
RESEARCH Open Access

Chronic exposure to PM2.5 aggravates SLE
manifestations in lupus-prone mice
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Abstract

Background: Air pollution causes negative impacts on health. Systemic lupus erythematosus (SLE) is an
autoimmune disease with diverse clinical manifestations and multifactorial etiology. Recent studies suggest that air
pollution can trigger SLE and induce disease activity. However, this association has not been deeply investigated.
Thus, the aim of this study was to evaluate whether exposure to fine particulate matter (PM2.5) exacerbates SLE
manifestations, focusing on renal complications, in a lupus-prone animal model. Female NZBWF1 mice were
exposed daily to 600 μg/m3 of inhaled concentrated ambient particles (CAP) or filtered air (FA). Survival rate, body
weight, weight of organs (kidney, spleen, thymus, liver and heart), blood cell count, proteinuria, kidney stereology,
renal histopathology, gene expression and oxidative stress were analyzed.

Results: Female NZBW mice exposed to CAP showed decreased survival, increased circulating neutrophils, early
onset of proteinuria and increased kidney weight with renal cortex enlargement when compared to NZBW mice
exposed to FA.

Conclusions: This work shows that air pollution aggravates some SLE manifestations in lupus-prone mice. These
results reinforce the need of reducing air pollutant levels in order to promote a better quality of life for individuals
diagnosed with SLE.

Keywords: Air pollution, Systemic lupus erythematosus, Particulate matter, Lupus nephritis, Autoimmunity,
Environmental exposure

Background
Systemic lupus erythematosus (SLE) is a complex auto-
immune disease with diverse clinical manifestations. Skin,
joints, blood and kidneys are the most affected by chronic
inflammatory processes [1, 2]. SLE etiology remains not
fully elucidated. However, genetic and environmental
factors contribute to their development [3, 4]. Variations in
HLA-DR (recognition of self and non-self-antigens) and
type-I interferon genes are commonly reported among SLE

patients [5, 6]. However, these genetic variations do not
explain the increase of SLE incidence worldwide over the
last decades [7]. Among environmental factors, UV radi-
ation, viral infections (Epistein-Barr), drugs (procainamide
and hidralazine), alcohol, tobacco and silica are considered
risk factors associated with SLE development [8, 9].
Recently, epidemiological evidence suggest that exposure

to air pollution could be a potential contributor for SLE
activation and aggravation through systemic inflammation
and oxidative stress [10, 11]. Air pollution is the major
environmental risk for health; last reports from the World
Health Organization (WHO) showed that annually more
than 4 million deaths could be associated with exposure to
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ambient air pollution [12, 13]. Moreover, epidemiological
and experimental studies have demonstrated that exposures
are associated with respiratory, cardiovascular, neurologic,
endocrine and reproductive disorders [14–16].
Air pollutants comprise a mixture of gases, organic

compounds, metals and particles [17]. Within this
mixture, fine particulate matter (PM2.5) is the pollutant
with the strongest relationship with negative health
outcomes and mortality [18, 19]. The process of fossil
fuel combustion is the main source of PM2.5 generation
and its small size facilitates penetration deeply into the
respiratory system. Inhalation of these particles are asso-
ciated with the promotion of inflammatory processes
and oxidative stress [20, 21].
Immunopathology of SLE comprises the production of

autoantibodies, mainly against nuclear antigens, that
form immune complexes (IC). These IC deposit in
tissues and vessels amplifying inflammatory responses,
characterized by complement activation, recruitment of
immune cells and tissue damage [22, 23]. Kidney com-
plications are very common in SLE due to deposition of
IC in glomeruli. Some patients can develop proteinuria,
glomerulosclerosis and kidney failure depending on the
disease severity [22, 24]. Plausible mechanisms involved
in the association of air pollution and lupus include: the
systemic inflammatory response and oxidative stress
triggered by particles in the lungs; alteration of Th1/
Th2/Th17 cells ratio and activation of B cells and
dendritic cells induced by the translocation of particles
into the bloodstream; increased apoptosis and defective
clearance of apoptotic debris stimulating autoimmunity;
and epigenetic changes [10, 25–27].
Therefore, in this novel study we aimed to evaluate

whether chronic exposure to PM2.5 exacerbates clinical
manifestations of SLE (focusing on kidney and systemic
involvement) on female mice spontaneously predisposed
to SLE development (NZBWF1 strain). We investigated
a murine model that mimics the human condition to
study disease progression in predisposed individuals for
a better understanding of air pollution negative impacts
on SLE.

Methods
Animals and experimental design
Female NZBWF1 mice, 75-day-old, were purchased
from Jackson Laboratory (Bar Harbor, USA) and utilized
as SLE model (n = 20). Female C57BL/6 mice of the
same age were obtained from University of Campinas
and utilized as controls (n = 16). After 15 days of
acclimatization, each strain was randomly subdivided
into two groups, one exposed to filtered air (FA) and
one exposed to concentrated ambient particles (CAP). In
total, animals were divided into four groups: control
mice exposed to FA (C57-FA) (n = 8); control mice

exposed to CAP (C57-CAP) (n = 8); lupus-prone mice
exposed to FA (NZBW-FA) (n = 10); lupus-prone mice
exposed to CAP (NZBW-CAP) (n = 10). Exposure to FA
or CAP occurred for four months (starting from 90-day-
old until 210-day-old). During the exposure period,
animals were weighed, and urine samples were collected
monthly. Also, the health status of the animals was
checked daily, and survival was evaluated. Experimental
design is shown in Fig. 1. Animals were allocated in
cages (4–5 animals/cage) lined with pine wood shavings,
and cardboard tubes and cotton balls for nesting were
used as environmental enrichment strategies. Food and
water were provided ad libitum. Except during CAP
exposures, cages were put into closed ventilated racks
supplied with HEPA filtered air, controlled temperature
of 21–23 °C and under light/dark cycle of 12 h/12 h.
Animal procedures were approved by the Ethical Committee
for Animal Research of the School of Medicine of University
of São Paulo, under protocol number 095/17.

