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Abstract 

The response of the blood–brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has 
been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that 
affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to 
brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the 
BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB 
injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological 
cascades occur in the first few days following SAH. These changes determine the development of early brain injury as 
well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the nega-
tive impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological 
pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, 
we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB 
following SAH and their possible modulation by various drugs and substances.
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Introduction
Subarachnoid hemorrhage (SAH), a life-threatening 
emergency condition, occurs mainly due to the rupture 
of a cerebral artery aneurysm. SAH remains a major 
cause of mortality with a poor prognosis as therapeu-
tics are elusive [1]. Pharmacological treatment is lim-
ited to nimodipine, which should be administered to all 

patients following aneurysmal SAH as recommended in 
the 2012 guidelines [2]. Nevertheless, continuous intra-
arterial nimodipine infusion is associated with side 
effects such as higher intracranial pressure (ICP), reduc-
tion of systolic and diastolic blood pressure, more fre-
quent infectious complications, and reduced motility of 
the gastrointestinal tract [3, 4]. Therefore, it is necessary 
to focus on finding other possible pharmacological treat-
ments for SAH, and in order to successfully do that, we 
need to understand the pathophysiological cascades lead-
ing to the consequences of SAH. Currently, experimen-
tal studies are increasingly focused on the cellular and 
molecular mechanisms of pathophysiological cascades 
following SAH. The cerebrovascular system constituting 
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the blood–brain barrier (BBB) is composed of various 
interacting cells, including neurons, astrocytes, micro-
glia, pericytes, endothelial cells, and vascular smooth 
muscle cells (VSMC). Several advances have been made 
in understanding the responses of individual cells as 
well as their interactions with other cells following SAH. 
Many pathophysiological cascades are currently known 
from experimental studies, and these cascades have been 
experimentally targeted by various natural and synthetic 
substances. The beneficial effects of some of these drugs 
have been tested in clinical trials. However, the complex-
ity of SAH-induced reactions makes it difficult to find 
an effective drug or drug combination that would posi-
tively affect patient outcome following SAH. We, there-
fore, set out to summarize the current knowledge on the 
pathophysiological interactions between neurons, astro-
cytes, microglia, pericytes, endothelial cells, and VSMC 
induced by SAH. We also present a list of potential drugs 
for SAH treatment.

We performed a comprehensive review of the literature 
indexed in PubMed, Medline, ResearchGate, ScienceDi-
rect, Elsevier, Wiley Online Library, EMBASE, Oxford 
journals, Cambridge journals and SAGE journals data-
bases. The search terms were subarachnoid hemorrhage 
and endothelial cells or pericytes or astrocytes or micro-
glia or neurons or vascular smooth muscle cells. Articles 
for this review were selected based on publications pub-
lished from 2000 to the present in journals with impact 
factors; it was further based on the number of citations 
and the significance of their contribution to the under-
standing of the pathophysiological mechanisms induced 
by SAH. Articles not related to or not focused primarily 
on SAH were excluded as were those not published in 
English. Disputations and disagreements were resolved 
by means of discussion to arrive at a consensus among all 
participating authors.

Anatomy of the blood–brain barrier 
and the neurovascular unit
Endothelial cells and junction proteins
Endothelial cells (ECs) are the main component of the 
BBB. These cells are held together by proteinaceous junc-
tional complexes such as tight junctions, adherent junc-
tions, and gap junction proteins [5, 6].

The molecular complexity of tight junctions (TJs) mod-
ulates BBB integrity by creating an electrical resistance 
(1500–2000 Ω/cm2) that depends on extracellular cal-
cium concentration [7].

TJs are situated on the apical membrane of ECs and 
consist of transmembrane proteins [such as claudin, 
occludin, and junctional adhesion molecule (JAM)] and 
cytoplasmic proteins that connect transmembrane pro-
teins with the cytoskeleton [7, 8].

