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Fluids and Barriers of the CNS

Blood‑spinal cord barrier disruption 
in degenerative cervical myelopathy
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Abstract 

Degenerative cervical myelopathy (DCM) is the most prevalent cause of spinal cord dysfunction in the aging popula-
tion. Significant neurological deficits may result from a delayed diagnosis as well as inadequate neurological recovery 
following surgical decompression. Here, we review the pathophysiology of DCM with an emphasis on how blood-
spinal cord barrier (BSCB) disruption is a critical yet neglected pathological feature affecting prognosis. In patients 
suffering from DCM, compromise of the BSCB is evidenced by elevated cerebrospinal fluid (CSF) to serum protein 
ratios and abnormal contrast-enhancement upon magnetic resonance imaging (MRI). In animal model correlates, 
there is histological evidence of increased extravasation of tissue dyes and serum contents, and pathological changes 
to the neurovascular unit. BSCB dysfunction is the likely culprit for ischemia–reperfusion injury following surgi-
cal decompression, which can result in devastating neurological sequelae. As there are currently no therapeutic 
approaches specifically targeting BSCB reconstitution, we conclude the review by discussing potential interventions 
harnessed for this purpose.
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Introduction
Degenerative cervical myelopathy (DCM) is the com-
monest cause of spinal cord dysfunction in developed 
countries due to age-related changes within the cervi-
cal spinal canal [1, 2]. Chronic mechanical compres-
sion of the spinal cord results from encroachment by 
surrounding structures. Neurological manifestations 
include sensory impairment, decline in hand dexterity, 
limb weakness, gait instability, and even tetraplegia if left 
untreated [3, 4]. Average age at diagnosis is estimated to 
be 65 and the disease classically exhibits a steady, step-
wise deterioration with stable intervening periods [5–8]. 
There remains inadequate awareness of DCM amongst 

the public as well as primary health care providers, 
resulting in delay in diagnosis or misdiagnosis [1, 9]. 
Although operative treatment via cervical decompression 
is effective, full recovery is uncommon whilst non-oper-
ative treatment modalities show limited clinical efficacy 
[10–12]. As a disease with a substantial and increasing 
global burden, understanding the mechanisms contribut-
ing to disease pathology is essential to advancing diagno-
sis, treatment, and recovery. In this review, we delve into 
the significance of blood-spinal cord barrier (BSCB) dis-
ruption to DCM pathophysiology, whilst proposing novel 
BSCB-based treatment strategies that may be beneficial 
to management.

The blood‑spinal cord barrier in health and disease
BSCB architecture
The BSCB is generally considered to be an extension of 
the blood brain barrier (BBB). They share the same ultra-
structural arrangement, although differences in mor-
phology and function do exist as will be discussed in the 
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following section. The BSCB is comprised of capillary 
endothelial cells and its accompanying basement mem-
brane, pericytes, and astrocytic end-feet. Endothelia over 
the BSCB are distinct in being non-fenestrated. They 
form tight junctions (TJs) with adjacent cells [13–16], 
and compared to the endothelia of other tissues possess 
a low density of pinocytic vacuoles and a high number 
of cytosolic mitochondria [17, 18]. The basement mem-
brane is composed of laminins, collagen IV isoforms, 
nidogens, and heparan sulphate proteoglycans (HSPGs) 
to form a three-dimensional matrix [19, 20] and is main-
tained by endothelial cells as well as embedded pericytes 
[21, 22]. Astrocytes encircle endothelia, contributing 
to the basement membrane, and enwrap neuronal syn-
apses to enable neurovascular coupling [19, 20, 23]. This 
arrangement allows for neurohumoral regulation of 
blood flow, controlling the inflow and efflux of nutrients, 
energy stores, metabolites, and toxins within the neuro-
vascular unit (NVU) [24–27]. The spinal cord perivascu-
lar space is continuous with the subarachnoid space [16]. 
At the capillary level, the basal lamina of endothelial cells 
is in direct contact with the glia limitans. Upon inflam-
mation, basal lamina may separate into two layers, form-
ing a transient perivascular space or “loop” that facilitates 
leukocyte infiltration [15, 20].

