of metabolic diseases, cardiovascular diseases and can-
cer[15]. Various sets of papers have demonstrated the 
connections between ACSL1 and multiple cancers. For 
instance, ACSL1 is up-regulated in colorectal cancer 
and estrogen receptor (ER)-negative, ER-positive and 
HER2-positive breast cancer subtypes, and high ACSL1 
expression in these patients’ tumor samples is linked to 
unfavorable prognosis [12, 16–19]. In parallel, ACSL1 
has been previously reported to be down-regulated in 
non-small cell lung cancer (NSCLC) and liver cancer, 
with its tumor-suppressive effects in NSCLC having 
been demonstrated by Chen, W.C et al. [19, 20]. The dif-
ferential ACSL1 expression in different tumors suggests 
that ACSL1 has diverse effects on tumorigenesis, which 

is worth studying. Nevertheless, the expression charac-
teristics and potential mechanisms of ACSL1 in ccRCC 
tumorigenesis are still unclear.

The regulatory mechanism of aberrant ACSL1 expres-
sion has been reported in several studies. Wang et al. 
suggested that ACSL1 down-regulation was caused by 
copy number deletion in breast cancer [21]. Neverthe-
less, in the brown adipose tissue, DNA hypermethylation 
led to the decreased expression of ACSL1[22]. The role 
of dysregulation of the epigenome, like DNA/RNA meth-
ylation and histone modification, in driving cancer evolu-
tion and advancement, has been increasingly understood 
and highlighted. Given the fact that chromatin modifiers 
genes, including PBRM1, SETD2, and BAP1, were widely 
mutated, epigenetic modification also plays a crucial part 
in the abnormal modulation of genes resulting in ccRCC. 
Additionally, down-regulation of ACSL1 in breast can-
cer was associated with alteration of the mTOR signaling 
pathway, which might be a possible candidate for treat-
ment, and the findings were consistent with another 
study conducted by Liśkiewicz et al. [23]. Nevertheless, 
as we know, the potential epigenetic modification of 
ACSL1 and its relationship with the mTOR signaling in 
ccRCC has not been researched yet.

Here, we addressed the differential expression of 
ACSL1 in ccRCC and its association with the progno-
sis. We identified that ACSL1 could be epigenetically 
regulated, with further findings that the ACSL1 expres-
sion was implicated in the immune microenvironment, 
ferroptosis-associated genes and the treatment strategies 
in ccRCC. These findings shed new light not only on the 
understanding of the function of ACSL1 in the advance-
ment of ccRCC, but also on the finding that ACSL1 
expression can suggest different multi-omic molecular 
typing and promising therapeutic approaches in ccRCC.

Materials and methods
Cell culture and samples
The ccRCC cell lines with the inclusion of 786-O, 769-P 
and OS-RC2 were cultured using RPMI-1640 (Invitro-
gen), and HK-2 (renal tubular epithelial cells) were kept 
in the Dulbecco’s modified Eagle’s medium (DMEM, 
Invitrogen), with all medium containing 10% fetal bovine 
serum (FBS, Hyclone). ccRCC cell lines and HK-2 were 
acquired from the American Tissue Culture Collection 
(ATCC). The ccRCC tissues (n = 29) and paracancerous 
tissues (n = 29) were obtained from our ccRCC tissues 
biobank. Each participant subscribed to a prior informed 

Conclusion  Taken together, our findings point to ACSL1 as a biomarker for prognostic prediction of ccRCC, 
identifying the tumor microenvironment (TME) phenotype, and even contributing to treatment decision-making in 
ccRCC patients.
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consent form. The Ethics Committee of West China Hos-
pital, Sichuan University (Chengdu, China) authorized 
the protocol for this research.

Expression of ACSL1 in ccRCC
We used TCGA data sets (www.tcga-data.nci.nih.gov/
tcga) [24] to investigate differential expression of ACSL1 
in multiple cancers and displayed the data using a box 
plot via Tumor Immune Estimation Resource (TIMER) 
[25, 26]. In our study, 72 normal tissues and 533 tumor 
samples for ccRCC were subjected to analysis of ACSL1 
RNA expression patterns. The TCGA dataset was 
employed to verify the expression profiles of ACSL1 in 
cancerous samples and controls using the Wilcoxon test. 
Gene expression is represented as log2 TPM values. We 
also adopted the Wilcoxon rank sum test to investigate 
the GEO (www.ncbi.nlm.nih.gov/geo; GSE53757, n = 144 
and GSE40435, n = 202) [13] data sets to probe the dif-
ferentiated ACSL1 RNA expression between ccRCC and 
control groups.

Quantitative real-time PCR (qRT- PCR)
Total RNA was derived out of tissues and cells with 
the aid of the RNeasy Total RNA Isolation Kit (Qia-
gen) and then reversely transcribed by utilizing the 
Quantitative Reverse Transcription Kit (QIAGEN). 
qRT-PCR was conducted with an A25742SYBR™ 
Green Master Mix. The data were standardized using 
GAPDH as endogenous control and further ana-
lyzed with the 2−ΔΔCT method. The primers (5′ to 3′) 
used are as follows: ACSL1 forward: 5’-GACATTG-
GAAAATGGTTACCAAATG − 3’ and reverse: 
5’-GGCTCACTTCGCATGTAGATA − 3’. GAPDH for-
ward: 5’-GGAGCGAGATCCCTCCAAAAT-3’ and 
reverse: 5’GGCTGTTGTCATACTTCTCATGG-3’.