Claudins belong to a group of more than 20 proteins 
that contain four transmembrane domains and two extra-
cellular loops. They are connected through cis- or trans-
interactions with the plasma membrane forming dimers 
or polymers [9, 10]. The typical claudins that form the TJs 
of ECs are claudin-1, -3, -5, and -12.

Permeability of molecules of a certain size is controlled 
by different claudins [8]. For instance, Claudin-5 has a 
direct effect on BBB permeability to small molecules 
(< 0.8 kDa). In addition, it has been described that baica-
lin application upregulates claudin-5 in the ECs, leading 
to decreased BBB permeability and inhibition of toxic 
free radicals damage in the brain, consequently reducing 
brain edema following stroke [11]. Interestingly, this pro-
tein is degraded following an ischemic insult [8]. Clau-
dins play different functional roles in barrier formation 
due to their structural differences. Particularly, claudin-1, 
-3 and -5 form stronger cell–cell contact, compared with 
claudin-12 [10].

Occludin was the first TJ protein that was discovered 
[12], and it plays an important role in the maintenance of 
BBB rather than in developing the barrier [7]. Its function 
is to limit small molecules from passing through BBB 
[10]. Thus, its deficiency can influence paracellular per-
meability [13, 14].

Another member of the TJ protein complex is the junc-
tional adhesion molecule (JAM)-A, -B, and -C. These 
single-transmembrane proteins occur extensively in the 
central nervous system (CNS) endothelial cells, espe-
cially JAM-A [15]. JAM-A communicates with scaffold-
ing proteins and is important for TJ function. It acts as 
a barrier against molecules larger than 4  kDa and can 
maintain BBB permeability even when claudin proteins 
are deficient [10, 16–18]. JAMs control integrins and can 
affect them indirectly by changing their expression. Dur-
ing inflammatory processes, they can influence leukocyte 
trafficking and impact the immune system [19–21].

TJ transmembrane proteins are connected with the cell 
cytoskeleton by cytoplasmic proteins—the peripheral 
membrane-associated guanylate kinase (MAGUK) family 
of proteins, namely, zonula occludens (ZO)-1, -2, -3 and, 
cingulins [22, 23]. They have a special effect on the cor-
rection of the spatial supply of claudins [21]. It was pro-
vided experimentally that decreased production of ZO-1 
and occludin increased BBB permeability [22].

The barrier function of the TJs is not associated only 
with the expression of claudins and occludin bridging 
the intercellular gaps, it is also affected by the protein 
organization and their interactions in the barrier, as well 
as a number of other cell types present in the region 
(e.g., pericytes and astrocytes) [24]. The manifestation of 
occludin and adherent junctions has also an effect on TJs 
function [25].
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Adherent junctions located below the TJs and closer to 
the basolateral membrane, have a similar organization as 
TJ proteins. Adherent junction proteins. They comprise 
cadherins (transmembrane glycoproteins) and cytoplas-
mic proteins such as catenin (α, β, and γ). The interac-
tions between cadherins are Ca2+- dependent. Vascular 
endothelial cadherin (VE-cadherin) plays a crucial role 
in vascular organization. It is important not only for EC 
adhesion but also for decreasing cell permeability [7, 26, 
27].

Adherent junctions strengthen the connections 
between the endothelial cells and regulate paracellular 
permeability [7]. They play a crucial role in the mechani-
cal support for cells and are fundamental for TJ function-
ality [28].

Gap junctions (GJs) are formed by transmembrane iso-
mers—connexins (CX). GJs between brain ECs express 
CX37, CX40, and CX43. These junctions form channels 
between ECs and help maintain TJ integrity [27]. GJs 
have an important role in intracellular communication. 
For example, ions and small molecules can pass through 
these junctions [8].

Basement membrane, astrocytes, and pericytes
ECs are surrounded by a layer comprising pericytes and 
astrocyte endfeet and are separated from them by a base-
ment membrane [29, 30]. These cells, along with the 
basement membrane, together reinforce BBB structure 
[21].

