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Abstract 

The lipid oleoylethanolamide (OEA) has been shown to affect reward-related behavior. However, there is limited 
experimental evidence about the specific neurotransmission systems OEA may be affecting to exert this modulatory 
effect. The aim of this study was to evaluate the effects of OEA on the rewarding properties of cocaine and relapse-
related gene expression in the striatum and hippocampus. For this purpose, we evaluated male OF1 mice on a 
cocaine-induced CPP procedure (10 mg/kg) and after the corresponding extinction sessions, we tested drug-induced 
reinstatement. The effects of OEA (10 mg/kg, i.p.) were evaluated at three different timepoints: (1) Before each cocaine 
conditioning session (OEA-C), (2) Before extinction sessions (OEA-EXT) and (3) Before the reinstatement test (OEA-
REINST). Furthermore, gene expression changes in dopamine receptor D1 gene, dopamine receptor D2 gene, opioid 
receptor µ, cannabinoid receptor 1, in the striatum and hippocampus were analyzed by qRT-PCR. The results obtained 
in the study showed that OEA administration did not affect cocaine CPP acquisition. However, mice receiving different 
OEA treatment schedules (OEA-C, OEA-EXT and OEA-REINST) failed to display drug-induced reinstatement. Interest‑
ingly, the administration of OEA blocked the increase of dopamine receptor gene D1 in the striatum and hippocam‑
pus caused by cocaine exposure. In addition, OEA-treated mice exhibited reduced striatal dopamine receptor gene 
D2 and cannabinoid receptor 1. Together, these findings suggest that OEA may be a promising pharmacological 
agent in the treatment of cocaine use disorder.
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Introduction
Among psychostimulants, cocaine is the most abused 
substance worldwide with an ongoing increasing ten-
dency over the past decade [1]. Epidemiological studies 
estimate that there are approximately 1.3 million people 
diagnosed with cocaine use disorder (CUD) in the US. 
Although there has been promising progress in the devel-
opment of effective treatments, to date, no pharmacolog-
ical therapy has been approved for CUD [2].

One of the major hallmarks of substance use disorder, 
including CUD, is a high risk of relapse following treat-
ment, even after long periods of abstinence [3]. Vulner-
ability to relapse is markedly increased when a recovering 
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individual experiences high levels of stress, encounters 
contextual cues associated with prior drug use oringests 
a low dose of the drug [4]. In the laboratory, the mecha-
nisms that underlie the persistent risk of relapse can be 
studied using rodent models of reinstatement. In the 
conditioned place preference paradigm (CPP), the rein-
statement test is performed after the extinction of the 
drug-reinforced place preference. One of the strategies 
used to reinstate drug seeking is drug-priming with a 
small dose of the drug. This approach has been shown 
to be very useful in finding potential pharmacological 
agents that reduce cocaine relapse risk [5, 6].

Research has identified multiple neuronal mechanisms 
that contribute to the lasting vulnerability to relapse into 
cocaine use. The main effect of cocaine intake is an acute 
inhibition of monoamine reuptake in the nucleus accum-
bens, a key brain region of the mesolimbic pathway [7]. 
It is now established that repeated cocaine exposure 
induces long-term neuronal adaptations in the mesolim-
bic system, which contribute to persistent drug seeking, 
craving and relapse [8]. Indeed, this dopaminergic signal-
ing is necessary for a stressful stimulus, contextual cues, 
or cocaine priming to induce reinstatement behavior 
[9]. Mounting evidence has shown that other non-dopa-
minergic systems are involved in relapse vulnerability. 
Recently, the endocannabinoid system has been revealed 
as an important modulator of dopaminergic signal-
ing and cocaine reward [10–13]. Studies with rodents 
have shown that administration of cannabinoid antago-
nists results in diminished cocaine reward and attenu-
ated cocaine-primed and cue-induced reinstatement of 
cocaine-seeking behavior [14, 15]. In parallel, numerous 
studies have highlighted the involvement of the opioid 
system in drug relapse. More specifically, several lines of 
research indicate a crucial role for the µ opioid receptor 
in the neurocircuitry that mediates stress-induced rein-
statement of cocaine seeking behavior [16, 17].