Daily exposure to PM2.5
Animal exposure to PM2.5 was performed in the
Harvard Ambient Particle Concentrator (HAPC) [28]
(Additional file 1). The HAPC is located on the campus
of the School of Medicine of São Paulo University, close
to a high-traffic road (23°33′18.1″S 46°40′15.0″W). The
HAPC enriches the concentration of ambient particles
by a factor of nearly 17 times the ambient levels of
PM2.5, without modifying its physicochemical proper-
ties. A DataRam DR-4000 (Thermo Fisher Scientific,
USA) was used to monitor the concentration of PM2.5
during the exposure. The dose of exposure is controlled
by increasing or decreasing the daily exposure time
period in order to give to the animals the same dose
every day (600 μg/m3). This concentration represents the
adjusted air concentration that São Paulo residents are
exposed to [29]. This adjusted air concentration (Cair-adj)
of 600 μg/m3 in 1 day/24hs was determined following
current methodology of Environmental Protection
Agency (EPA) [30], as follows:

Cair − adj ¼ Cair x ET x EF x ED=AT x 1day=24 hours

Where:

Cair = Concentration of contaminant in air (mg/m3) =
25 μg/m3 (São Paulo)
ET = Exposure time (hours/day) = 24 h/day
EF = Exposure frequency (days/year) = 365 days/year
ED = Exposure duration (years) = 1 year
AT = Averaging time (days) = 365 days

Before the initiation of the exposures, animals were
also acclimatized to the HAPC for 5 days to reduce the
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distress of handling. Exposures were performed in
whole-body inhalation chambers (FA or CAP) as de-
scribed in previous studies [29, 31, 32]. Briefly, both FA
and CAP groups were exposed at the same time to the
same conditions, except for the presence of concentrated
particles in CAP chamber. The two exposure chambers
are assembled side by side (see Additional file 1) and
they work in same conditions of pressure (0.99 atm), air
flow (10 L/min), temperature and noise; the difference is
that FA chamber receives HEPA filtered air.

PM2.5 characterization
Samples of ambient PM2.5 were collected for
characterization of PM2.5 elemental composition. For
this, polycarbonate filter samples were placed into
Harvard Virtual Impactor (a device that permits only the
passage of particles with diameter less than 2,5 μm) for
24hs. A flux of 10 L/min was generated by a vacuum
pump for retention of ambient PM2.5 in sample filters.
Characterization of PM2.5 elemental composition was
performed by energy dispersive X-ray spectroscopy
(EDX) as previously described [33]. 20 filter samples
were analyzed by EDX.

Proteinuria analysis
Isolated urine samples were collected monthly by
stimulation of perineal area as previous described [34].
Protein/creatinine ratio (PCR) and albumin/creatinine
ratio (ACR) of urine samples were assessed. Quantifica-
tion of total proteinuria was performed using Sensiprot

kit (Labtest Diagnosis, Brazil). Procedures were con-
ducted according to the manufacturer. Samples were di-
luted at 1:5 and incubated with color reagent at 37 °C/5
min. Absorbance was read at wavelength 600 nm. Quan-
tification of proteinuria (mg/dL) was determined based
on the absorbance of the sample (Asa) and standard (Ast)
through the equation “[(Asa ÷ Ast) x 50] x 5”, where 50
corresponds to the protein standard concentration in
mg/dL and 5 to the dilution factor. Quantification of
creatininuria was performed following modified Jaffe
method (Labtest Diagnosis, Brazil). Samples were diluted
at 1:125 and incubated with a solution of 80% picric
acid, 1% m/v + 20% sodium hydroxide, 10% m/v at
25 °C/20min. Absorbance was read at wavelength 520
nm. Quantification of creatininuria (mg/dL) was deter-
mined based on the absorbance of the sample (Asa) and
standard (Ast) through the equation “[(Asa) ÷ (Ast) x 5] x
25”, where 5 corresponds to the standard concentration
in mg/dL and 25 to the dilution factor (1:125) corrected
by the creatinine standard concentration (5 mg/dL). Al-
buminuria quantification was performed using electro-
phoresis gel. Firstly, urine samples were treated with
laemmli buffer (5% β-mercaptoethanol) and heat (95 °C/
5 min) for protein denaturation. Proteins were run on a
10% SDS-polyacrylamide electrophoresis gel and stained
with Coomassie Blue R-259. After the staining, gels were
immersed in a destain solution (7.5% acetic acid + 25%
methanol + 67.5% distilled water) and gel images were
obtained from an Amersham Imager 600 (GE Health-
care, USA). Quantification of albuminuria (μg/mL) was

Fig. 1 Experimental design. C57-FA: control mice exposed to filtered air; C57-CAP: control mice exposed to concentrated ambient particles (air
pollution); NZBW-FA: lupus-prone mice exposed to filtered air; NZBW-CAP: lupus-prone mice exposed to concentrated ambient particles (air pollution)
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performed by ImageJ software (Media Cybernetics,
USA). Briefly, stained albumin in the samples was
observed in bands at 66.5 kDa and the pixels of each
band were measured and compared to a standard band
(corresponding to 125 μg/mL of BSA). Note that for
each gel there was a standard band control. Then, albu-
minuria were normalized by their creatinine concentration
previously measured in the respective urine samples.