As a sheet-like component of the extracellular matrix, 
the basement membrane acts as structural support for 
ECs. The basement membrane contains protein com-
plexes made of collagen IV, laminins, nidogen, and perle-
can. Collagen IV interacts with ECs, growth factors, and 
other basement membrane components. Laminins are a 
large group of extracellular matrix glycoproteins with a 
trimeric structure that consists of three α, β, and γ chains 
and are essential for the organization of the basement 
membrane [31].

The structural composition of the basement mem-
brane—mainly due to adhesion receptors, which have 
supporting functions—plays a vital role in the manifes-
tation of BBB properties [25, 32]. These adhesion recep-
tors are integrins α1β1, α3β1, α6β1, and αvβ1/αvβ3, and 
dystroglycan [25]. Integrins are a group of heterodimeric 
transmembrane receptors regulating cell activity and the 
connection between matrix and cytoskeleton. Dystrogly-
can is a single heterodimeric transmembrane receptor 
connecting the cytoskeleton with the matrix [32].

Both pericytes and brain ECs are anchored to the 
same basement membrane. Pericytes surround ECs with 
their cytoplasmic projections—surrounding from 30 to 
70% of the endothelial walls depending on the type of 

microvessel [33]. The most common distance between 
ECs and pericytes is 20  nm [34], and different types of 
connections are distinguishable between these cell types. 
The intracellular connection is secured by gap junc-
tions, TJs, and adherent junction proteins [27, 33]. The 
main function of pericytes is to maintain vessel stability 
through growth factors and angiogenic molecules [35, 
36], but they also affect brain microcirculation, thanks to 
their synapse-like peg-socket contact [21]. In vitro exper-
iments suggest that pericytes reinforce BBB permeability, 
support vascular integrity, and participate in the develop-
ment of the BBB [37].

Astrocytes are a group of glial cells that surround brain 
ECs with their endfeet and are responsible for homeo-
stasis in the brain microenvironment [38]. They are also 
responsible for regulating immune reactions and sup-
porting BBB integrity [21, 39, 40]. In  vitro experiments 
suggest that the establishment of TJs during brain devel-
opment is more efficient if astrocytes are present [41].

Neurovascular unit—the communicative networking 
of the BBB
Pericytes located between ECs and basement membrane, 
neurons, astrocytic endfeet, and microglia—all together 
form a neurovascular unit (NVU) [21, 42, 43]. All NVU 
components contribute to maintaining a stable and 
functional BBB, while receptors, transporters, and ecto-
enzymes regulate transmission through the BBB at the 
molecular level. NVU components interact and enable 
the establishment in the CNS of different ionic micro-
environments, thus ensuring stable neuronal function. 
These functions include specialized roles in the neuro-
transmitter pool, maintaining a low protein concentra-
tion to reduce cell proliferation, protecting CNS from 
exposure to toxins and consequent neuronal damage, and 
avoiding inflammatory processes by regulating the pas-
sage of inflammatory cells through the barrier [43].