BSCB vs BBB
Animal studies indicate that the BSCB has increased per-
meability to serum biomolecules, cytokines, and growth 
factors, such as mannitol, inulin, interferon (IFN) α/γ, and 
nerve growth factor (NGF) compared to the BBB [28–
30]. This may be explained by lower expression of tight 
and adherent junction proteins in spinal cord endothelial 
cells compared to brain endothelial cells, which is asso-
ciated with increased paracellular transport [31–33]. 
Mouse pericyte number and coverage within the BSCB 
is reduced in comparison to the BBB, which is associated 
with increased endothelial transcytosis and barrier per-
meability [34, 35]. Genes associated with astrogliosis i.e. 
GFAP, IL-6, and STAT3, are expressed at higher levels in 
mouse spinal cord astrocytes compared to astrocytes in 
the brain. Enhanced GFAP expression may help the spi-
nal cord to withstand bending and torque [36], allowing 
the BSCB to tolerate mechanical stresses associated with 
vertebral movement. Significantly higher mitochondria 
content was observed in rat spinal cord endothelial cells 
compared to endothelial cells of the cerebral cortex and 
cerebellum, which may indicate more robust active trans-
port systems and diminished vesicular transport [17, 37].

BSCB disruption in traumatic spinal cord injury
In acute spinal cord injury (SCI), primary injury causes 
immediate physical disruption of the BSCB [38, 39]. 

Edema of spinal cord parenchyma is an early macro-
scopic manifestation of barrier disruption that is corre-
lated with contusion force [40–43]. Hemolysates from 
extravasated erythrocytes and serum macromolecules 
such as serine proteases perpetuate neuroinflammation 
as well as oxidative stress [43, 44]. Even after filtration of 
high molecular weight proteins (> 10  kDa), serum con-
tents cause apoptosis of cultured spinal cord neurons, 
likely due to the presence of neurotoxic depolarizing 
agents such as glutamate [41, 42]. Animal models have 
revealed that cord edema peaks at Day 5 post-injury 
[38], whilst permeability to large serum macromolecules 
resolves around 2 weeks post-SCI. Nevertheless, perme-
ability to smaller molecules persists especially in areas 
with microglial aggregates, implying lasting alterations 
to BSCB permeability [45, 46]. There is evidence indicat-
ing that BSCB alteration is a key factor in the pathogen-
esis of post-SCI syringomyelia, which is characterized by 
the formation of cystic cavities over the lesion epicentre 
[46–48].