Research has shown that active compounds that target 
the aforementioned brain systems can alleviate the nega-
tive outcomes of cocaine use and thus, reduce relapse 
susceptibility. In the past years, there has been increasing 
evidence showing that lipid-based signaling molecules 
are important regulators of reward and drug-seeking 
behavior [18]. Oleoylethanolamide (OEA) is a lipid 
belonging to the N-acetylethanolamine family (NAEs) 
present in most mammals [19]. In humans, OEA is syn-
thesized by cells in the small intestine and adipose tissue. 
The vagal afferent fibers allow for communication from 
the intestine to the CNS [20]. In the brain, OEA has neu-
romodulatory effects by binding to nuclear receptor per-
oxisome proliferator-activated receptor alpha (PPAR-α) 
and the capsaicin receptor transient receptor potential 
cation channel subfamily V member 1 (TRPV1) [21, 22]. 

Anatomical studies have shown that PPAR-α and TRPV1 
are widely expressed in the mesolimbic system, including 
the striatum and hippocampus, which are known to be 
brain areas involved in the reinstatement of drug-seeking 
behavior [23–26].

Recently, preclinical studies have found that OEA also 
modulates reward-related behavior including cocaine-
induced behaviors [18, 27, 28, 30]. Bilbao and co-workers 
[31] showed that OEA administration reduced psycho-
motor activation induced by cocaine and blocked cocaine 
CPP. Similarly, a recent study has found that OEA treat-
ment blocks stress-induced cocaine CPP [32]. Further-
more, cocaine self-administration has been shown to 
affect OEA levels in limbic areas such as the dorsal stria-
tum [33, 34].

The available evidence on the neuronal pathways 
underlying the modulatory effect of OEA on cocaine 
reward is limited and scattered. To exert these various 
effects on cocaine-related behavior OEA may be target-
ing multiple brain signaling pathways. Thus, the aim of 
this study was to evaluate the effects of OEA on cocaine 
reward by using the CPP paradigm. In addition, gene 
expression analyses were carried out by quantitative real-
time polymerase chain reaction (qRT-PCR) to evaluate 
changes in relevant signaling targets involved in cocaine 
relapse, including dopamine receptor D1 gene (DrD1), 
dopamine receptor D2 gene (DrD2), opioid receptor µ 
(OPRM1), and cannabinoid receptor 1 (CNR1). We ana-
lyzed brain structures affected in the pathophysiology 
of drug abuse, i.e., the striatum, which regulates reward 
processing, and the hippocampus, which plays a key role 
in memory formation and learning.

Methods and materials
Animals and experimental design
OF1-strain adult male mice (n = 56) were used in this 
study (Charles River, France). On arrival, mice were 
housed in groups of four in plastic cages under constant 
temperature under a reverse 12-h light/dark cycle and 
water and food available ad libitum, except during behav-
ioral testing. All animals acclimated to the environment 
for one week before the experimental procedure.

Mice were divided into different experimental groups 
according to different OEA treatment schedules: (1) Con-
trol CTRL (2) received OEA i.p (10 mg/kg) before each 
cocaine conditioning session (OEA-C), (3) before each 
extinction sessions (OEA-EXT) and (4) before the rein-
statement test (OEA-REINST), (see Fig.  1). All proce-
dures were conducted in compliance with the guidelines 
of the European Council Directive 2010/63/EU regulat-
ing animal research and were approved by the local ethics 
committees of the University of Valencia.
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Drug administration
OEA (10  mg/kg, i.p.; synthesized as described in [34]) 
was dissolved in 5% Tween 80 in saline and injected 
10  min before the corresponding test. The doses were 
chosen according to previous studies in rodents report-
ing effective therapeutic effects [35–38].

For CPP, animals were injected with 10 mg/kg cocaine 
hydrochloride (Laboratorios Alcaliber S.A., Madrid, 
Spain) diluted in saline (NaCl 0.9%) and adjusted to a vol-
ume of 0.01 ml/g of weight.