BBB endothelial cells sitting on the walls of blood ves-
sels possess a series of highly specialized properties that 
strictly limit the passage of molecules, ions, and immune 
cells between the blood and brain parenchyma. Never-
theless, the crosstalk among endothelial, vascular, glial, 
neural, and immune cells is essential for the integrity 
and the dynamic properties of BBB. Recently, Banks et al. 
used an in  vitro model to examine the interactions of 
NVU elements in relation to BBB integrity and cytokine 
secretion. They showed that only four cytokines [granu-
locyte colony-stimulating factor (G-CSF), keratinocytes-
derived chemokine, monocyte chemoattractant protein-1 
(MCP-1), and RANTES] were released from EC mono-
cultures in response to stimuli, while tri-cultures of peri-
cyte/astrocyte/ECs accumulate a higher level of these 
cytokines along with five other cytokines—interleukin 
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(IL)-6, IL-13, MIP-1 α, MIP-1 ß, and TNF—that could 
significantly alter BBB integrity [44]. It is worth mention-
ing that EC properties are modulated not only by sign-
aling molecules from pericytes, astrocytes, and neurons, 
but EC-induced signaling molecules are also necessary 
for the proper activity of neurons, astrocytes, and peri-
cytes [45]. For instance, brain-derived neurotrophic fac-
tor (BDNF), a neuroprotective agent, is secreted in large 
amounts by cerebral ECs. Interestingly, ECs, astrocytes, 
and neurons all express the receptors tropomyosin recep-
tor kinase B (TrkB)-FL, TrkB-T1, and pan75 neurotro-
phin receptor (p75NTR)—all of whom are recognized 
by BDNF [46]. Gue et al. showed that cerebral ECs could 
protect neurons via upstream TrkB and protein kinase 
B (Akt) signaling and downstream caspase suppres-
sion [47]. Furthermore, it was reported that disabled-1 
expressed by brain ECs regulates the communication of 
vessels with the astrocytes and plays a key role in both 
neuronal migration and NVU function [48]. Moreover, 
there are indications that the differentiation of astrocytes 
is supported by EC-induced leukaemia inhibitory fac-
tor-1 [49].

Similar to other blood vessels, the luminal BBB surface 
is covered by a glycocalyx layer that acts as a primary 
barrier. At the abluminal surface of the ECs, pericytes 
are embedded in the basement membrane and closely 
interact with ECs [50]. Pericytes have the actin-myosin 
system (including alpha-smooth muscle actin (α-SMA), 
tropomyosin, and myosin proteins) that is associated 
with cell contraction are involved in controlling capil-
lary diameter [51–53]. In vitro studies have revealed that 
constriction/dilatation of pericytes is regulated by recep-
tors and the signaling machinery of pericytes that can 
respond to endothelium-derived vasoactive mediators 
[such as endothelin-1 (ET-1) and nitric oxide (NO)] and 
neurotransmitters (including serotonin, histamine, and 
noradrenaline) [54].

Reports have demonstrated that pericytes of the BBB 
play key roles to limit transcytosis as well as expres-
sion of leukocyte adhesion molecules (LAMs), resulting 
in lowered leukocyte infiltration. Particularly, pericyte 
deficiency has been shown to alter the expression of 
occludin, claudin-5, and ZO-1 and increase the bulk-
flow transcytosis of BBB [55]. Moreover, it was shown 
that inhibition of pericyte-derived transforming growth 
factor-β1 (TGF-β1) induced by cyclosporin A could alter 
BBB integrity through P-glycoprotein (P-gP) dysfunction 
[56]. Further, it was reported that astrocyte-EC interac-
tion could also be affected by cyclosporin A, resulting in 
a misregulated BBB [57, 58].

Astrocytic endfeet connect ECs and pericytes to sur-
rounding neurons. Evidently, changes in neural activ-
ity can influence pericyte or EC function. Also, water 

homeostasis at the NVU is regulated by astrocytes via 
aquaporin (AQP)-4, and Kir4.1 expressed in astrocytic 
endfeet [49]. Astrocytes can also regulate the expression 
of TJ proteins and EC transporters, as well as promoting 
the EC response to inflammatory stimuli.

Moreover, loss of contact between ECs and astrocytic 
endfeet can result in enlarged vessels [59]. In line with 
this, it has been reported that the gap junctions between 
astrocytes can upregulate cytokine expression and hence 
increase leukocyte trafficking across BBB [60, 61]. The 
role of astrocytes in BBB maintenance has been defined 
as necessary and nonredundant. Using a mouse model, 
astrocyte ablation has been shown to damage BBB to var-
ying extents [62].