Euthanasia procedures
Animals were euthanized right after the fourth month of
exposure (at 210 day-old) through overdose inhalation of
the anesthetic isoflurane (Cristalia, Brazil). Blood sam-
ples were collected for hemogram and serologic analyses.
Kidneys, spleen, liver, heart and thymus were collected,
weighed and stored for histological and molecular
analyses.

Hemogram analysis
Complete blood count was performed for blood cells
screening. Red blood cells, white blood cells (including
total count and percentage of neutrophils, eosinophils,
basophils, monocytes and lymphocytes) and platelets
were counted. Analysis was conducted using the automated
hematologic counter pocH 100iV (Sysmex, Brazil).

Anti-DNA quantification
Blood samples were centrifuged (3500 rpm/10min) for
plasma collection. Quantification of anti-DNA anti-
bodies was performed by indirect immunofluorescence
using NOVA Lite® dsDNA Crithidia luciliae kit (Inova
Diagnostics, USA) following manufacturer protocol.
Goat anti-Mouse IgG (H + L) Cross-Adsorbed Secondary
Antibody, Alexa Fluor 488 (Invitrogen, A-11001) was
utilized at 1:100 for conjugation.

Histological analyses of kidneys
After euthanasia, kidneys were stored in buffered formal-
dehyde (10%) for 24hs. Then, kidneys were processed
and embedded in paraffin. For stereological analysis
kidneys were sliced (5 μm thick) in serial sections spaced
by 100 μm and stained with hematoxylin-eosin (HE). In
the interval between serial sections, sets of sections were
collected for immunohistochemistry and histopathology.
HE slides were scanned and digitalized using Pannora-
mic SCAN (3DHistech, Hungary). Volume estimation of
kidney compartments was determined using Cavalieri
method [35]. Using ImageJ software (Media Cybernetics,
USA), a grid was superposed over the digitalized images
(× 10 magnification) and the incident points were
counted. Relative volumes of cortex and medulla were
calculated by dividing the sum of incident points of each
compartment by the sum of total points of the kidney.
Absolute volumes of compartments were calculated by

multiplying relative volumes by total kidney volume.
Total kidney volume was estimated by dividing kidney
weight by kidney density (d = 1,06 g/cm3).
For histopathologic analysis kidneys slices were ran-

domly selected and stained using Periodic acid-Schiff
(PAS). Slide sections were individually graded by a
board-certified veterinary pathologist using a modified
International Society of Nephrology-Renal Pathology
Society Lupus Nephritis Classification [36] as follows: (0)
no tubular proteinosis and normal glomeruli; (1) mild
tubular proteinosis with multifocal segmental prolifera-
tive glomerulonephritis and occasional early glomerular
sclerosis and crescent formation; (2) moderate tubular
proteinosis with diffuse segmental proliferative glomer-
ulonephritis, early glomerular sclerosis and crescent for-
mation; and (3) marked tubular proteinosis with diffuse
global proliferative and sclerosing glomerulonephritis.
Glomerular volume was estimated by measuring average
diameter of glomeruli (× 400 magnification) [37].
For analysis of collagen deposition another set of ran-

domly selected were stained by picrosirius-hematoxylin
method [38]. Slides were scanned and digitalized as
previously described. Ten pictures per animal were taken.
Threshold tool of ImageJ software (Media Cybernetics,
USA) was utilized for estimation of the area stained with
picrosirius (× 100 magnification).

Immunohistochemistry
Immunohistochemistry protocol followed the manufac-
turer instructions. Briefly, sections were hydrated, antigen
retrieval was performed in sodium citrate buffer (pH = 6)
at 96 °C/20min, endogen peroxidase was blocked with
methanol (95%) + peroxide hydrogen (5%) for 30min and
non-specific bindings were blocked with bovine serum
albumin (2%) for 60min. Then we incubated sections with
primary antibodies anti-C3 (1:2000 - ab200999), anti-IgG
(1:250 - ab190475) and macrophage marker (1:10 - sc-
101447) at 4 °C/overnight. Next, slices were incubated
with HRP-polymer anti-rabbit (ab214880) or HRP-
polymer anti-rat (ab214882) for 90min and the chromo-
gen 3,3′-diaminobenzidine (DAB) was added. Counter-
staining was performed with hematoxylin. Slides were
scanned and digitalized as described previously. Ten
pictures per animal were taken. Threshold tool of ImageJ
software (Media Cybernetics, USA) was utilized for esti-
mation of area stained with DAB (× 100 magnification).

Gene expression
Total RNA from kidneys was extracted with Trizol
reagent (Invitrogen, USA). Kidneys were immersed in
trizol and macerated in Precellys (Bertin Instruments,
France). Chloroform was added, the homogenate was
centrifuged, and the supernatant (RNA) was collected.
RNA precipitation was performed with isopropanol.
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After centrifugation RNA pellet was washed with etha-
nol 70% twice and diluted in DEPC H2O. Quantification
of total RNA (ng/μL) and quality of extraction (260/230)
was performed using Nanodrop (Thermo Scientific,
USA). Synthesis of cDNA was performed with 2000 ng
of total RNA. First step was the degradation of contam-
inant DNA with RNAase-free DNase (Promega, USA).
Second step was the addition of oligo-dT (Promega,
USA). Last step was the reaction with dNTP and M-
MLV Reverse Transcriptase (Promega, USA). All steps
were performed in Mastercycler (Eppendorf, Germany).
Relative gene expression of NFκB and TGF-β was deter-
mined by quantitative real-time PCR following 2-ΔΔCT

method [39]. HPRT was utilized as endogenous gene
(Additional file 2). For each gene, 4 μL cDNA sample +
0,5 μL forward primer + 0,5 μL reverse primer + 5 μL mas-
termix SYBR (Invitrogen, USA) were assembled. Samples
were run in duplicates. qRT-PCR was performed at
Quantstudio 12 K Flex (Applied Biosystems, USA).