Conditioning place preference (CPP)
Apparatus
For place conditioning, we employed Plexiglas boxes with 
equally sized compartments (30.7  cm length x 31.5  cm 
width x 34.5 cm height) separated by a gray central area. 
The compartments had different colored walls (black or 
white) and distinct floor textures (fine grid in the black 
compartment and wide grip in the white one). Four infra-
red light beams in each compartment of the box and six 
in the central area allowed the recording of the position 
of the animal and the number of crossings from one com-
partment to the other. The equipment was controlled 
by two IBM PC computers using MONPRE 2Z software 
(CIBERTEC S.A., Spain.).

10 mg/kg cocaine‑induced CPP
A three-stage CPP procedure consisting of acquisition, 
extinction and reinstatement was performed. The CPP 
acquisition was performed as described previously [12] 
and consisted of three phases (see Fig.  1). During the 

first phase (Pre-Conditioning; Pre-C), mice were allowed 
access to both compartments of the apparatus for 15 min 
(900  s) per day for 3 days. On day 3, the time spent in 
each compartment over a 900-s period was recorded, and 
animals showing a strong unconditioned aversion (less 
than 30% of the time) or preference (more than 70% of 
the time) for any compartment were excluded from the 
study (n = 15). After assigning the compartments, no 
significant differences were detected between the time 
spent in the drug-paired and vehicle-paired compart-
ments during the pre-conditioning phase. During the 
second phase (Conditioning), mice received intraperi-
toneal injections of 1  mg/kg cocaine or saline and con-
fined to alternating sides of the CPP apparatus. For four 
days, animals received an injection of saline immediately 
before being confined to the vehicle-paired compartment 
for 30 min. After an interval of 4 h, animals received an 
injection of cocaine immediately before being confined to 
the drug-paired compartment for 30  min. Confinement 
was carried out in both cases by blocking the access that 
separated the two compartments. On the Post-condition-
ing testing day and subsequent days, mice were allowed 
to move freely between sides during a 900-s record-
ing period. For extinction, mice were placed in the CPP 
apparatus daily and the time spent in each compartment 
was measured to determine if cocaine-induced prefer-
ence had disappeared. Although the mean of the group 
as a whole determined the day on which extinction was 
considered to have been achieved, preference was con-
sidered to be extinguished when a mouse spent 378 s or 
less in the drug-paired compartment on two consecutive 

Fig. 1   A Experimental design. Mice were divided into different experimental groups according to OEA treatment schedules: (1) CTRL; control 
(2) OEA-C; received OEA before each cocaine conditioning session, (3) OEA-EXT received OEA before each extinction session and (4) OEA-REINST 
received OEA before the reinstatement test. OEA administration consisted of OEA i.p (10 mg/kg) 10 min before each of the corresponding 
timepoints specified above
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days. We chose this time based on the values of all the 
Pre-C tests performed in the study (mean = 368 s). When 
the preference was not extinguished in an animal, it was 
assigned the number of days required for extinction for 
the group as a whole. Finally, 24  h after reaching the 
extinction criterion, mice were challenged with a cocaine 
injection once, followed by a place preference test (rein-
statement test).

Tissue sampling and biochemical analyses
Mice were sacrificed by cervical dislocation. The striatum 
and hippocampus were precisely dissected out based on 
the atlas of the Paxinos and Franklin [39] using a coronal 
brain matrix. Tissue samples were stored at −80ºC until 
the qRT-PCR assay was performed.

RNA isolation, reverse transcription, and quantitative RT‑PCR
Striata and hippocampi were lysed in 1 mL of Tri-Rea-
gent solution (Sigma-Aldrich, Madrid, Spain) and total 
RNA was isolated according to the manufacturer’s 
instructions. Then, the mRNA was reverse-transcribed 
by the NZY First-Strand cDNA Synthesis Kit (NZYTech, 
Lda. Genes and Enzymes, Lisbon, Portugal) following the 
manufacturer’s instructions. Amplification of the target 
and housekeeping (b-glucuronidase) genes was com-
pleted employing the Taqman Gene Expression Master 
Mix (Thermo Fisher Scientific, Madrid, Spain) in a Light-
Cycler 480 System (Roche Diagnostics, Madrid, Spain). 
The assay codes of the primers used were Mm02620146 
(DrD1), Mm00438545 (DrD2), Mm01188089 (Oprm), 
Mm01212171 (Cnr1) and Mm00446953 (b-glucuro-
nidase). Data were analyzed using the LightCycler 480 
relative quantification software and normalized to the 
amplification product of b-glucuronidase.