A recent review focused on the role of G protein-cou-
pled receptors (GPCRs) in BBB development and func-
tion discussed intercellular signaling mediated by GPCRs 
in the NVU [63]. Intercellular interactions between neu-
rons and ECs are modulated via Wnt/Frizzled signaling, 
a member of the GPCR family, astrocytes communicate 
with ECs via the Shh/SMO signaling pathway, and finally, 
pericyte-EC interaction is regulated by sphingosine 
1-phosphate (S1P)/S1PR signaling.

Microglia are immune cells that originate from lep-
tomeningeal mesenchymal cells and are activated dur-
ing inflammatory reactions in BBB. Ramified microglia 
are transformed into ameboids and finally to phagocytic 
microglia [64]. During these processes, TJs can be dis-
rupted due to the influence of cytokines [65]. In sum-
mary, we can conclude that NVU components and their 
function are closely linked and are therefore essential for 
BBB physiology.

The Virchow‑Robin space
The Virchow-Robin space (VRS) originally identified by 
Virchow and Robin is the space that surrounds blood 
vessels (arterioles and venules) penetrating from the 
subarachnoid space into the brain [66–68]. The artery 
entering the brain loses the outermost tunica adventitia 
and is encased in a layer of pia mater and the adjacent 
glia limitans formed by astrocytic endfeet processes. 
However, there is no empty VRS between the artery and 
glia limitans, instead, compact layers of cell processes and 
pial-glial basement membrane are formed partly by the 
pia mater and partly by glia limitans (membrana limitans 
gliae perivascularis). The brain VRS gradually narrows 
as we move from the surface of the brain deeper into 
the brain parenchyma. As the artery enters deeper into 
brain tissue and divides into capillaries, the pia mater, as 
well as the tunica media, are lost. At the level of capillar-
ies, the glia limitans is in contact with the capillary wall. 
The capillary wall is formed from two components—
the endothelium and the basement membrane. On 
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the capillary is the basement membrane, derived from 
endothelial cells, and on the other side from astrocytes 
of the glia limitans. The capillary basement membrane 
encapsulates the pericytes that lie between the base-
ment membrane of the glia limitans and the endothelium 
[69, 70]. Cerebrospinal fluid (CSF) with solutes passes 
through the pia mater and flows along the penetrating 
arteries towards the capillary basement membrane, and 
mixes with the interstitial fluid. Fluid with waste sol-
utes then passes through similar channels along venous 
capillaries and reaches the subarachnoid space. This 
paravascular or “glymphatic” pathway is dependent on 
trans-astrocytic water movement mediated by AQP-4 
[71–74]. Periarterial, intramural or lymphatic drainage 
channels drain interstitial fluid and solutes from brain 
parenchyma through the basement membrane between 
adjacent smooth muscle cells in the tunica media of the 
artery and reach cervical lymph nodes. The motive force 
for solute drainage from brain parenchyma in the direc-
tion opposite to that of blood flow probably depends on 
vascular pulsation [75–77].

Transporter system of the BBB
Although traffic across the BBB is regulated by a complex 
system of transporters and receptors present on BBB ECs 
[apart from the control exerted by physical properties of 
the barrier (e.g., by junction protein complexes)], small 
lipophilic molecules and a few gases such as O2 and CO2 
can freely cross the BBB into and out of the brain paren-
chyma. In particular, molecular trafficking between blood 
and the brain is tightly controlled by efflux transporters, 
nutrient transporters, and ion channels that maintain a 
stable chemical environment in the CNS. The expression 
of transporters is not identical in the luminal and ablumi-
nal surfaces of the BBB endothelial cells, resulting in the 
polarized features of this barrier, which is crucial for its 
function. Understanding the transport system of the BBB 
is not only essential in terms of misregulated BBB but 
also enables the development of new drug delivery strate-
gies where BBB acts as a formidable obstacle in therapy 
[78].