Oxidative stress
Pro-oxidant (NADPH oxidase and hydrogen peroxide)
and antioxidant (FRAP) assays were performed for oxida-
tive stress analysis of kidneys following procedures de-
scribed elsewhere [40]. Firstly, kidneys were homogenized
in an Ultra80 Turrax Blender (UltraStirrer, Switzerland)
with 120mM KCl and 20 nM sodium phosphate buffer (1
g tissue/4mL solution) and centrifuged at 600 rpm/10
min. Activity of NADPH oxidase enzyme was determined
by ELISA based on superoxide anion production [41]. The
assay was performed with 50mM phosphate buffer con-
taining 2mM EDTA and 150mM sucrose, 1.3 mM NADP
H and 10 μL of homogenate samples. Superoxide produc-
tion was determined using a spectrometer (SpectraMax2,
Molecular Devices) at 340 nm wavelength. Hydrogen
peroxide quantification was determined by oxidation of
phenol red by radish peroxidase [42]. 70 μL of homogen-
ate samples were added in 180 μL of radish peroxidase so-
lution (dextrose buffer + phenol red + radish peroxidase
type II). After 25min of incubation, 5 μL of sodium hy-
droxide were added to stop the reaction and absorbance
was determined in a spectrometer (SpectraMax2, Molecu-
lar Devices) at 630 nm wavelength. Non-enzymatic
antioxidant activity was determined by ferric reducing
antioxidant power (FRAP) [43]. 10 μL of homogenate
samples were added in 290 μL of FRAP reactive (sodium
acetate and acetic acid buffer + 10mM TPTZ + 20mM
hexahydrate ferric chloride). After 5min of incubation, ab-
sorbance was determined in a spectrometer (SpectraMax2,
Molecular Devices) at 593 nm wavelength.

Statistical analyses
SPSS software version 17.0 (IBM, USA) was utilized for
statistical analyses. Firstly, descriptive data were obtained,

and normality was verified by Kolmogorov-Smirnov test.
Variables with normal distribution were analyzed through
the parametric test ANOVA and post-hoc tests of Tukey
HSD, Gabriel or Games Howell. Test-T was performed
for comparison between 2 groups. Variables with non-
normal distribution were ranked and analyzed through
ANOVA. Kruskal-Wallis (4 groups) and Mann-Whitey
test (2 groups) were also applied for non-normal parame-
ters. Survival analysis was performed with Kepler-Maier
test. Differences between groups were considered statisti-
cally significant when p value was less than 0.05 (p < 0.05).

Results
PM2.5 characterization
Elemental composition of ambient PM2.5 is presented
in Table 1. Characterization of main pollutants and
climatic conditions are shown in Additional file 3.

Survival analysis
Four animals from NZBW-CAP died before the euthan-
asia procedure. Necropsy of the animals indicated that
they died of renal insufficiency due to glomeruloneph-
ritis. No deaths occurred on C57-FA, C57-CAP and
NZBW-FA groups (p = 0.007) (Fig. 2).

Body weight
Both NZBW-FA and NZBW-CAP groups showed a
higher body weight when compared to both C57-FA and
C57-CAP groups during the whole period (p < 0.010).
However, comparing animals of same strain, there were
no differences between groups exposed to FA or CAP
(Fig. 3).

Weight of organs
In regarding to absolute weight of organs, NZBW-FA
and NZBW-CAP groups showed increased values when
compared to C57-FA and C57-CAP groups for kidney
(p < 0.001), liver (p < 0.001) and heart (p < 0.001). Kidney

Table 1 Elemental composition of PM2.5

Element %

Carbon (C) 52.24 ± 6.24

Sulphur (S) 33.59 ± 2.11

Magnesium (Mg) 10.19 ± 8.56

Barium (Ba) 1.34 ± 0.47

Chloride (Cl) 1.00 ± 0.28

Phosphorus (P) 0.73 ± 0.42

Iron (Fe) 0.34 ± 0.13

Calcium (Ca) 0.28 ± 0.09

Potassium (K) 0.15 ± 0.03

Silicon (Si) 0.04 ± 0.07

Bars represent percentage mean ± error. n = 20 filters
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weight was higher in NZBW-CAP when compared to
NZBW-FA (p = 0.025). Spleen weight was higher in
NZBW-CAP when compared to C57-FA (p = 0.027) and
NZBW-FA (p = 0.046). Thymus weight was higher in
NZBW-CAP and C57-FA groups when compared to
C57-CAP (p = 0.006; p = 0.011) and NZBW-FA (p =
0.006; p = 0.011) (Table 2). NZBW-FA group showed
lower relative weight of all organs (kidney (p < 0.001),
spleen (p = 0.006), liver (p < 0.001), heart (p = 0.042) and
thymus (p < 0.001)) when compared to C57-FA group.

Except for the liver (p = 0.052) and the heart (p = 0.099),
NZBW-CAP group showed higher relative weights of or-
gans when compared to NZBW-FA group (kidney (p <
0.001), spleen (p = 0.029) and thymus (p = 0.007)) (Table 2).

Detection of anti-DNA antibodies
Semi-quantitative analysis of anti-DNA showed that only
NZBW animals had a positive reaction. NZBW-FA showed
10% of positivity and NZBW-CAP showed 14.29%. How-
ever, there were no statistical differences between groups.