Statistics
To test for the CPP acquisition, the time spent in the 
drug-paired compartment was analyzed with a two-way 
ANOVA with one between-subjects’ variable – Treat-
ment, with four levels (CTRL, OEA-C, OEA-EXT, OEA-
REINST) and one within subjects’ variable with two 
levels, pre- and post-CPP measurement (Pre-C and Post-
C). Additionally, a one-way ANOVA was conducted to 
assess whether the conditioning score (defined as time 
spent in the drug-paired side minus the time spent in the 
saline-paired side) was different between groups. Post-
hoc comparisons were performed by means of Bonfer-
roni tests.

Extinction and reinstatement values were analyzed by a 
Student’s t-test and the time required for the preference 
to be extinguished in each animal was analyzed by means 
of the Kaplan–Meier test with Breslow (generalized Wil-
coxon) comparisons [40].

The gene expression data were analyzed by a one-way 
ANOVA with one between variables, Treatment, with 
two levels (control, OEA-treated). Bonferroni post-hoc 
tests were also analyzed. In addition, correlation analy-
sis between conditioning scores and gene expression 
was performed using Pearson’s correlation coefficient (r). 
Results are expressed as the mean ± SEM, and statistical 
significance was set at p < 0.05. Statistical analyses were 
performed using SPSS Statistics v28.

Results
OEA treatment does not block cocaine (10 mg/kg) CPP 
acquisition but prevents reinstatement
The ANOVA of the CPP data revealed an effect of the 
variable Days (F (1,51) = 68.238; p < 0.001). Mice in every 
experimental group developed cocaine-induced CPP, 
spending more time in the drug-paired compartment 
during the Post-C test than in the Pre-C test (p < 0.001), 
(see Fig. 2).

With regards to the time required to extinguish the 
preference (see Fig. 3), the CTRL group required a mean 
number of 11.2 sessions, while the OEA-C, OEA-EXT 
and OEA-REINST groups required only 4, 5 and 6.8 ses-
sions, respectively. The Kaplan-Meier analysis revealed 
that the CTRL group required significantly more sessions 
than the OEA-C to extinguish the preference (χ2 = 3.864; 
p = 0.049).

Reinstatement of drug-seeking behavior after achieve-
ment of extinction was evaluated with Student’s t-tests, 

Fig. 2  Mice were divided into the following treatment groups: 
Control (CTRL) (n = 12), OEA-C (n = 15) received 10 mg/kg OEA 
pre-treatment before each conditioning session, OEA-EXT (n = 15) 
received 10 mg/kg OEA pre-treatment before each extinction session 
and OEA-REINST (n = 13) received 10 mg/kg OEA pre-treatment 
before the single reinstatement test. Data presented as mean 
values ± S.E.M. of the time spent in the drug-paired compartment 
on the Pre-C test (white bars), Post-C test (dark gray bars), in the last 
extinction sessions (light gray bars) and during the reinstatement 
tests with 5 mg/kg of cocaine (striped gray bars). ***p < 0.001, ** 
p < 0.01, * p < 0.05 significant difference in the time spent in the 
drug-paired compartment vs. pre-conditioning test
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which showed that reinstatement with a priming dose of 
5 mg/kg cocaine was achieved only in the control group 
(see Fig. 2).