BSCB disruption in neurodegenerative and autoimmune 
diseases
BSCB disruption is also a key factor contributing to the 
pathogenesis of amyotrophic lateral sclerosis (ALS), a 
progressive and fatal neurodegenerative disorder affect-
ing upper and lower motor neurons located in the brain 
and spinal cord [49, 50]. In necropsy specimens of spinal 
cords obtained from ALS patients, there was evidence 
of cytotoxic lipofuscin deposits within the capillaries, 
decreased endothelial expression of TJs, and increased 
infiltration by leucocytes, erythrocytes, and serum mac-
romolecules [51–54]. Pericyte and astrocyte end-feet 
degeneration were also observed at sites correspond-
ing to vessel rupture [49, 55, 56]. Likewise, in the SOD1 
mouse ALS model, impaired BSCB function and vas-
cular pathology preceded motor neuron degeneration, 
which was evidenced by vascular leakage and loss of TJs 
throughout the spinal cord [52, 57]. Histological and 
imaging studies on experimental autoimmune encepha-
lomyelitis (EAE) animal models of multiple sclerosis 
(MS) showed evidence of BSCB disruption during early 
disease, sometimes preceding neurological manifesta-
tions [58–61]. However, clinical studies on the impact of 
BSCB disruption in MS pathogenesis is lacking. BSCB 
disruption in DCM,  traumatic SCI, and neurodegenera-
tive disease (using ALS as an example) is compared in 
Table 1.
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Pathophysiology of degenerative cervical 
myelopathy
Animal models of DCM
In addition to necropsy specimens, animal model cor-
relates of DCM have been invaluable to understanding 
disease pathophysiology, and in highlighting differences 
from acute traumatic SCI [66]. Acute traumatic SCI 
models result in immediate neurological deterioration 
(i.e. via cord contusion, distraction, and transection) [67], 
whilst animal models mimicking DCM cause progres-
sive neurological compromise following chronic com-
pression. Murine models are most frequently utilized. 
Twy/twy mice possess an autosomal recessive, non-sense 
mutation at the Npps (nucleotide pyrophosphatase) gene 
locus [68]. Failure of the Npps enzyme to produce inor-
ganic phosphatase, a major inhibitor of calcification, 
causes  progressive soft-tissue calcification and bone 
mineralization to compromise  the cervical canal [69]. 
Limitations to this model exist, in that the site of maxi-
mal compression is within the upper cervical spine which 
is atypical for DCM, and decompression of the ossified 
spinal canal is technically infeasible. In rats, implantation 
of expandable polymers dorsal to the spinal cord follow-
ing a laminectomy is a common experimental setup, and 
decompression may be modelled via polymer removal. 
Implant positioning, size, and swell rate are important 
variables to control [70]. The rate and region of cervical 
compression is better controlled in larger animal models 
following polymer implantation, and there are means to 
mimic ventral compression for example via screw inser-
tion from the anterior vertebral body, although larger 
animals are costly, may not be readily available, and pre-
sent more ethical concerns [70–76].

Mechanical compression
DCM is a multifactorial disorder instigated by static and 
dynamic mechanical compression of the cervical spinal 
cord. Causes for static compression include degenerative 
disc disease (DDD) and congenital cervical stenosis. DDD 
also results in cervical microinstability, and over time this 
causes secondary spondylotic changes such as cervical 
facet and posterior longitudinal ligament hypertrophy 
to further mechanical compression [77]. Dynamic fac-
tors, for example in occupations requiring prolonged and 
exaggerated movement of the cervical spine, may further 
mechanical insult [78, 79]. Biological processes resulting 
from chronic compression include tissue ischemia, BSCB 
disruption, and neuroinflammation, culminating in the 
loss of neurons and glia. These have been summarized in 
Fig. 1 and will be discussed in further detail below.

Ischemia
Spinal cord perfusion is compromised in DCM as evi-
denced by distorted anterior spinal and radicular arteries 
upon necropsy specimens [78]. Cord perfusion may be 
further compromised by vessel wall thickening and hya-
linization [80–82]. Evidence of ischemic injury is mani-
fest early in medial grey and white matter tracts, which 
are supplied by terminal branches of the anterior spinal 
artery [80]. Corresponding to this topography, the lateral 
corticospinal tract is first to be affected in DCM [83–86]. 
In the polymer-implanted rat DCM model, a significant 
reduction in the number of blood vessels in white and 
grey matter of the cervical spinal cord was observed [75]. 
Ischemic injury precipitates apoptosis and inflammation, 
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Fig. 1  Pathophysiology of degenerative cervical myelopathy
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which can proceed to necroptosis as cord compression 
worsens [66, 87].

BSCB disruption
It remains uncertain whether mechanical compression is 
an independent factor for BSCB disruption, or whether 
its effects are exerted secondary to compression-induced 
ischemia. Regarding pathophysiology of the latter, spi-
nal cord ischemia causes pericytes located at the BSCB 
to express hypoxia inducible factor-1 (HIF-1). HIF-1 
dilates blood vessels and disrupts endothelial TJs, thereby 
increasing BSCB permeability [88]. Mild chronic spi-
nal cord hypoxia in mice was sufficient to induce vas-
cular leakage, resulting in extravasation of neurotoxic 
serum macromolecules and activation of microglia [89]. 
Another mechanism for BSCB breakdown is the upreg-
ulation of matrix metallopeptidase 9 (MMP-9) within 
the spinal cord of DCM patients and animal model cor-
relates [90–92]. MMP9 is a proteolytic enzyme which 
is expressed in neutrophils and endothelial cells, and 