Fig. 2 Survival rate during the period of exposure to FA or CAP. n = 8–10 animals/group. p = 0.007 (Kepler-Meier test). C57-FA: control-filtered;
C57-CAP: control-pollution; NZBW-FA: lupus-filtered; NZBW-CAP: lupus-pollution

Fig. 3 Body weight (g) during the period of exposure to FA or CAP. Bars represent mean ± standard error. n = 8–10 animals/group. *p < 0.01
when compared to both C57-FA and C57-CAP (ANOVA followed by post-hoc test Gabriel or Games-Howell). C57-FA: control-filtered; C57-CAP:
control-pollution; NZBW-FA: lupus-filtered; NZBW-CAP: lupus-pollution
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Hemogram
There were no differences in the number of erythrocytes
between groups. NZBW-FA group showed a decreased
number of total leukocytes (p = 0.018) and lymphocytes
(p = 0.006) when compared to C57-FA group. NZBW-CAP
group showed an increased number of neutrophils (p =
0.017) when compared to NZBW-FA group. Also, when
compared to all other groups, NZBW-CAP showed a
decreased percentage of lymphocytes (C57-FA (p < 0.001),
C57-CAP (p = 0.002), NZBW-FA (p = 0.018)), and an in-
creased percentage of neutrophils (C57-FA (p = 0.001),
C57-CAP (p = 0.002), NZBW-FA (p = 0.016)). The number
of platelets was lower in NZBW-FA group when compared
to C57-CAP group (p = 0.037) (Table 3).

Proteinuria
PCR was followed during the whole period of exposure
(from month 0 to month 4). At month 0, NZBW-FA

(p < 0.001), NZBW-CAP (p < 0.001) and C57-CAP (p =
0.002) showed decreased PCR when compared to C57-FA.
NZBW-FA maintained a lower PCR when compared to
C57-FA at month 1 (p = 0.045) and month 2 (p = 0.003).
NZBW-CAP showed increased PCR when compared to
NZBW-FA at month 2 (p = 0.001), month 3 (p = 0.006) and
month 4 (p = 0.034). NZBW-CAP also showed increased
PCR when compared to C57-CAP at month 3 (p = 0.046)
and month 4 (p < 0.001). At month 4, NZBW-FA showed
higher PCR when compared to C57-CAP (p = 0.021), and
NZBW-CAP showed increased PCR when compared to
C57-FA (p = 0.001) (Fig. 4). ACR was performed with urine
collected at the day of euthanasia. There were no differ-
ences between the groups.

Stereology of kidneys
Fractional volume of kidney major compartments estimated
by Cavalieri principle showed that C57-CAP (p = 0.035)

Table 2 Weight of organs (absolute and relative)

C57-FA C57-CAP NZBW-FA NZBW-CAP

Absolute (g) Kidney 0.153 ± 0.008 0.162 ± 0.024 0.203 ± 0.014a,b 0.263 ± 0.040a,b,c

Spleen 0.082 ± 0.008 0.084 ± 0.015 0.094 ± 0.027 0.173 ± 0.124a,c’

Liver 1.127 ± 0.107 1.080 ± 0.197 1.549 ± 0.137a,b 1.807 ± 0.488a,b

Heart 0.104 ± 0.004 0.120 ± 0.015a’ 0.157 ± 0.014a,b 0.177 ± 0.041a,b

Thymus 0.091 ± 0.020 0.057 ± 0.019a 0.059 ± 0.013a 0.106 ± 0.045b,c

Relative (%) Kidney 0.66 ± 0.05 0.66 ± 0.06 0.53 ± 0.04a,b 0.73 ± 0.17c

Spleen 0.35 ± 0.02 0.34 ± 0.04 0.24 ± 0.07a,b 0.45 ± 0.26c’

Liver 4.87 ± 0.39 4.36 ± 0.61a’ 4.06 ± 0.29a 4.88 ± 0.94

Heart 0.45 ± 0.03 0.49 ± 0.06 0.41 ± 0.03a,b 0.48 ± 0.10

Thymus 0.39 ± 0.08 0.23 ± 0.08a 0.15 ± 0.03a 0.28 ± 0.09a,c

Values represented by mean ± standard deviation. n = 7–10 animals/group. ANOVA followed by post-hoc test Gabriel or Games-Howell or T-test
a,a’ p < 0.05 when compared to C57-FA (a ANOVA; a’ T-test)
b p < 0.05 when compared to C57-CAP
c,c’ p < 0.05 when compared to NZBW-FA (c ANOVA; c’ T-test)
C57-FA: control-filtered; C57-CAP: control-pollution; NZBW-FA: lupus-filtered; NZBW-CAP: lupus-pollution

Table 3 Hemogram analysis of erythrocytes, platelets and leukocytes (total, neutrophils, lymphocytes and monocytes)