Protein expression of ACSL1 in ccRCC
The proteins from tissues and cells were extracted by lys-
ing with RIPA comprising 1% protease inhibitors. The 
BCA assay was conducted to determine the protein con-
tent. Western blotting was conducted with reference to 
previous studies [27–29]. The following primary anti-
bodies and dilutions were applied: the ACSL1 antibody 
(proteintech, 13989-1-AP) (diluted at 1:3000) and the 
GAPDH recombinant antibody (proteintech, 80570-1-
RR) (diluted at 1:1000).

Immunohistochemical images of ACSL1 protein in 
cancerous tissues from ccRCC patients (ID: 3541) as 
well as associated normal kidney tissues (ID: 1859) were 
from the Human Protein Atlas (HPA) (http://www.pro-
teinatlas.org/) [29–31]. Atlas Antibodies Sigma-Aldrich 
provided the HPA011316 antibody (0.0475  mg/mL) for 
immunohistochemistry (IHC). Next, we used Clini-
cal Proteomic Tumor Analysis Consortium (CPTAC) to 

study the differentiation in ACSL1 expression between 
cancerous and control tissues by the UALCAN tool [32].

Clinicopathology and prognosis analysis
The interaction between ACSL1 expression and clinico-
pathological parameters (age, gender, T-stage, N-stage, 
M-stage, pathological stage, histological grading, etc.) in 
the TCGA-ccRCC cohort was integrated and examined. 
The measurement data were presented as the mean ± SD. 
An unpaired t-test was employed for statistical assess-
ments. Pearson chi-squared test or Fisher’s exact test 
was made available to probe the link between ACSL1 and 
characteristic clinical variances [33]. The prognostic and 
diagnostic potential of ACSL1 in ccRCC was assessed 
by overall survival (OS), disease-specific survival (DSS) 
and progression-free survival (PFS) analysis, which 
were exhibited by Kaplan-Meier curves and survival 
charts, with data from the TCGA database [34, 35]. The 
prognostic effect of the model could be gauged by the 
receiver operating characteristic (ROC) curve analysis 
[36]. Hence, ROC analyses were created by applying the 
R package “pROC” to study the area beneath the ROC 
curve (AUC) to assess the sensitivity (true positive rate) 
and specificity (true negative rate) of ACSL1 for ccRCC 
diagnosis.

DNA methylation analysis
We adopted the R software package “ggplot2” to figure 
out the connection between DNA methylation-related 
genes with high and low expression of ACSL1 in ccRCC 
tissues. The DNA methylation-related genes including 
TRDMT1, TET1, TET2, TET3, DNMT1, DNMT3A, 
DNMT3B, DNMT3L [37], then we resorted to Spear-
man rank test to determine the correlation between the 
ACSL1 expression and the DNA methylation-related 
genes and visualized by heatmap. By using the SMART 
tool [38], the methylation extent of ACSL1 in normal 
and tumor samples was compared, and the definite cor-
respondence between the methylation degree and the 
ACSL1 expression in ccRCC was gauged. We obtained 
Beta values for analysis and the Pearson method was 
performed to measure the association between methyla-
tion degrees and ACSL1 expression. Then, we resorted 
to the MethSurv tool (https://biit.cs.ut.ee/methsurv/) 
to study the methylation status of diversified probes, 
according to the datasets of the TCGA-ccRCC data-
base, and visualized the results with the waterfall plot 
[39]. We then turned our attention to highly methylated 
probes to interrogate the underlying association of these 
probes with prognosis. The outcomes were shown by the 
Kaplan–Meir plot.

http://www.tcga-data.nci.nih.gov/tcga)
http://www.tcga-data.nci.nih.gov/tcga)
http://www.ncbi.nlm.nih.gov/geo
http://www.proteinatlas.org/)
http://www.proteinatlas.org/)
https://biit.cs.ut.ee/methsurv/
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Relationships between ACSL1 expression and m6A 
modification and ferroptosis in the ccRCC cohort
We applied the R software package “ggplot2” to study the 
correspondence between the ACSL1 gene and the profiles 
of m6A-associated or ferroptosis-related genes in TCGA-
ccRCC data sets. The m6A-related genes comprised 
ZC3H13, YTHDF3, HNRNPA2B1, IGF2BP1, IGF2BP3, 
YTHDC2, YTHDF1, FTO, HNRNPC, METTL14, 
METTL3, WTAP, RBM15, ALKBH5, IGF2BP2, RBMX, 
RBM15B, YTHDC1, VIRMA and YTHDF2 [40, 41]. In 
parallel, ferroptosis-related genes included LPCAT3, 
HSPA5, CARS1, CDKN1A, CS, GLS2, ALOX15, SAT1, 
ACSL4, EMC2, RPL8, FANCD2, NFE2L2, DPP4, TFRC, 
ATP5MC3, GPX4, FDFT1, MT1G, NCOA4, SLC7A11, 
HSPB1, CISD1, and SLC1A5 [42]. we firstly profiled the 
expression of m6A-related genes in the ACSL1 high- and 
low-expression group,then we investigated the expression 
of ferroptosis-related genes in ACSL1 high-expression 
group of ccRCC, ACSL1 low-expression group of ccRCC 
and adjacent normal kidney tissue from the TCGA data-
set. Next, we separately screened out six m6A-related 
genes and ten ferroptosis-related genes with the lowest 
P value in the ACSL1 high- and low-expression group. 
At last, we probed whether the effects of these genes on 
prognosis were different between the two groups by uni-
variate cox regression analysis [41–44].

Enrichment assays of differentially expressed genes 
between ACSL1-high and -low-expression subgroups in 
ccRCC
The Limma package (version: 3.40.2) was utilized to 
characterize the varied expression of mRNAs between 
the ACSL1 high- and low-expression groups. (cut-off: 
median expression value) by analyzing the TCGA ccRCC 
data sets. Adjusted P < 0.05 and log (fold change) > 1.5 
or <-1.5 was defined as the threshold for screening out 
differentially expressed mRNAs. A volcano plot was 
outlined to shed light on all the up-regulated and down-
regulated mRNAs with statistical significance. The Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
and the Gene ontology (GO) analysis of co-expressed 
genes was performed with the clusterProfiler package 
(version: 3.18.0) [45] of R software. Where enrichment 
results were available, P < 0.05 or FDR < 0.05 signified sta-
tistical significance.