by degrading the basement membrane, compromises 
BSCB integrity [91]. BSCB disruption causes an influx of 
inflammatory cells [87], exposes the spinal cord to neu-
rotoxic serum contents, impairs clearance of metabolic 
waste, and result in the accumulation of protein aggre-
gates which generate oxidative stress [93, 94]. This insti-
gates further injury to the BSCB, forming a vicious cycle.

Inflammation
Inflammation in DCM occurs consequent to chronic 
ischemia and BSCB disruption [77]. In animal models, 
CNS hypoxia induces neuroglia to release proinflamma-
tory cytokines such as IL-1β, IL-6, IL-8, FasL, and TNF-α 
[90, 95–97]. These cytokines, together with nuclear factor 
kappa B (NF-κB), MMP-2, and urokinase-type plasmino-
gen activator (u-PA) are also detected in DCM necropsy 
specimens [92, 98]. Proinflammatory cytokines increase 
macrophage recruitment, infiltration, and activation, 
as evidenced by a 12-fold increase in Iba1 expression 
in DCM spinal cords compared to controls [75]. In the 

Table 1  Comparison of BSCB Pathology in Traumatic SCI, neurodegenerative disease, and DCM

Traumatic SCI Neurodegenerative disease 
(ALS)

Degenerative cervical 
myelopathy 

Pathophysiol-
ogy of BSCB 
breakdown 
and reconstitu-
tion

Etiology ● Acute blunt / penetrating 
trauma

● Chronic inflammation ● Chronic mechanical compres-
sion

Onset / Progression of BSCB 
Damage

• Rapid onset and progression ● Insidious onset and progres-
sion

Ongoing compression: 
● Gradual and dependent 
on clinical severity
Reperfusion injury after decom-
pression:
● Rapid onset, subacute injury

BSCB reconstitution ● Early; complete recovery 
by 3–4 weeks 

● Unresolved, unless treatment 
of underlying disease

Ongoing compression:
● Unresolved due to persistent, 
progressive compression  
After decompression: 
● Reconstitution in DCM of mild 
to moderate clinical severity, 
prolonged reconstitution / 
persistent deficits with severe 
clinical severity

Histological 
and molecular 
features

Presence of edema ● Present at acute stage, 
resolves by 1–2 weeks

● Not present ● Infrequent, observed 
only in severe DCM

Cystic cavitation ● Present in 1–5 % of SCI 
patients  [62]

● Not present ● Infrequent, observed 
only in severe DCM [63]

MMP9 expression ● Present ● Present ● Present

Erythrocyte or tracer dyeex-
travasation

●  Extensive extravasation 
upon spinal cord hemorrhage

● Continuous low-level 
extravasation, leading 
to parenchymal accumulation 
of cytotoxic iron and lipofuscin 
[64, 65]

● Erythrocyte extravasation 
unknown
● Evans Blue extravasation 
observed during ongoing com-
pression in experimental animal 
models

Others ● Extravasation of hemolysates 
and proteases
● Prolonged BSCB permeability 
at sites with microglial clusters

● Enlarged perivascular space 
with infiltrating leukocytes
● Decreased TJs
● BSCB impairment marks 
early-stage ALS and precedes 
clinical presentation

● Swollen endothelial cells filled 
with caveolae-like vesicles
● Abnormal TJs with large gaps, 
thickened basement membrane
● Thickened basement mem-
brane
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experimental hyperostotic (twy/twy) DCM mouse model, 
macrophages within the cord parenchyma are predomi-
nantly of the cytotoxic M1 phenotype [99].