C57-FA C57-CAP NZBW-FA NZBW-CAP

Erythrocytes1 9.43 ± 0.30 8.71 ± 0.62 10.39 ± 1.89 7.90 ± 2.03

Platelets2 1119.2 ± 115.8 1334.3 ± 396.6 664.8 ± 368.2b 684.0 ± 307.0

Leukocytes2 3.34 ± 0.96 2.70 ± 0.59 1.72 ± 0.51a 2.70 ± 0.66

Lymphocytes2 2.54 ± 0.74 2.00 ± 0.32 1.20 ± 0.40a 1.50 ± 0.31

Neutrophils2 0.71 ± 0.24 0.67 ± 0.28 0.50 ± 0.15 1.13 ± 0.31c

Monocytes2 0.09 ± 0.08 0.03 ± 0.01 0.02 ± 0.01 0.06 ± 0.06

Lymphocytes (%) 76.00 ± 5.05 74.75 ± 5.12 69.40 ± 5.86 56.00 ± 2.65a,b,c

Neutrophils (%) 21.40 ± 3.91 24.00 ± 5.35 29.40 ± 5.81 41.67 ± 1.53a,b,c

Monocytes (%) 2.60 ± 1.67 1.25 ± 0.50 1.20 ± 0.45 2.00 ± 1.73

Values represented by mean ± standard deviation. 1(million/mm3); 2(thousand/mm3). n = 3–5 animals/group. ANOVA followed by post-hoc test Gabriel
a p < 0.05 when compared to C57-FA
b p < 0.05 when compared to C57-CAP
c p < 0.05 when compared to NZBW-FA
C57-FA: control-filtered; C57-CAP: control-pollution; NZBW-FA: lupus-filtered; NZBW-CAP: lupus-pollution
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and NZBW-CAP (p = 0.032) groups showed an increase in
the volume of cortex when compared to C57-FA group,
and C57-CAP showed a decrease in the volume of medulla
when compare to C57-FA (p = 0.021) (Fig. 5a). In absolute
volume analysis, NZBW-FA group showed a larger volume
of cortex when compared to C57-FA (p = 0.001) and
NZBW-CAP group showed a larger volume of cortex when
compared to all the other groups (C57-FA (p < 0.001); C57-
CAP (p < 0.001); NZBW-FA (p = 0.034)) (Fig. 5b).

Histopathology of kidneys
In histopathological analysis of the renal tubules, both
NZBW-FA (p = 0.044) and NZBW-CAP (p = 0.005)
groups showed a higher score when compared to C57-FA
(Fig. 6a). Glomerular evaluation indicated a higher score
in NZBW-CAP when compared to C57-FA (p = 0.003)
and C57-CAP (p = 0.025). Also, NZBW-FA showed a
higher score when compared to C57-FA (p = 0.001) and
C57-CAP (p = 0.010) (Fig. 6b). A summary description of

Fig. 4 Proteinuria/creatininuria ratio (PCR) during the period of exposure to FA or CAP. Bars represent mean ± standard error. n = 5–10 animals/
group. *p < 0.05 (ANOVA followed by post-hoc test Gabriel). C57-FA: control-filtered; C57-CAP: control-pollution; NZBW-FA: lupus-filtered;
NZBW-CAP: lupus-pollution

Fig. 5 Stereological analysis of kidneys for estimation of fractional (a) and absolute (b) volumes of kidney compartments. Bars represent mean ±
standard error. n = 5–6 animals/group. *p < 0.05 (ANOVA followed by post-hoc test Gabriel or Games-Howell). C57-FA: control-filtered; C57-CAP:
control-pollution; NZBW-FA: lupus-filtered; NZBW-CAP: lupus-pollution
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the histopathological findings of kidneys together with
stereological results for each group is described in
Additional file 4. No differences between the groups were
observed regarding the mean volume of glomeruli.

Picrosirius analysis
There were no differences between the groups in the
fractional area positively stained with picrosirius, indicat-
ing fibrosis.

Immunohistochemistry
Deposition of C3 complement positively marked with
DAB showed no differences between the groups. We
observed a tendency to increased deposition of IgG in
NZBW mice, without differences between NZBW-FA
and NZBW-CAP groups (Fig. 7). Macrophage quantifi-
cation was significantly higher in NZBW-FA (p = 0.023)
and NZBW-CAP (p = 0.007) groups in comparison to
C57-FA group and, NZBW-CAP showed an increase
when compared to C57-CAP group (p = 0.028). How-
ever, no differences were observed between NZBW-FA
and NZBW-CAP groups (Fig. 8).

Gene expression
Gene expression of NF-κB was lower in C57-CAP group
when compared to C57-FA (p = 0.010) and NZBW-CAP
(p = 0.032) groups (Fig. 9a). TGF-β expression was
higher in C57-FA when compared to NZBW-FA (p =
0.002) and NZBW-CAP (p = 0.005) groups (Fig. 9b). No
significant differences were observed between NZBW-
FA and NZBW-CAP groups.

Oxidative stress
NADPH oxidase activity was higher in group NZBW-FA
when compared to C57-CAP (p= 0.011) and a tendency of
increase was observed when compared to C57-FA (p=
0.055) (Fig. 10a). Quantification of hydrogen peroxide
showed no differences between groups (Fig. 10b). FRAP ac-
tivity was higher in NZBW-FA (p= 0.048) and NZBW-CAP
(p= 0.021) when compared to the control group (C57-FA)
(Fig. 10c). No differences were observed between NZBW-
FA and NZBW-CAP groups in oxidative stress analyses.

Discussion
Chronic exposure to PM 2.5 leads to the exacerbation of
some clinical and renal histopathological manifestations
of SLE in a murine model of lupus disease (NZBWF1
mice). Different outcomes were evaluated, however the
most striking result is the decreased survival rate in
lupus prone mice exposed to particulate air pollution
and marked changes in renal structure (increases in kid-
ney weight and renal cortex volume) and function (early
proteinuria onset), as well as the elevated number of
circulating neutrophils.
Autoimmune diseases are very complex diseases and

can affect different organs due to loss of self-tolerance and
inappropriate activation of the immune system that leads
to the production of autoantibodies and generates tissue
destruction. The most common autoimmune diseases are:
SLE, rheumatoid arthritis, multiple sclerosis and type 1
diabetes [10]. The etiology of these diseases is still under
investigation, however, besides a genetic predisposition,
environmental factors (e.g., urban air pollution) seems to
contribute to the onset and worsening of these diseases
manifestations [8].