Immune infiltration and immune checkpoint analysis
To study the underlying relevance between ACSL1 
expression to immunological conditions in the tumor 
microenvironment (TME) in ccRCC, we resorted to 
“immunedeconv” package to investigate the differ-
ence in the distribution of immune cell fractions in the 
ACSL1 high-expression group of ccRCC, the ACSL1 low-
expression group of ccRCC and adjacent normal kidney 

tissue group from the TCGA dataset. xCELL algorithm 
was selected for analysis. A heatmap was plotted and the 
Kruskal-Wallis was exploited to establish the significance 
of these groups [46]. Meanwhile, we picked SIGLEC15, 
TIGIT, CD274, HAVCR2, PDCD1, CTLA4, LAG3 and 
PDCD1LG2 as immune checkpoint-associated tran-
scripts [47–49]. These eight genes were exploited using 
the ‘ggplot2’ package to extract expression values in the 
ACSL1 high-expression group of ccRCC, the ACSL1 low-
expression group of ccRCC and adjacent normal kidney 
tissue group from the TCGA dataset.These groups of 
samples were identified by the Kruskal-Wallis for sig-
nificance. Next, corresponding clinical information was 
acquired from the TCGA-ccRCC cohort for the RNA 
sequencing data. We then predicted underlying immune 
checkpoint blockade (ICB) responses in the ACSL1 
high- and low-expression group by adopting the Tumor 
Immune Dysfunction and Rejection (TIDE) algorithm. 
TIDE is a methodology for modeling the two princi-
pal mechanisms of tumor immune evasion, where high 
TIDE scores are related to inferior efficacy and reduced 
survival time following ICB treatment [51]. The findings 
were exhibited with the packages “ggplot2” and “ggpubr”.

Potential therapeutic strategies analysis
We made predictions of chemotherapy response for 
ccRCC samples as per the Genomics of Drug Sensitiv-
ity in Cancer (GDSC) [50, 51]. TKI drugs (Sunitinib and 
Pazopanib) and the PI3K pathway inhibitors, including 
Temsirolimus and Pictilisib (GDC0941) were adopted. 
These drugs were employed to evaluate the therapeutic 
response of ACSL1 in the high-expression group and the 
ACSL1 low-expression group via half-maximal inhibi-
tory concentration (IC50). The IC50 for each sample was 
assessed using ridge regression. All settings were config-
ured by default and the removal of batch effects of com-
bat and tissue type, and the duplicate gene expression 
was aggregated to the mean.

Statistical analysis
R (v 4.0.3) software applied for statistical analysis 
together with the packages ggplot2, heatmap, ggpubr, 
pROC, Limma, survival, survminer, clusterProfiler and 
immunedeconv was applied to analyze the data. Wilcox 
test or T-test was used to analyse the statistical differ-
ence of two groups, Kruskal-Wallis one-way ANOVA was 
applied to analyse significance difference of three groups. 
Survival rates were assessed using Kaplan–Meier curves 
and log-rank tests.The correlation between two variables 
was used by Spearman rank test or Pearson’s test. A P 
value < 0.05 was deemed statistically valid.
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Results
Dysregulation of ACSL1 in RCC tumor tissues
In the TCGA database, pan-cancer analysis exhibited 
that the ACSL1 displayed differential expression with 
statistical significance in multiple cancers, like Kid-
ney renal clear cell carcinoma (KIRC) and Kidney renal 
papillary cell carcinoma (KIRP) (Fig.  1A). Besides, the 
expression of ACSL1 was significantly decreased in the 
paired ccRCC samples from the TCGA database (Fig. 1B, 
P < 0.001) and other two GEO datasets (Fig.  1C, D and 
P < 0.001). Through qRT-PCR experiments (Fig.  1E), we 
validated that the ACSL1 mRNA expression was dis-
tinctly lower in ccRCC tissues versus matched adjacent 
normal tissues from West China Hospital (Chengdu, 
Sichuan, China). Also, we observed that the ACSL1 
mRNA expression was lower in ccRCC cell lines (786-O, 
OS-RC-2 and 769-P) than that in HK-2 (human kidney 
epithelial tubular cell line) (Fig. 1F).

To validate the results from the mRNA expression level, 
we next explored the ACSL1 protein expression through 
HPA. As a result, ACSL1 was mediumly expressed in 
the membrane and cytoplasm of cells in renal tubules 
with moderate intensity at a rate of 75%-25%, but it was 
barely detectable in ccRCC tumor cells (Fig. 1G). To pro-
vide further evidence of the accuracy of our observations, 
we performed Western Blot and uncovered that the pro-
tein expression of ACSL1 was almost entirely lower in 
ccRCC tumorous tissues versus adjacent normal tissues 
(Fig.  1H). Supplementary Figure S1 shows the result of 
western blot about the remaining 23 pairs of renal carci-
noma tissues. At last, we further checked the data from 
CPTAC to validate the differences in protein expression 
of ACSL1 between tumorous and control tissues. As 
depicted in Fig. 1I, the protein expression of ACSL1 was 
markedly less in tumor tissues versus the corresponding 
normal samples. (P < 0.001).