OEA administration altered the relapse‑related gene 
expression in the striatum and hippocampus
OEA‑treated mice presented decreased striatal DrD1, DrD2, 
CNR1 gene expression
For DrD1 and DrD2 gene expression (see Fig. 3a, b), the 
ANOVA revealed a significant effect of the variable treat-
ment [F(1,30) = 10.898; p < 0.01] and [F(1,30 = 11.007; 
p < 0.01], respectively. With regards to CNR1 expression, 
the ANOVA revealed an effect of the variable treatment 
[F(1,30) = 5.629; p < 0.05] (see Fig.  3d). OEA treatment 
induced a significant decrease in DrD1, DrD2 and CNR1 
gene expression in OEA-treated mice (OEA-C, OEA-
EXT and OEA-REINST groups) with respect to the 
CTRL group.

OEA‑treated mice presented decreased hippocampal DrD1 
gene expression
For DrD1 gene expression (see Fig.  4a), the ANOVA 
revealed a significant effect of the variable Treatment 
[F(1,30 = 6.525; p < 0.05]. OEA treatment significantly 
decreased DrD1 expression in OEA-treated mice with 
respect to the CTRL group.

We performed a Pearson correlation between the con-
ditioning score after the Post-C and the reinstatement 
test and the expression of DrD1, DrD2, OPRM1, and 
CNR1 in the hippocampus and striatum (See Fig.  5). 
Although the conditioning score after Post-C test did not 
show any correlation, we obtained a positive significant 
Pearson correlation coefficient between the condition-
ing score of the reinstatement test and the hippocampal 
expression of DrD1 (r = 0.508, p < 0.003) and a tendency 
with the expression of CNR1 (r = 0.328, p < 0.067), mean-
ing that a higher place preference in the reinstatement 

test positively correlates with a higher expression of these 
gene receptors (see Fig. 6).

Additionally, we also obtained other interesting corre-
lations among the expression of these genes. Expression 
of DrD1 and DrD2 correlated positively in the striatum 
(r = 0.908, p < 0.001). Equally, gene expression of CNR1 
in the hippocampus correlates positively with OPRM1 
(r = 0.500, p < 0.004). However, in the striatum, gene 
expression of CNR1 correlated positively with DrD2 
(r = 0.588, p < 0.001).

a)

Discussion
In the present work, we explored the effects of the lipid 
OEA on the reinforcing properties of cocaine using the 
CPP paradigm. We further supplemented this work using 
qRT-PCR for characterizing gene expression of four rel-
evant receptors for cocaine reward in the striatum and 
hippocampus. Our results showed that OEA treatment 
(10  mg/kg) blocked cocaine-primed reinstatement. In 
addition, we observed that OEA altered dopaminer-
gic and cannabinoid gene expression. More specifically, 
decreases in DrD1, DrD2 and CNR1 gene expression 
levels were detected in the striata of OEA-treated mice 
compared to those of the CTRL group. In addition, we 
found a significant decrease in DrD1 gene expression in 
the hippocampus, but no alterations in other receptors.

Previous studies have observed an attenuating effect of 
OEA on cocaine reward. In our study, we employed three 
different administration schedules that differed in tim-
ing and number of OEA doses (OEA-C, OEA-EXT and 
OEA-REINST). Regarding the CPP, we observed that all 
groups (CTRL, OEA-C, OEA-EXT and OEA-REINST) 
displayed CPP induced by cocaine (10  mg/kg). A previ-
ous report by Bilbao and coworkers [31] showed that 
coadministration of OEA with cocaine during condition-
ing reduced the CPP acquisition at 1 and 5 mg/kg doses. 
In their study, the highest dose of OEA tested (20 mg/kg) 
completely abolished cocaine-induced CPP (20  mg/kg). 
To account for these uneven results, it should be noted 
that, a higher dose of both OEA and cocaine was used 
than the one employed in our study.

To our best knowledge, this is the first study exploring 
the effect of OEA administration on cocaine reinstate-
ment. For this purpose, after a series of extinction ses-
sions, mice underwent a reinstatement test induced by 
a priming cocaine injection (5  mg/kg i.p). We observed 
that different OEA administration schedules blocked 
cocaine-primed reinstatement. Interestingly, this effect 
did not depend on the number of doses received in each 
experimental group. Mice in the OEA-C and OEA-EXT 
groups received 4 and 5 doses of OEA respectively, and 
the OEA-REINST group received only a single dose. 