Apoptosis
There are multiple disease processes leading to cellular 
apoptosis in DCM. Firstly, proinflammatory cytokines 
and neurotoxins can directly bind to cell death receptors 
upon neurons and glia [41, 100–104]. Secondly, loss of 
cellular homeostasis from ischemia can activate apoptotic 
pathways in neural cells by causing membrane depolari-
zation, Ca2+ influx, and glutamate release [105]. Lastly, 
mechanical compression can cause cytoskeletal degrada-
tion and result in calponin-mediated neuronal apoptosis 
[106]. Evidence for activation of TNF-α, MAPK, and FasL 
mediated apoptotic pathways have been demonstrated in 
both animal models and human specimens. In the twy/
twy mouse, TNF-α signaling mediated oligodendro-
cyte apoptosis [107], as did mitogen-activated protein 
kinase (MAPK) pathways involving ASK1, JNK, and p38 
[108]. In a necropsy study, FasL-mediated apoptosis was 
implicated in mediating neuronal and oligodendrocyte 
apoptosis, and FasL neutralization led to increased cell 
survival and improvement in functional recovery in the 
animal model correlate [90].

BSCB dysfunction during different phases of DCM
Ongoing mechanical compression
Literature indicates that the extent of BSCB dysfunc-
tion is correlated with DCM disease severity. CSF/
serum ratios of albumin and IgG in mild-to-moderate 
DCM patients are only marginally increased com-
pared to normal patients [109]. A systematic review 
on the disease progression of DCM patients concluded 
that 38–80% of patients with mild DCM and managed 
non-operatively improved neurologically or remained 
unchanged, suggesting that an equilibrium or reconsti-
tution of BSCB function can occur within this patient 
subset [110]. In severe DCM, CSF/serum ratios of albu-
min and IgG are over two-fold higher when compared 
to normal controls, indicating significant barrier com-
promise [109]. An imaging correlate of BSCB break-
down is T1-weighted hyperintensity with Gd-DTPA 
enhancement, which indicates spinal cord edema [111–
115]. In the rat insertable polymer DCM model, BSCB 
histopathology was characterised by swollen endothe-
lial cells filled with caveolae-like vesicles, abnormal 
TJs with large gaps, pericyte enlargement, swollen 
perivascular astrocytes with disrupted mitochondria, 
and thickened basement membrane [74, 116, 117]. Rat 
disease models also exhibit increased extravasation of 
serum Evans Blue, markedly impaired angiogenesis, 

and decreased endothelial barrier protein (EBA) immu-
nopositivity [74, 75].

BSCB function following surgical decompression
Patients with severe or rapidly progressive DCM are 
prone to exhibit poor neurological recovery [118–120]. 
A particular disastrous manifestation following sur-
gery is known as White Cord Syndrome (WCS). WCS 
is so-named due to the de novo appearance of white T2 
hyperintense lesions upon post-operative MRI images 
that accompany neurological deterioration with onset 
typically within 24-h of decompression [121, 122]. It 
is hypothesized that WCS occurs due to reperfusion 
injury to the spinal cord, which initiates inflammatory 
and apoptotic cascades [123, 124]. Whilst WCS only 
affects 0.3% of patients, the recovery trajectory of many 
more is likely affected by a leaky BSCB.

Is the BSCB reconstituted following surgical 
decompression?
Clinical evidence suggests that BSCB function is largely 
intact in mild DCM [109]. Additionally, a cohort with an 
averaged JOA score of moderate severity demonstrated 
barrier reconstitution at 3-months post-decompression, 
with JOA improvement correlating with the extent of 
barrier recovery [125]. In severe DCM, chronic BSCB 
disruption is suggested by T1-weighted hyperintensity 
with Gd-DTPA enhancement persisting for months, even 
after the onset of neurological recovery [112, 126, 127]. 
In the insertable polymer rat model, hypervasculariza-
tion of spinal cord regions adjacent to the compression 
region was observed with a concomitant increase in 
Evans Blue dye extravasation [74]. Therefore, neovascu-
larization and altered blood flow in response to chronic 
ischemia may attenuate capacity for vascular remodelling 
following decompression [74, 80, 82, 128, 129]. Figure 2 is 
a schematic diagram postulating the status of the blood 
spinal cord barrier and spinal cord vasculature during 
compression and decompression, when the BSCB fails to 
be reconstituted.