Down-regulation of ACSL1 was related to clinical stage and 
pathological grade as well as poor prognosis
To further assess the prognostic and clinicopathologi-
cal significance of ACSL1 expression in ccRCC, we used 
the TCGA-KIRC data cohort to stratify patients into the 
high-or low-expression group with regard to median 
ACSL1 expression. The baseline characters and thera-
peutic outcomes within different ACSL1 expression 
groups are depicted in Table 1. Kaplan-Meier curves and 
log-rank tests displayed that low expression of ACSL1 
in ccRCC corroborated with shortened OS (P = 0.001, 
Fig.  2A), DFS (P < 0,001, Fig.  2B) and PFS (P < 0.001, 
Fig.  2C). The ROC curve applied to assess the sensitiv-
ity and specificity of ACSL1 for the outcome prediction 
of ccRCC in TCGA data sets, exhibiting an area beneath 
the ROC curve of 0.814 (95% CI: 0.769–0.859) (Fig. 2D). 
For patients in T1 stage, M1 stage, pathologic stage I and 

IV were significantly associated with worse OS (Fig. 2E-
H, P < 0.05), For patients in T1 stage, M0 and M1 stage, 
pathologic stage IV were significantly related to poorer 
DFS (Fig.  2I-L, P < 0.05), For patients in T1 stage, M0 
stage, pathologic stage I were implicated in shorter PFS 
(Fig.  2M-O, P < 0.05), All these findings illustrated that 
lower expression levels of ACSL1 have coincided with 
higher clinical stage, pathological grade, and poorer 
prognosis.

DNA methylation serves as a promising down-regulatory 
mechanism of ACSL1 expression in ccRCC
Next, we sought to elucidate the potential mechanism 
for the down-regulation of ACSL1 in ccRCC. Firstly, we 
found that tumors with higher ACSL1 expression had 
significantly higher expression of DNA methylation-
associated genes TET2, TET3, TRDMT1 and DNMT1. 
Moreover ACSL1 gene was positively correlated 
with these DNA methylation-associated genes TET2 
(R = 0.306, P = 4.72e-13), TET3 (R = 0.092, P = 3.37e-2), 
TRDMT1(R = 0.28, P = 6.11e-11), DNMT1(R=-0,019, 
P = 6.53e-01)Fig.  3A, P < 0.05). These evidences suggest-
ing that the transcriptomic regulation of ACSL1 may be 
linked to DNA methylation status. We then explored the 
differential DNA methylation levels of ACSL1 between 
tumor and normal tissues, discovering that the aggerated 
methylation for all the probes in ACSL1 gene loci was 
more pronounced in tumor tissues versus normal tissues. 
Specifically, the GpG island-related probes cg03498175 
and cg08823975 exhibited remarkably higher methyla-
tion levels in tumor tissues (Fig. 3B, Supplementary Fig-
ure S2, P < 0.001).

We then depicted a heatmap about the connec-
tion between methylation levels, gene subregions and 
gene expression in light of the sequencing results in the 
TCGA-ccRCC cohort. The outcomes disclosed that 
8 out of 14 methylation sites in ccRCC had obviously 
negative correlation with ACSL1 expression, includ-
ing cg03498175(r=-0.44, P < 0.001), cg08823975(r=-0.45, 
P < 0.001), cg24277788(r=-0.44, P < 0.001), 
cg01899937(r=-0.39, P < 0.001) and cg111668687(r=-0.37, 
P < 0.001) (Fig.  3C). Supplementary Figure S3 shows 
detailed correlations between the ACSL1 expression with 
the methylation sites. Moreover, we analyzed the prog-
nostic significance of these ACSL1-associated methyla-
tion loci and revealed that patients with a greater extent 
of methylation of cg20823481, cg24277788, cg01899937 
and cg111668687 had worse OS (Fig. 3C, P < 0.05). Over-
all, these findings illustrated that ACSL1-related DNA 
methylation modification was strongly linked to its 
ACSL1 expression and ccRCC patients’ prognosis.
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Fig. 1  ACSL1 expression in RCC tissues and pan-carcinoma. (A) ACSL1 profiles in tumorous and normal tissues of pan-cancer data from the Cancer Ge-
nome Atlas (TCGA). (B) ACSL1 mRNA expression between ccRCC and matched healthy tissues in TCGA data sets. (C) ACSL1 mRNA expression in ccRCC 
and matched normal tissues in GSE40435 data sets. (D) Differential expression of ACSL1 between ccRCC and normal tissues in GSE53757 data. (E) ACSL1 
mRNA expression levels in the six RCC and matched paracancerous tissues. (F) Differential expression of ACSL1 in ccRCC cell lines and renal tubular epi-
thelial cell HK-2. (G) Immunohistochemical images from the HPA data sets show ACSL1 expression in RCC tissues and normal renal tissues. (H) Protein 
expression of ACSL1 in ccRCC tissues and neighboring healthy tissues from six patients in West China Hospital. N1-6: paracancerous tissues of patients 
1–6, T1-6: cancer tissues of patients 1–6. the bands gray value of N1-6 significantly higher than the T1-6. The normalized gray value of 29 pairs of renal 
carcinoma tissues after quantitative analysis were shown on the right. (I) Protein expression of ACSL1 in tumor and normal tissues in ccRCC data from 
CPTAC. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. ns, not significant
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The association between ACSL1 with m6A modification-
related genes in ccRCC
m6A modification has a critical function in ccRCC[40]. 
The correspondence between the expression of ACSL1 
and that of m6A-related genes was researched by analyz-
ing TCGA- ccRCC samples. The results demonstrated 
that the ACSL1 expression exhibited a notable corre-
lation with the expression of m6A writers (ZC3H13, 
WTAP, VIRMA, RBM15, METTL3, and METTL14), 
m6A readers (YTHDF1, YTHDF2, YTHDF3, YTHDC1, 
YTHDC2, RBMX, HNRNPC, and HNRNPA2B1), and 
m6A erasers (FTO and ALKBH5) (Fig.  4A, P < 0.05) in 
TCGA ccRCC data sets. Additionally, the ACSL1 expres-
sion was significantly and reversely associated with the 
expressions of m6A readers (IGF2BP2 and IGF2BP3) 
(Fig.  4A, P < 0.05). Next, we investigated the correla-
tions among the m6A-related genes in ACSL1 high- and 
low-expression groups, respectively. (Fig.  4B-C). Then 
we selected a total of six genes with the smallest P value 
in predicting prognosis in ACSL1 high-expression sub-
groups, including m6A writers (METTL14, ZC3H13, 
VIRMA and RBM15B) and m6A readers (IGF2BP2 and 
IGF2BP3). Within the ACSL1 low-expression group, 
six genes had minimal P values, including m6A reader 
(IGF2BP1, IGF2BP2, IGF2BP3 and HNRNPA2B1) and 
m6A writers (METTL14 and METTL3). Subsequently, 
we explored the prognostic merits of these m6A-asso-
ciated genes in ACSL1 high-expression subgroups and 
ACSL1 low-expression subgroups, respectively (Fig. 4D-
E). These results suggested that m6A-related genes had 
different prognostic values in ACSL1-high subgroups and 
ACSL1-low subgroups of ccRCC, and these prognostic 
correlations might be influenced by the expression levels 
of ACSL1 in ccRCC patients.