Fig. 3  Extinction. The bars represent the total value (± S.E.M) of the 
number of sessions required for the preference to be extinguished 
after the Post-C test. * p < 0.05 significant difference with respect to 
CTRL group
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However, it is important to remark that in the case of 
the OEA-REINST group, OEA administration occurred 
10  min before the cocaine priming dose. It is possi-
ble that administering OEA prior to the cocaine prim-
ing dose results in an equivalent effect achieved with a 
greater number of non-contingent doses (several weeks 
and 48 h, respectively). Moreover, we must highlight that 
the OEA-C and OEA-REINST groups required a lower 
number of sessions to extinguish the preference than the 

CTRL group (although only OEA-C reached statistical 
significance). This shorter extinction process suggests 
that OEA could affect the association of cocaine with a 
distinctive environment during the conditioning phase 
in the OEA-C group or accelerate the generation of new 
learning during extinction in the OEA-EXT group.

Overall, these results are in agreement with several 
reports of an attenuating effect of OEA on drug-seeking 
behavior of other substances. Research conducted on 

Fig. 4  RT-PCR gene expression in the striatum (n = 8/condition). a Dopamine receptor D1 gene―DrD1, b Dopamine receptor D2 gene―
DrD2, c Opioid receptor µ―Oprm. d Cannabinoid receptor 1―CNR1. The columns represent means and the vertical lines ± S.E.M of relative 
(2-ΔΔCt method) gene expression in the striatum of OF1 mice. * p < 0.05; ** p < 0.01 significant differences in OEA-treated mice with respect to the 
CTRL group
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primates and rodents have shown that administration 
of OEA results in decreased nicotine self-administration 
and reinstatement [42]. Similarly, a previous study used 
a pharmacological inhibitor of FAAH, the enzyme that 
catalyzes the hydrolysis of ethanolamides such as anan-
damide and OEA, to study its effect on cocaine self-
administration [43]. Consistent with our results, they 
found that inhibition of FAAH did not alter cocaine self-
administration, but was able to reduce cocaine-seeking 
behavior on cue-induced and drug-induced reinstate-
ment tests. Interestingly, it has been recently observed 

that cocaine-induced relapse results in a potent increase 
in NAEs levels in the striatum but, parallelly, a decrease 
in tissue levels of OEA in the nucleus accumbens (NAc), 
cerebellum and hippocampus [34].

Given the mounting evidence of neuroprotective 
effects of OEA on drug-induced brain damage, we char-
acterized its interaction with gene expression of four 
receptors of relevant systems mediating cocaine reward 
and reinstatement.

Dopamine transmission in the striatum is crucial 
for the reinforcing properties of cocaine [7]. Repeated 

Fig. 5  RT-PCR Gene expression in the hippocampus (n = 8/condition). a Dopamine receptor D1 gene―DrD1, b Dopamine receptor D2 
gene―DrD2, c Opioid receptor µ―Oprm1. d Cannabinoid receptor 1―CNR1. The columns represent means and the vertical lines ± S.E.M 
of relative (2-ΔΔCt method) gene expression in the striatum of OF1 mice. * p < 0.05 significant differences with respect to the CTRL group
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cocaine administration produces multiple molecular 
and cellular adaptations, including altered expression of 
dopaminergic receptor genes in the striatum. Both D1 
and D2 receptors mediate the reinstatement of cocaine-
seeking behavior. D2 receptor activity generally facilitates 
priming-induced reinstatement [44], while the use of D2 
antagonists diminishes cocaine-primed reinstatement 
[45]. In the case of D1 receptors, both agonists and antag-
onists are able to reduce cocaine priming effects [46–48]. 
Given its role in cocaine reward and reinstatement, we 
hypothesized that OEA may alter dopaminergic signal-
ing. Indeed, our findings showed reduced expression 
levels of D1 and D2 in the striatum in OEA-treated mice 
(OEA-C, OEA-EXT and OEA-REINST) compared to 
the CTRL group. Similarly, examination of hippocampal 
gene expression revealed that OEA induced a decrease 
in D1 receptor in OEA-treated mice. These results are 
consistent with the reported ability of OEA to restore 
dopaminergic transmission in the striatum. For instance, 
Tellez et al., [49] proved that OEA infusion restored the 
dopaminergic response to fat in mice fed chronically with 
a high-fat diet. This body of research argues for a role of 
OEA in regulating basal dopaminergic transmission in 
the striatum of mice.