Potential therapeutic strategies to ameliorate 
BSCB Disruption
An overview of DCM management at present
At present, patients with radiological cervical canal ste-
nosis and moderate to severe neurological impairment, 
often defined as having a JOA score of 13/17 or less, are 
recommended to receive surgery. Improvement in neu-
rological function has been reported after surgery for 
over 70% of patients, most notably over the upper limb, 
followed by the lower limb and sphincters [130]. Never-
theless, patients with severe DCM often report residual 
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sensory deficits or limb spasticity and incoordination 
[131]. Factors most strongly predictive of neurological 
outcomes following surgery include preoperative neuro-
logical severity and duration of symptoms [132]. Late-
onset neurological deterioration may also occur despite 
adequate mechanical decompression [133, 134]. There is 
insufficient evidence to support the long-term efficacy of 
non-operative management approaches for DCM such 
as physiotherapy, nutritional supplementation, use of 
analgesics and non-steroidal anti-inflammatory drugs 
(NSAIDs), cervical steroid injections (CSIs), traction, and 
acupuncture [10, 135–137]. Few DCM-related therapeu-
tics have undergone clinical testing. Of note, a Phase III 
trial on the safety and efficacy of peri-operative riluzole 
has been recently completed for DCM patients undergo-
ing decompression [138]. Riluzole is a neuroprotective 
agent approved for clinical use in ALS, which acts by mit-
igating glutamate-induced excitotoxicity in the CNS [139, 
140]. Although riluzole did not improve neurological 
outcomes, reduction in neck pain was observed. There 
remains a clinical necessity to identity adjuncts to sur-
gical decompression especially amongst patient groups 
with i) mild disease yet to require surgery, ii) non-recov-
ery / deterioration after surgery, and iii) at-risk groups for 
poor surgical outcomes. As summarised in Table  2 and 
Fig.  3, we subsequently discuss potential strategies to 
promote BSCB reconstitution in DCM.

Cell therapy
Delivery of cells such as mesenchymal stem cells (MSCs) 
or neural stem cells (NSCs) into the spinal cord paren-
chyma may facilitate BSCB recovery via direct engraft-
ment, trophic support, and immunomodulation 
[141–143]. NSCs and MSCs express PDGF which is a key 
marker delineating capillary pericytes [144–148]. Trans-
planted NSCs have been demonstrated to engraft into the 
perivascular niche and differentiate into PDGFRβ + CNS 
pericytes, and in doing facilitate angiogenesis, suppress 
neuroinflammation, and induce NVU maturation [141, 
149–152]. Pericytes are descended from the neuroec-
toderm during development, as are a subpopulation of 
MSCs [153], thereby explaining their emergence from 
transplanted progenitors [144, 154, 155]. Exosomes pro-
vide an alternative to whole cells in facilitating BSCB 
reconstitution. As an example, bone marrow MSC-
derived exosomes significantly increased TJ expression, 
promoted remyelination, and decreased production of 
MMP-9 [156] in a diabetic stroke model. Future cell-
based studies focusing on BSCB pathology and reconsti-
tution are essential to establish preclinical efficacy.