Enrichment analysis of ACSL1-associated functional 
pathways in ccRCC
Compared to the ACSL1 low-expression group, 1286 
genes displayed up-regulation and 215 genes exhibited 
down-regulation in the ACSL1 high-expression group 
(Fig. 5A, P < 0.05). A full description is shown in Supple-
mentary Table  1. By analyzing the extent of KEGG and 
GO enrichment, we substantiated that the up-regulated 
genes were principally concentrated in metabolism-asso-
ciated processes and pathways, including the degrada-
tion of Valine, leucine and isoleucine, the PPAR pathway, 
carbon metabolism and Tryptophan metabolism. Spe-
cially, we observed a significant enrichment of fatty acid 
metabolism-related pathways such as fatty acid metabo-
lism, fatty acid degradation and fatty acid metabolic pro-
cesses (Fig.  5B-C). Besides, the enrichment analysis for 
up-regulated genes indicated that fatty acid metabolism 
was more activated in the ACSL1 high-expression group 
versus the ACSL1 low-expression group.

High ACSL1 expression was linked to ferroptosis-related 
genes in ccRCC
The enrichment results highlighted that fatty acid oxi-
dation-related signalings were predominantly involved 
in the ACSL1 high-expression group and that fatty acid 
oxidation featured prominently in regulating ferroptosis. 
We found that these ferroptosis related genes NFE2L2, 
CISD1, FDFT1, TFRC, NCOA4, LPCAT3. DPP4, CS, 
ATP5MC3, ACSL4 and ATL1 were obviously down-
regulated in ACSL1 low-expression group compared to 
ACSL1 high- expression group and normal kidney tis-
sue group (Fig.  5D). These evidences suggested that the 
ACSL1 low-expression group had downregulated ferrop-
tosis signal. Next, we analyzed the interaction between 
the 25 ferroptosis-related genes and the prognosis in 
ACSL1 high and low-expression groups, respectively. As 
presented in Fig. 5E, there was a positive correspondence 
between most ferroptosis-regulatory genes and progno-
sis in the ACSL1 low-expression group. Furthermore, we 
selected ten genes (FANCD2, TFRC, SLC7A11, HSPB1, 
FDFT1, NCOA4, CARS1, ATL1, SLC1A5 and SAT) with 
the smallest P value in predicting prognosis in the ACSL1 
high-expression group and ACSL1 low-expression 
group, respectively, and conducted univariate Cox analy-
sis (Fig.  5F-G). We uncovered that higher expression of 
NCOA4 and ATL1 was implicated in better prognosis, 
while CARS1 and SAT1 showed the opposite effects in 
the ACSL1 high-expression group. In the ACSL1 low-
expression group, FDFT1, 7NCOA4, and ATL1 were 
related to favorable prognosis, while FANCD2, TFRC, 
SLC7A11, CARS1, and SLC1A5 were correlated with an 
inferior prognosis (Fig. 5F-G).

Low ACSL1 expression was linked to high immunogenicity 
in ccRCC
KEGG and GO enrichment results also indicated that the 
ACSL1 low-expression group had significantly enriched 
immune-associated pathways, such as cytokine-cytokine 
receptor interaction, complement and coagulation cas-
cades, regulation of cell-cell adhesion, T-cell activation, 
humoral immune response, leukocyte cell-cell adhesion, 
and modulation of T cell activation (Fig.  6A-B). In the 
following analyses, we adopted the xCell algorithm to 
investigate the relationship between ACSL1 expression 
and immune infiltrating cells in TCGA-ccRCC samples. 
The findings presented that the ACSL1 low-expres-
sion subgroup had a significantly higher immune score 
(P < 0.001) and microenvironment score (P < 0.001). Mul-
tiple immune cells were also elevated in the ACSL1 low-
expression group, including macrophage M1 (P < 0.001), 
T cell CD8+ (P < 0.001), CD4 + effector memory T cells 
(P < 0.001), B cells (P < 0.001), and T cell NK (P < 0.001) 
(Fig. 6C).
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Characteristic Low expression of ACSL1 High expression of ACSL1 p
n 269 270

T stage, n (%) 0.013

T1 121 (22.4%) 157 (29.1%)

T2 38 (7.1%) 33 (6.1%)

T3 102 (18.9%) 77 (14.3%)

T4 8 (1.5%) 3 (0.6%)