Functional studies have demonstrated that TRPV1 
activation increases dopaminergic neurotransmission 

in a variety of brain areas, including the striatum [50]. A 
recent report has found that administration of a TRPV1 
antagonist blocked cocaine CPP reinstatement and 
decreased D1-like receptor in the NAc, whilst an agonist 
potentiated cocaine-primed reinstatement [51]. Although 
the molecular mechanisms have not been identified yet, 
our results suggest that OEA interacts with dopaminergic 
signaling in key brain regions for reward processing. Cor-
relation analyses further confirms the important role of 
D1 receptor in reinstatement of the cocaine place prefer-
ence as higher hippocampal DrD1 gene expression posi-
tively correlated with higher drug-induced reinstatement 
scores.

We also observed reduced expression of the CNR1 
receptor in OEA-treated mice compared with the CTRL 
group. The major receptors responsible for cannabi-
noid-mediated effects are CB1 and CB2. A large body of 
research confirms the involvement of endocannabinoid 
lipids in the modulation of dopaminergic transmission 
and cocaine-induced reinstatement. CB1 receptors are 
present in high density in the striatum [52, 53]. It has 
been observed that the cannabinoid system modulates 
dopaminergic signaling mainly by acting on the TRPV1 
receptor [54, 55]. As a non-cannabinoid NAEs, OEA 
does not directly bind to CB1 or CB2 but can potenti-
ate the effects of other lipid messengers such as anan-
damide (“entourage effect”) [56]. The reduction in gene 
expression of CNR1 observed in our study suggests a 
pharmacological effect of OEA on cocaine-priming. We 
hypothesize that OEA treatment alters the activity of 
CB1 receptors and ultimately reduces dopaminergic sign-
aling in response to a single priming dose of cocaine. The 
correlation analyses also support this hypothesis. Results 
show a tendency towards a positive correlation between 
CNR1 gene expression and drug-induced reinstatement 
scores so that lower CNR1 gene expression in the hip-
pocampus was correlated with a lower reinstatement 
preference. Of note, we did not observe any changes in 
the µ opioid receptor gene expression. To our knowl-
edge, there are no reports of an OEA effect on the opioid 
system.

Our present understanding of OEA bioactivity includes 
binding to PPARα receptor and TRPV1. It is possible that 
OEA attenuates drug-induced reinstatement through 
D1 and D2 receptor activity in the striatum and hip-
pocampus since there is a high density of PPARα recep-
tors in these brain regions [57]. It is important to remark 
that dopaminergic receptors are constantly adapting 
to the changing extracellular dopamine concentrations 
and thus, changes in receptor mRNA expression reflect 
their specific activity at the time of tissue collection for 
analysis. In addition, it is important to consider that 
mRNA expression does not necessarily correlate with the 

Fig. 6  DrD1 or CNR1 gene expression within the hippocampus does 
not correlate with cocaine-induced CPP but it does significantly 
correlate positively with drug-induced reinstatement of cocaine CPP 
in the same mice. A DrD1 and B CNR1 in the hippocampus were 
measured by real-time PCR (n = 8/per experimental group)
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activity, affinity or sensitivity of the different receptors. 
Considering these shortcomings, further research should 
explore the specific pathways where OEA acts to coun-
teract drug-induced dopamine plastic changes contribut-
ing to a greater risk of reinstatement.

In conclusion, our findings further support the previ-
ous pharmacological evidence of a modulatory effect of 
OEA on reward behavior. The present study shows that 
different OEA treatments prevent cocaine reinstatement 
mainly by modulating overall dopaminergic signaling in 
limbic areas including the striatum and hippocampus. 
Although the neuronal mechanisms have not been clearly 
defined, our results offer strong evidence of an attenuat-
ing effect of OEA on cocaine reinstatement.
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