Active efflux transporters expressed mainly at the lumi-
nal side of ECs utilize ATP to move drugs, xenobiotics, 

Fig. 1  Pathophysiology of brain edema during subarachnoid hemorrhage. Intracranial pressure (ICP), one of the immediate responses to 
subarachnoid hemorrhage (SAH), can cause both vasogenic and cytotoxic edema. Cytotoxic edema, characterized by cell swelling and apoptosis of 
endothelial cells (ECs), results in disruption of BBB, which ends up with an abnormal accumulation of fluid in brain cells and, eventually, vasogenic 
edema. Vasogenic edema leads to increased cerebral blood flow (CBF), ATP depletion, and disturbances in cell membrane transport systems leading 
to abnormal accumulation of fluid in brain cells, which can cause cytotoxic edema
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drug conjugates, and nucleosides up their concentration 
gradients from ECs into the blood [79]. The most abun-
dant ATP-binding cassette (ABC) transporters of the 
BBB are MDR1, also known as P-glycoprotein (P-gP), and 
breast cancer resistance protein (BCRP). Impaired P-gP-
mediated efflux can cause neuronal cell death [80].

Nutrient transporters facilitate the entry of carbohy-
drates, amino acids, hormones, fatty acids, nucleotides, 
organic anions, cations, and vitamins into the brain. 
Specific types of nutrient transporters can also remove 
excess molecules and deliver them into circulation.

Glucose, the key energy source for the brain, is trans-
ported via glucose transporter (GLUT)-1/3 and SGLT-1, 
members of solute carrier-mediated transporter (CMT). 

The expression of glucose transporter 1 (GLUT-1) is reg-
ulated by Wnt-signalling, and although it is enriched on 
the abluminal side of the endothelial membrane [52, 83], 
glucose is transported in both directions. Na+/myo-ino-
sitol transporter (SMIT) and H+/myo-inositol symporter 
(HMIT) provide the brain with myo-inositol—one of the 
most abundant metabolites of the brain [27, 55].

Organic anion transporting polypeptide transporters 
(OATP) can transport organic anions and thyroxine in 
both directions [5]. OATP-2 has been shown to transport 
valproic acid, the most common antiepileptic drug [84]. 
One study has confirmed that the functional expression 
of OATP-1a4 is sex-specific in rats, being upregulated in 
female rats compared to males [85].

Fig. 2  Reaction of the components of the neurovascular unit to subarachnoid hemorrhage. All components of the NVU play vital roles in BBB 
plasticity and integrity. Research and clinical evidence show that NVU impairment contributes to the development of brain edema in SAH. This 
includes BBB breakdown, allowing blood to enter into the CNS. As shown, cell swelling, tight junctions, and basal lamina degradation allow the 
passage of blood components into the brain. When hemoglobin (Hb), damage-associated molecular patterns (DAMP), blood platelets, and clots 
cross through the barrier, they elicit increased levels of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion protein (VCAM)-1, and 
inflammatory cytokines
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CMTs can also transport amino acids (AA) across the 
BBB. Glutamine and small neutral AAs are removed from 
the brain via the sodium-coupled neutral AA transporter 
(SNAT)-1-3, while SNAT-5 transports glutamine bidirec-
tionally. To limit the toxic effects of excitatory AAs on 
neurons, sodium-dependent excitatory AA transporters 
(EAAT)-1-3 transport glutamate and aspartate out of the 
brain. Sodium-dependent transporters of AAs have been 
shown to be expressed only on the abluminal membrane 
of the ECs [27, 83].

The primary substrates for DNA and RNA synthesis 
(nucleotides and nucleobases) are supplied to the brain 
by sodium-independent equilibrated nucleoside trans-
porter (ENT)-1 and -2 and are returned to the blood via 
sodium-independent concentrative nucleoside trans-
porter (CNT)-2. Choline is transported bidirectionally 
via choline transporter-like protein 1 (CTL-1) [81, 86].