N stage, n (%) 0.068

N0 116 (45.1%) 125 (48.6%)

N1 12 (4.7%) 4 (1.6%)

M stage, n (%) 0.011

M0 204 (40.3%) 224 (44.3%)

M1 50 (9.9%) 28 (5.5%)

Pathologic stage, n (%) 0.002

Stage I 115 (21.5%) 157 (29.3%)

Stage II 30 (5.6%) 29 (5.4%)

Stage III 69 (12.9%) 54 (10.1%)

Stage IV 53 (9.9%) 29 (5.4%)

Primary therapy outcome, n (%) 0.295

PD 7 (4.8%) 4 (2.7%)

SD 2 (1.4%) 4 (2.7%)

PR 0 (0%) 2 (1.4%)

CR 51 (34.7%) 77 (52.4%)

Gender, n (%) < 0.001

Female 69 (12.8%) 117 (21.7%)

Male 200 (37.1%) 153 (28.4%)

Race, n (%) 0.432

Asian 6 (1.1%) 2 (0.4%)

Black or African American 29 (5.5%) 28 (5.3%)

White 232 (43.6%) 235 (44.2%)

Age, n (%) 0.282

<=60 141 (26.2%) 128 (23.7%)

> 60 128 (23.7%) 142 (26.3%)

Histologic grade, n (%) < 0.001

G1 5 (0.9%) 9 (1.7%)

G2 96 (18.1%) 139 (26.2%)

G3 110 (20.7%) 97 (18.3%)

G4 54 (10.2%) 21 (4%)

Laterality, n (%) 1.000

Left 126 (23.4%) 126 (23.4%)

Right 142 (26.4%) 144 (26.8%)

OS event, n (%) < 0.001

Alive 156 (28.9%) 210 (39%)

Dead 113 (21%) 60 (11.1%)

DSS event, n (%) < 0.001

Alive 180 (34.1%) 240 (45.5%)

Dead 83 (15.7%) 25 (4.7%)

PFI event, n (%) < 0.001

Alive 158 (29.3%) 220 (40.8%)

Dead 111 (20.6%) 50 (9.3%)

Serum calcium, n (%) 0.880

Elevated 6 (1.6%) 4 (1.1%)

Low 103 (28.1%) 100 (27.3%)

Normal 79 (21.6%) 74 (20.2%)

Table 1  Relationships between clinical features and ACSL1 expression in ccRCC patients in TCGA data sets
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Besides, the distinct expression levels of immune 
checkpoints among the ACSL1 low-expression group, 
ACSL1 high-expression group and normal renal tis-
sues group were compared (Fig. 6D). Almost all immune 
checkpoints except SIGLEC15 had higher expression 
level in tumor tissues compared to normal kidney tis-
sues. And higher expression of, LAG3, PDCD1 and 
TIGIT, and lower expression levels of CD274, HAVCR2 
and PDCD1LG2 were found in the ACSL1 low-expres-
sion subgroup versus the ACSL1 high-expression sub-
group.These results suggest that immune cells-expressed 
immune checkpoints (LAG3, PDCD1 and TIGIT) may 
participate in the immune escape of tumor cells in the 
ACSL1 low-expression subgroup of ccRCC, and ACSL1 
low-expression group could be suitable for the combina-
tion of LAG3 or TIGIT with PD-1 inhibitors.

Moreover, the TIDE algorithm was applied to probe 
the potential ICB response between high and low expres-
sion levels of ACSL1 in the TCGA-ccRCC samples. The 
TIDE score was obviously reduced in the ACSL1 high-
expression group versus the ACSL1 low-expression 
group (Wilcoxon rank-sum test, P = 2.3e-16; Fig. 6E). The 
TIDE algorithm mimics immune evasion in tumors tak-
ing advantage of T cell dysfunction and exclusionary fea-
tures, and higher TIDE prediction scores correlate with 
poorer ICB responses. Our results substantiated that 
the ACSL1 high-expression group might respond better 
to ICB versus the ACSL1 low-expression group and was 
more suitable for immunotherapy.

Potential therapeutic strategies for ACSL1 low-expression 
subgroup of ccRCC
We found that the KEGG pathway enrichment triggered 
the PI3K-Akt pathway in the ACSL1 low-expression sub-
group, so we evaluated the sensitivity of PI3K-Akt-mTOR 
pathway inhibitors, including Temsirolimus, Pictilisib 
(GDC0941) using data from the GSDC database. As a 
result, the IC50 of the ACSL1 low-expression group for 
Temsirolimus (P < 0.0001) and Pictilisib (P < 0.0001) was 
lower versus the ACSL1 high-expression group (Fig. 7A).

Considering the extensive clinical application of tyro-
sine kinase inhibitors (TKIs) in treating ccRCC, the 
sensitivity of several commonly used TKIs was also cal-
culated. As displayed in Fig.  7B, high ACSL1 expres-
sion corroborated with the high sensitivity of sunitinib 
(P < 0.05) and Pazopanib (P < 0.0001). Overall, the ACSL1 

low-expression subgroup of ccRCC might be suitable for 
PI3K pathway inhibitors, while the ACSL1 high-expres-
sion subgroup of ccRCC might be more sensitive to Suni-
tinib and Pazopanib.