Growth factors and mitogenic agents
Growth factors and mitogenic agents can support the 
BSCB by inducing proliferation and maturation of 
cells composing the BSCB, such as pericytes, astro-
cytes, and endothelium, thereby facilitating reconstitu-
tion [157–160]. Such restorative factors include platelet 
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Fig. 2  Blood spinal cord barrier disruption during and after cervical decompression in degenerative cervical myelopathy. Spinal cord perfusion 
is maintained by the anterior spinal artery, left/right posterior spinal arteries, and their associated veins. Chronic cervical cord compression 
(schematically represented as anterior compression alone) causes pathological changes to these supplying vessels and disrupts the BSCB. Spinal 
cord tissues remain hypoperfused despite vascular remodeling. Following surgical decompression, there is sudden restoration in blood flow 
but the BSCB remains hyperpermeable. This predisposes the cord to reperfusion injury and impairs neurological recovery, although the underlying 
mechanical compression has been relieved. Bright red and blue colors denote healthy blood vessels, while dark red and blue colors indicate blood 
vessels with compromised blood supply. Pink-shaded regions indicate mildly hypoxic regions, while darker pink-shaded regions indicate ischemic 
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derived-growth factor-BB (PDGF-BB), fibroblast growth 
factors (FGF), epidermal growth factor (EGFs), and adro-
pin [161–173]. Despite promising results from preclini-
cal studies and early clinical trials, translation of bFGF 
therapy into spinal cord diseases has been slow [159]. 
Translational research into EGF and PDGF-BB for spinal 
cord disorders is nascent, with a few preclinical studies 
conducted demonstrating its efficacy [168, 169]. Since 
growth and mitogenic factors have diverse biological 
effects, further in vivo studies are required to character-
ize their effect on the BSCB.

Gene therapy
Studies utilizing gene therapy-based approaches to treat 
diseases affecting the spinal cord have aimed to replen-
ish neuroglial populations and replace absent or dysfunc-
tional genes [174–176]. These have provided indirect 
evidence for the potential of gene therapy to facilitate 
restoration of the BSCB. In the context of acute SCI, 
AAV delivery of combined growth factors (FGF, EGF, and 
GDNF) to the lesion core resulted in an increase in base-
ment membrane-associated laminin expression [177]. 
Chondroitinase ABC (ChABC) is an enzyme known for 
its ability to induce axonal sprouting in SCI by degrading 

chondroitin sulphate proteoglycans (CSPGs). ChABC 
has also been shown to promote vascular remodelling 
and attenuate secondary injury from neuroinflamma-
tion  thereby presenting a candidate for gene therapy 
[178]. Several other  siRNA-based therapies aimed at 
reducing neuroinflammation may also prevent or amelio-
rate BSCB injury [179–182]. Key mediators of proinflam-
matory cascades such as P2X-purinogenic receptors or 
toll-like receptor 4 (TLR-4) are ideal targets for siRNA-
mediated silencing that could protect the BSCB and 
improve neurological recovery [180, 183–186].

Molecular inhibitors and neutralizing antibodies
Inhibitors to BSCB-destabilizing factors and ER stress-
induced apoptosis are amongst promising therapeutic 
agents that have been shown to reduce BBB / BSCB dam-
age. One such agent is anti-Nogo-A neutralizing anti-
body. Nogo-A is a myelin-associated inhibitor that may 
be neutralized with an antibody to improve neurite out-
growth following spinal cord injury [187–189]. Interest-
ingly, Nogo-A signalling via S1PR2 receptor activation 
and downstream RhoA/ROCK activation compromised 
vascular integrity by causing internalization of TJs and 
loosening of the endothelial lining [190–192]. Thus, 

Fig. 3  Components of the blood spinal cord barrier (BSCB) and therapeutic strategies for BSCB reconstitution in degenerative cervical 
myelopathy (DCM). Left panel—At the BSCB, the presence of non-fenestrated endothelial cells establishes tight junctions that heavily restrict 
paracellular transport. At the capillary level, the basement membrane is closely associated with astrocyte end-feet, resulting in the elimination 
of the perivascular space. Pericytes, embedded within the basement membrane, assume a crucial role in facilitating endothelial cell maturation, 
supporting the basement membrane, and potentially modulating blood flow. Disruption of the BSCB integrity is characterized by the thickening 
or swelling of the basement membrane, endothelial cells, pericytes, and astrocytes. Deterioration of the tight junctions leads to the leakage 
of serum contents into the surrounding tissues. Inflammation leads to the transient formation of the perivascular space at the capillary level, 
thereby enabling leukocytes infiltration into the spinal cord parenchyma. Right panel—The treatment modalities mentioned in this figure are 
elaborated in the main text
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anti-Nogo antibodies may also be effective in protecting 
the BSCB. Another drug candidate is imatinib, a receptor 
tyrosine kinase (RTK) inhibitor commonly used in can-
cer treatment and known to suppress PDGF-CC signal-
ling, which plays a key role in BSCB disruption mediated 
by inflammation and oxidative stress [193, 194]. Other 
therapeutic candidates acting via inhibition of endoplas-
mic reticulum (ER) stress include 4-phenylbutyric acid 
(PBA) and salubrinal, which preserved endothelial cell 
survival and TJ integrity in mice subject to traumatic SCI 
[195–198].