Fig. 6 Kidney histopathology (arbitrary units) of tubules (a) and glomeruli (b). Bars represent mean ± standard error. n = 5 animals/group. *p <
0.05 (ANOVA followed by post-hoc test Tukey HSD). C57-FA: control-filtered; C57-CAP: control-pollution; NZBW-FA: lupus-filtered;
NZBW-CAP: lupus-pollution
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Recent epidemiological studies clearly show an associ-
ation between air pollution and disease activity in
patients with SLE, but there is no agreement of which of
the pollutants present in the air are most associated to
the outcomes. Possibly, the differences between studies
occur because the disease is strongly related to race,
gender and age [44–47]. In vitro studies showed that
PM can induce T lymphocyte activation, thus contribut-
ing to the aggravation of autoimmune diseases [48, 49].
Despite the methodological differences between epi-
demiological and in vitro studies, the results of these
studies corroborate our findings.
As far as we know, this is the first study that investigated

the effects of exposure to “real world” urban particulate

air pollution (whole-body inhalation) on lupus-prone ani-
mals, a model that mimics some clinical manifestations of
SLE in humans. NZBW mice were chosen as SLE animal
model based on literature descriptions, since it is consid-
ered as the classic model of SLE [50, 51]. Furthermore,
only females were utilized in order to mimic disease
prevalence in humans (90% of adult patients are women)
[2]. Female C57BL/6 was chosen as a control for the
NZBW because this strain was already used as a control
for NZBW in previous studies [52], and because is recom-
mended for toxicological studies and has no predispos-
ition to renal diseases [53].
The onset of SLE manifestations in female NZBW

mice occurs around 28-week-old (7-month-old) and

Fig. 7 Photomicrographs of kidneys from C57-FA (a), C57-CAP (b), NZBW-FA (c) and NZBW-CAP (d) groups for quantification of IgG deposition
(e) by IHC. Bars represent mean ± standard error. n = 5–7 animals/group. ANOVA followed by post-hoc test Games-Howell. C57-FA: control-filtered;
C57-CAP: control-pollution; NZBW-FA: lupus-filtered; NZBW-CAP: lupus-pollution
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Fig. 8 Photomicrographs of kidneys from C57-FA (a), C57-CAP (b), NZBW-FA (c) and NZBW-CAP (d) groups for quantification of macrophages (e)
by IHC. Bars represent mean ± standard error. n = 5–8 animals/group. *p < 0.05 (ANOVA followed by post-hoc test Gabriel). C57-FA: control-
filtered; C57-CAP: control-pollution; NZBW-FA: lupus-filtered; NZBW-CAP: lupus-pollution

Fig. 9 Analysis of gene expression of NF-κB (a) and TGF-β (b) by qRT-PCR. (2-ΔΔCT method). Bars represent mean ± standard error. n = 5–10
animals/group. *p < 0.05 (ANOVA followed by post-hoc test Gabriel). C57-FA: control-filtered; C57-CAP: control-pollution; NZBW-FA: lupus-filtered;
NZBW-CAP: lupus-pollution
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average lifespan is 245 days [54]. We planned our experi-
mental design following this lifespan. Thus, exposures
started 4 months before the expected onset of the clin-
ical manifestations, in order to check if air pollution
could anticipate the symptoms. Although not expected,
lupus-prone mice presented a significant reduction in
life expectancy (less 25%) due to exposure to air pollu-
tion and necropsy indicated kidney failure as the cause
of death. Globally, different studies have already shown
that air pollution leads to reductions in life expectancy
[55–57]. However, to date there is no data on mortality
risk for SLE patients.
Previous studies using a different mice model for SLE

(New Zealand Mixed, NZM), have shown that instilla-
tion of silica particles increased mortality due to renal
complications [58] and instillation of particulate matter
(PM1648 and PM2.5, dose 500 μg) also increased mor-
tality of NZM, but with absence of renal impairments

[59]. In our model, NZBW mice exposed to CAP pre-
sented early development of proteinuria and the weight
of the kidney was increased compared to NZBW ex-
posed to FA, although histopathological scores, fibrosis
and C3 complement deposition on kidneys were not
different between these groups.
Detection of anti-DNA in serologic tests is important

for confirmation of SLE diagnosis [60]. Usually, experi-
mental studies perform anti-DNA quantification assays
for evaluation of disease activity [61, 62]. As observed in
previous studies with SLE-prone mice exposed to silica
[52, 58, 63], we had expected an increase in detection of
anti-DNA antibodies in NZBW group exposed to
PM2.5. However, there were no differences between the
groups. Two aspects can explain this difference:
evaluation at the end of the experiment and not during
the course and the low number of animals assessed.
Anti-DNA antibodies participate in pathogenesis of renal

Fig. 10 Quantification of NADPH oxidase (μM/mg protein) (a), hydrogen peroxide (μM) (b) and ferric reducing antioxidant activity (FRAP) (mM Fe
(II)) (c) in kidneys. Bars represent mean ± standard error. n = 8–10 animals/group. *p < 0.05 (ANOVA followed by post-hoc test Gabriel or Games-
Howell). C57-FA: control-filtered; C57-CAP: control-pollution; NZBW-FA: lupus-filtered; NZBW-CAP: lupus-pollution
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lesions, but its relationship with disease activity and se-
verity varies. Goulart and colleagues showed association
between anti-DNA and renal impairments in children
[47]. Other studies failed to show a clear correlation
between circulating anti-DNA and the type or severity
of renal disease in individual patients [64, 65].
In general, SLE patients are prone to the development