Discussion
In this study, we used TCGA data set to predicate the 
ACSL1 expression in various cancers and revealed that 
ACSL1 was down-regulated in 10 types of cancer, includ-
ing ccRCC. On the basis of the analysis of GEO and 
TCGA ccRCC databases, we found the ACSL1 expres-
sion in ccRCC samples was notably lower than in normal 
tissues, which were validated by qRT-PCR and western 
blotting. Furthermore, lower ACSL1 expression was 
related to higher clinical stage, pathological grade and 
poor prognosis in ccRCC. At the same time, we evaluated 
the predictive role of ACSL1 expression on the progno-
sis of ccRCC using ROC curves and observed that ACSL1 
was highly accurate in predicting the outcome of nor-
mal and tumor samples. However, many prior reports 
have revealed that ACSL1 was up-regulated in prostate, 
ovarian and colorectal cancers [12, 52, 53]. And patients 
with stage II colorectal cancer with higher ACSL1 lev-
els had poorer clinical outcomes. Also, Qi L et al. [54]. 
disclosed that breast cancer patients with high levels of 
ACSL1 tended to have a poor prognosis. In conclusion, 
ACSL1 is potentially a prognostic and diagnostic factor 
for ccRCC sufferers, and the variances in ACSL1 expres-
sion between ccRCC and other tumors may account for 
the different tumorigenesis mechanisms of ACSL1 in 
diverse cancer types.

The heterogeneity of ACSL1 in various solid tumors 
dictates its different regulatory mechanisms. In paral-
lel, many pathways contribute to gene dysregulation, 
of which epigenetic modifications are integral. Recent 
reports have emphasized that DNA methylation is a 
critical epigenetic modification of the genome that con-
tributes to tumorigenesis [55, 56]. Modulating the DNA 
methylation levels of target genes can affect either onco-
genes or tumor-suppressive genes, thus influencing 
tumorigenesis and tumor progression [57]. By analyz-
ing the TCGA-ccRCC cohort, we disclosed that DNA 
methylation-related genes had a close relationship with 
the ACSL1 expression, so we decided to study in depth 
the methylation level of ACSL1. Through the SMART 
tool, we found a higher hypermethylation status in 

Characteristic Low expression of ACSL1 High expression of ACSL1 p
Hemoglobin, n (%) 0.120

Elevated 3 (0.7%) 2 (0.4%)

Low 147 (32%) 116 (25.3%)

Normal 88 (19.2%) 103 (22.4%)

Age, mean ± SD 60.04 ± 12.32 61.21 ± 11.86 0.259

Table 1  (continued) 
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the promoter region of the ACSL1 gene in ccRCC tis-
sues versus the normal tissues, particularly for the GpG 
island-related probes cg03498175 and cg08823975. 
We also observed that cg03498175, cg20823481, 
cg08823975, cg24277788, cg00372249, cg03977443, 

cg01899937 and cg111668687 had obvious negative 
relationship with ACSL1 expression in ccRCC tissues. 
More importantly, the higher extent of methylation of 
cg20823481, cg24277788, cg01899937 and cg111668687 
led to a poorer prognosis. The findings displayed that the 

Fig. 2  Clinical values and subgroup assessment of ACSL1 expression and survival in ccRCC. (A) The link between ACSL1 expression and OS in ccRCC. (B) 
The relationship between ACSL1 expression and DSS in ccRCC. (C) The association between ACSL1 expression and PFS mark. (D) Analysis of recipient 
operating characteristic profiles for ACSL1 diagnoses in ccRCC. (E-H) The correlation between ACSL1 expression and OS in stage T1, stage M1, pathology 
I and IV ccRCC. (I-L) The connection between ACSL1 expression and DSS in T1 stage, M0, M1 stage, and pathologic IV. (M-O) The link between ACSL1 
expression and PFS in T1 stage, M1 stage and pathologic stage I
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regions detected had a hypermethylated status and were 
adversely correlated with the ACSL1 expression. In brief, 
DNA Methylation may affect the ACSL1 expression in 
ccRCC. These findings inspired us to further study how 
methylation of different loci within ACSL1 influences the 
survival outcomes of ccRCC.

M6A modifications, a component of epigenetic modifi-
cations, are among the most prevalent RNA methylation 
modifications that affect the development and evolu-
tion of numerous tumors [58–61]. For instance, Li Y, et 
al. [58] revealed that RNA m6a reader YTHDF2 exhib-
its pronounced expression in lung adenocarcinoma tis-
sues and induces lung adenocarcinoma cell proliferation 
and metastasis by targeting the AXIN1/Wnt/β-catenin 
pathway. Nevertheless, there were few studies about 
the association between m6a and ACSL1 expression in 
ccRCC. Here, we first uncovered that the ACSL1 expres-
sion positively correlated with the expressions of m6A 
writers (ZC3H13, WTAP, VIRMA, RBM15, METTL3, 
and METTL14), m6A readers (YTHDF1, YTHDF2, 
YTHDF3, YTHDC1, YTHDC2, RBMX, HNRNPC, and 
HNRNPA2B1), and m6A erasers (FTO and ALKBH5). 
More importantly, we identified that these reported 
m6A-related genes involved in ccRCC prognosis were 

grounded in ACSL1 expression. In conclusion, m6A-
related genes may influence the expression profiles of 
ACSL1 in ccRCC samples, and the link between these 
m6A-related genes and prognosis is also determined 
by ACSL1 expression. As such, additional assays are 
required to confirm our predictions, with specific refer-
ence to the relationship between m6a modifications and 
ACSL1 expression.