Immune modulators
Inflammation is a pathophysiological feature of DCM 
that results in cytotoxicity and compromises BSCB func-
tion. There are many clinical studies regarding the perio-
perative use of dexamethasone to reduce neurological 
complications in cervical spine surgery [199–201] but 
not BSCB disruption per se. Inhibiting proinflammatory 
cascades via attenuation of TNFα signaling and calpain 
with infliximab and calpastatin respectively restored BBB 
permeability and promoted endothelial cell survival and 
TJ expression in mouse models of subarachnoid hemor-
rhage (SAH) and traumatic brain injury (TBI) [202–204]. 
Compounds derived from natural herbs that possess anti-
inflammatory or antioxidant activity, such as shikonin, 
curcumin, and salvianolic acid B have also demonstrated 
efficacy in rat models of SCI [205–208]. Arachidonic acid 
pathway attenuation [209–211], monoacylglycerol lipase 
(MAGL) inhibition [212, 213], and inhibition of comple-
ment C5a [214–216] are also potential pharmacological 
targets as alternatives to more established anti-inflamma-
tory agents such as corticosteroids, riluzole, and NSAIDs.

Other approaches
Studies on the BBB have demonstrated that nutritional 
remedies such as vitamins B and D [217, 218], omega-3 
fatty acids [219, 220], and antioxidants such as glu-
tathione and polyphenols [221–223] have a positive 
effect on barrier health. Gut microbiota is increasing 
being recognized as a key regulator of BBB function 
[224]. Dysfunction of gut microbiota can lead to the 
disruption of the gut-vascular barrier (GVB), leading 
to infiltration of bacteria and toxic metabolites into the 
bloodstream that induces chronic inflammation and 
NVU hyperpermeability [225, 226]. Lack of diversity in 
gut microbiome can also negatively impact BBB health, 
potentially due to reduced short-chain fatty acids 
(SCFAs) and production of beneficial microbes, which 
protect the NVU from oxidative stress [226]. Although 
these studies have only focused on the BBB, the same 

therapeutic principles apply to the BSCB, especially in 
patients with a dysregulated gut-brain axis [227–230].

Photobiomodulation (PBM), also referred to as tran-
scranial low-level laser therapy (LLLT), is an experimen-
tal light therapy that has undergone clinical trials for 
stroke, TBI, and neurodegenerative disorders such as 
Alzheimer’s disease and Parkinson’s disease [231]. The 
mechanism of PBM is attributed to be via cytochrome 
C oxidase, a photoreceptor in the mitochondria that 
upon activation can promote proliferation and matura-
tion of cells composing the BSCB [232]. Recently, PBM 
has been shown to increase pericyte mobilization and to 
support the BBB in stroke models [233, 234].

Conclusion
BSCB disruption is increasingly recognized as a cause 
for neurological decline in disease affecting the spinal 
cord. Our review highlights the preclinical and clinical 
evidence for BSCB breakdown in DCM and identifies 
therapeutic strategies that may facilitate neurologi-
cal recovery by means of BSCB reconstitution. Future 
studies should be performed upon representative ani-
mal models to characterise BSCB breakdown in mod-
erate to severe DCM, and thereafter, to evaluate the 
efficacy of the aforementioned treatment modalities. 
Protection and regeneration of the dysfunctional BSCB 
in DCM provides a promising direction for future study 
as neurological and functional deficits often remain 
despite best available treatment.
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