of hematologic alterations such as anemia, leucopenia
and thrombocytopenia, associated with symptoms such
as fatigue and susceptibility to infections [66]. In the
current study, we observed that NZBW-FA group
presented leucopenia and thrombocytopenia, following
conditions observed in human patients [60]. We did not
observe differences between FA and CAP groups in
erythrocytes and platelets counts; however, leukocytes
were altered. Female NZBW mice exposed to CAP
presented increased percentage and total number of
neutrophils and decreased percentage of lymphocytes
when compared to NZBW-FA group. Interestingly, a re-
cent study demonstrated that an increased neutrophil/
lymphocyte ratio in blood can be associated with in-
creased SLE activity in human patients [67]. In our study
we showed that exposure to PM2.5 alters the blood cell
composition of female NZBW mice (leading to increased
neutrophil/lymphocyte ratio). This result corroborates
the general exacerbation of SLE manifestations in these
mice.
Exposure to PM2.5 also affected the weight of organs

on SLE-prone mice. Body weight did not vary, however
NZBW mice exposed to PM2.5 presented higher weight
of organs compared to NZBW-FA group. Increase in
weight of lymphoid organs such as thymus and spleen
can be associated with systemic condition of increased
disease activity, characterized by hyperplasia of lymphoid
follicles present in these organs [68, 69]. Increase in
weight of liver is frequently associated with splenomeg-
aly in SLE patients, however the mechanisms involved
are not elucidated [70]. Increased renal weight is associ-
ated with a worse renal histopathology [71]. SLE inflam-
mation processes caused by deposition of immune
complexes, cell infiltration and formation of lymphoid
structures in hepatic and renal parenchyma [72, 73] can
be associated with these outcomes.
Morphometric evaluation of the kidney structure

revealed that in NZBW mice exposed to CAP, the renal
cortex volume was increased compared to FA group.
These changes were accompanied by altered kidney
function (augmented proteinuria). Increase of renal cor-
tex can be related to hypertrophy of nephrons, charac-
terized by large glomeruli and dilated tubules [74]. This
condition is associated with increased glomerular filtra-
tion rate and, frequently, proteinuria [74, 75]. Nephron
hypertrophy can occur by compensatory mechanisms
when nephrons are lost due to disease progression;

however, this condition impairs glomerular function
over time [76, 77]. NZBW descriptions show the appear-
ance of proteinuria around 5 to 7 months-age in females
[54]. In this current study, NZBW animals exposed to
CAP presented an earlier onset of proteinuria when
compared to NZBW-FA group, with progression starting
at month 2 (5-month-age) and intensified at month 3
(6-month-age) and month 4 (7-month-age). Although
proteinuria appeared early on NZBW exposed to CAP,
we did not observe a significant increase in the mean
volume of glomeruli. Whether the increase of renal cor-
tex can be influenced by interstitial enlargement remains
to be determined.
Deposition of collagen and complement proteins,

markers of fibrosis and immune complexes deposition
on kidneys, respectively, did not differ between groups.
Other lesions such as basal membrane thickening,
mesangial cell expansion and inflammation, that are
characteristic of kidney injury in lupus nephritis [22],
were more pronounced in NZBW strain exposed to air
pollution. Some epidemiological studies reported impair-
ment of renal function on SLE patients exposed to
PM2.5. Children diagnosed with SLE and inhabitants of
São Paulo city presented increased proteinuria, leukocy-
turia and hematuria in association with an increase in
PM2.5 concentrations [47]. In the same way, adult pa-
tients diagnosed with SLE presented renal complications
associated with exposure to PM2.5 in the city of
Montreal, Canada [78]. Furthermore, risk of nephropa-
thies, including lupus nephritis, were associated with
long term exposure to air pollutants in China [79].
Regarding animal models of SLE, no kidney alterations

were observed in a study that treated NZM mice with
instilled PM [59]. On the other hand, studies with silica
particles demonstrated kidney impairments with devel-
opment of proteinuria and renal histopathologic alter-
ations in lupus-prone mice instilled with silica [52, 58].
Our results corroborate the epidemiological evidence

that indicates that the levels of air pollutants can in-
crease renal activity in SLE patience [47, 78]. Further-
more, the histopathological findings in C57-CAP group
indicates that even for normal individuals chronic expos-
ure can exert negative impacts on the kidney, giving
strength to previous studies that have shown an associ-
ation between kidney diseases and air pollution [80].
Despite bringing new evidence of the effects of air pollu-
tion on SLE disease, our study has some limitations: the
absence of a cohort to study life span properly, the small
number of animals in the NZBW groups and exposure
were carried in a specific period of life (near the ex-
pected onset of the SLE manifestations in NZBW mice).
In brief, our data indicate that exposure to particulate

air pollution aggravates and accelerates disease progression,
renal function is compromised, however the mechanisms
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involved in this association are still not clear. Considering
previously suggested mechanisms, we expected that oxida-
tive stress together with an increase in the complement
deposition and an increased inflammatory response would
explain the association between air pollution and kidney
impairments [81, 82]. However, our data did not show dif-
ferences between groups in NF-κB and TGF-β expressions
or in the balance of pro/antioxidant molecules in the
kidney. This can be partially explained by the fact that we
analyzed these parameters at the end of the study, when
the disease was already in an advanced stage.

Conclusions
Despite the variability among the NZBW strain regarding
to the development of disease manifestations, negative
effects of air pollution in SLE-prone mice are evident, cor-
roborating findings from epidemiological studies. Taking
together, our results show that inhalation of CAP induces
alterations on clinical manifestations of female NZBW.
Complementary studies are important for a better elucida-
tion of the association between air pollution and SLE and
the physiopathological mechanisms involved. Reduction
of air pollution levels is needed in order to provide a
better quality of life for individuals diagnosed with SLE.
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