ACSL1, a member of the ACSL family, is mainly 
responsible for the esterification of enriched LCFA (12–
20 carbons) [11, 12]. For example, Yang et al. [62] have 
reported that down-regulating ACSL1 reduces intracellu-
lar triglyceride and cholesterol levels and hampers tumor 
growth. Zhang et al. [53] reported that ACSL1 induces 
ovarian cancer cell metastasis through regulating myris-
toylation and FAO. However, there was no study on the 
biological functions of ACSL1 in ccRCC. In our research, 
we substantiated that high ACSL1 expression in ccRCC 
is mainly associated with metabolism-related pathways, 
like the degradation of valine, leucine and isoleucine and 
the metabolism of fatty acid, carbon and tryptophan. 
Specially, we observed the significant enrichment of 
fatty acid metabolism-associated pathways like fatty acid 

Fig. 3  DNA methylation modification was associated with ACSL1 silence. (A) Changes of 8 DNA methylation-associated genes between ACSL1-low 
and ACSL1-high expression subgroups in ccRCC. Correlation of ACSL1 mRNA expression with TET2, TET3, TRDMT1 on the right. *P < 0.05; **P < 0.01; 
***P < 0.001; -, not significant. (B) Comparison of DNA methylation probes between healthy and tumorous samples: cg03498175 (ACSL1) and cg08823975 
(ACSL1) exhibited higher methylation levels in tumor tissues, P < 0.0001. (C) A waterfall plot of the methylation level of the ACSL1 subregions in ccRCC is 
presented. The association between methylation levels of different ACSL1 probes with expression and survival were analyzed
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metabolism, fatty acid degradation, and fatty acid meta-
bolic process.

Fatty acid metabolism is notorious for triggering 
tumorigenesis and disease progression. Interestingly, 
cancer cells can reprogram the metabolic pattern of 
fatty acids in the TME to restrict ferroptosis and thus 
boost cell survival [63]. ACSL4, another member of 
the ACSL family, exerts a major role in the process of 
ferroptosis [64]. Our results demonstrated that vari-
ous ferroptosis-associated genes exhibited differential 
expression between ACSL1 high-expression and ACSL1 

low-expression subgroups, indicating the potential 
influence of ACSL1 in modulating ferroptosis sensitiv-
ity. However, more in-depth analysis is required to test 
this hypothesis. So far, anti-angiogenic targeted therapy 
remains one of the mainstays of treatment for patients 
with metastatic ccRCC. Apart from targeted thera-
pies, the applications of mTOR inhibitors and immune 
checkpoint inhibitors have prolonged the survival time 
of ccRCC patients. Unfortunately, there are still some 
patients who cannot benefit from this treatment strategy. 
Here, we observed that several signaling pathways were 

Fig. 4  The relationship of ACSL1 expression with m6A-related genes in ccRCC. (A) The differentially expressed m6A-associated genes between the ACSL1 
high- and low-expression group in ccRCC. *P < 0.05, **P < 0.01, ***P < 0.001. (B-C) The connection between m6A-associated genes in ACSL1 high- and 
low-expression groups. (D-E) Univariate Cox regression analysis of age, clinical stage, tumor grade, and six m6A-associated genes with the smallest P 
value in predicting prognosis in the ACSL1 high-expression group (D) and the ACSL1 low-expression group (E) in ccRCC
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differentially enriched in ACSL1-high and ACSL1 low-
expression subgroups, including the PI3K-Akt pathway, 
immune-associated biological procedures, complement 
and coagulation cascades, cytokine-cytokine receptor 
interaction and humoral immune response. Moreover, 
the result of the TIDE score analysis and drug sensitiv-
ity analysis uncovered that the ACSL1 high-expression 
subgroup had a lower TIDE score, hinting at a superior 

response to ICB. In contrast, the ACSL1 low-expression 
subgroup had lower IC50 for Temsirolimus and Pictilisib. 
These results imply that ACSL1 expression could serve 
as a promising biomarker to guide the choice of clinical 
treatment plans.

Overall, we found that ACSL1 is down-regulated in 
ccRCC, and its expression is strongly linked to the prog-
nosis and the clinicopathologic staging of ccRCC. We 

Fig. 5  Enrichment analysis of ACSL1 high-expression group in ccRCC and the relationship of ACSL1 expression in ccRCC with the ferroptosis-related 
genes. (A) The volcano map showed differential genes in ACSL1-high and ACSL1-low subgroups. (B-C) Enrichment analysis of KEGG and GO for genes 
up-regulated in ACSL1 high-expression group. (D) Ferroptosis-associated genes in ACSL1 high-,low-expression groups in ccRCC and in normal renal tis-
sues group. *P < 0.05, **P < 0.01, ***P < 0.001. (E) The link between ferroptosis-related genes in the ACSL1 high- and low-expression group. (F-G) Univariate 
Cox regression analysis of age, clinical stage, tumor grade and ten ferroptosis-related genes with the smallest p-value in predicting prognosis in ACSL1-
high and ACSL1 low-expression group in ccRCC
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also substantiated that DNA methylation might be the 
main cause of ACSL1 silencing and that m6A might also 
impact ACSL1 expression in ccRCC. The m6A-related 
genes associated with prognosis were identified accord-
ing to the expression levels of ACSL1 in ccRCC. High 
ACSL1 expression may affect tumor metabolism. In par-
allel, ACSL1 low-expression subgroup in ccRCC, which 
is marked by high immune infiltration and immune 

checkpoint expression, and may respond better to a 
combination of multiple immune checkpoint inhibitors. 
Meanwhile, low expression of ACSL1 in ccRCC might be 
suitable for PI3K pathway inhibitors, while high expres-
sion of ACSL1 might have better clinical outcomes by 
using TKI-targeted drugs. Overall, our discoveries sug-
gest that ACSL1 is a prospective marker for the diagno-
sis, prognosis and therapy of ccRCC.

Fig. 6  Correlations of ACSL1 low-expression with immunogenicity. (A-B) Enrichment analysis of KEGG and GO for genes up-regulated in the ACSL1 low-
expression group. (C) Immune cell infiltration in ACSL1 high- and low-expression groups. *P < 0.05, **P < 0.01, ***P < 0.001. (D) Various expression of im-
mune checkpoints in ACSL1 high- and low-expression groups. *P < 0.05, **P < 0.01, ***P < 0.001. (E) TIDE scores of ACSL1 high- and low-expression groups
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