In addition to CMTs that facilitate the transport of reg-
ulatory proteins and hormones, the trafficking of some 
proteins is mediated at a slower rate than CMT transport 
by receptor-mediated transporters (RMT). Transferrin, 
insulin, and leptin cross the BBB into the brain by trans-
ferrin receptor (TfR), insulin receptor (IR), and leptin 
receptor (LEP-R), respectively. Bidirectional transport of 
arginine-vasopressin is mediated via the V1 vasopress-
inergic receptor. Lipoprotein receptor-related protein 
(LRP)-1 is expressed on the abluminal surface of the 
ECs and mediates the clearance of amyloid-ß and apoli-
poprotein E (ApoE)-2 and -3 from the brain. LRP2 also 
participates in the efflux of amyloid-ß 42 into the blood. 
Receptor for advanced glycation end products (RAGE) 
expressed on the luminal side of the ECs, transports amy-
loid-ß into the brain [52, 81, 86].

Moreover, the major facilitator superfamily domain-
containing protein (Mfsd2a) expressed exclusively in 
brain ECs, transports docosahexaenoic acid (DHA)—an 
essential omega-3 fatty acid into the brain. It has been 
shown that Mfsd2a plays a crucial role in BBB functional 
integrity [86, 87].

Finally, the ion balance required for proper CNS func-
tion is mainly maintained by ion transporters in the 
BBB [21, 27, 52]. Intracellular endothelial pH is regu-
lated by the Na+H+-exchanger (NHE), which imports 
sodium and transports protons into the blood. Sodium 
is also pumped into the brain via the sodium pump 
(Na+K+-ATPase) expressed on the abluminal side of the 
ECs, ensuring the proper function of sodium-dependent 
transport [83], Na+K+-ATPase also regulates the efflux 
of potassium from the brain. On the luminal side, the 
Na+K+Cl−-cotransporter (NKCC1) transports Na+, K+, 
and Cl− into the brain. Efflux of Na+ and HCO3

− from the 
ECs into the brain is mediated by Na+HCO3

−-exchangers 
in a Cl−-dependent (via NDCBE) or Cl−-independent 

(via NBCe1 and NBCn1) manner [88]. The low intracel-
lular calcium level in microvascular endothelium is main-
tained by Na+Ca2+-exchanger (NCX) that also pump 
out Ca2+ from the brain and can reverse function under 
pathological conditions [89]. Calcium influx into ECs is 
regulated by the transient receptor potential (TRP) chan-
nels expressed on ECs abluminal membrane [90]. The 
voltage-gated K+ channel Kv1 and the inward-rectifying 
K+ channel (Kir)-2 transport potassium outwards, result-
ing in EC hyperpolarization and blood flow regulation 
due to vasodilation [91].

Apart from the highly specialized limited transport 
of molecules modulated by the polarized nature of ECs, 
slow transcellular movement of molecules can also 
occur through transcytosis. However, pathological con-
ditions can increase the number of vesicles, leading to 
BBB hyper-permeability [92]. It was recently shown that 
increased transcytosis and BBB-permeability could be 
exclusively dependent on caveolin-1 in cortical spreading 
depolarizations [93].

The vulnerability of BBB during pathology has also 
been explained by the activation of matrix metallopro-
teinase (MMP), a zinc-dependent protease expressed in 
ECs. Activation of MMPs can promote the degradation of 
BBB extracellular matrix and TJ proteins, resulting in the 
BBB-rupture. It has been reported that the consequent 
production of NO in response to cerebral ischemia can 
downregulate caveolin-1 and thus activate MMP [94]. In 
line with this, therapeutics such as glucocorticoids that 
target the tissue inhibitor of metalloproteinases TIMP-3 
has been shown to enhance BBB integrity and promote 
the expression of claudin-5 and occludin [95–98]. More-
over, it is known that pathology can promote the entry of 
leukocytes into the CNS by increasing the expression of 
leukocyte adhesion molecules in ECs [52].

BBB and Neurotransmitters
Administration of catecholamines, such as dopamine, 
norepinephrine, and epinephrine, can alter the expres-
sion level of TJ and adherent junction proteins, thus 
increasing BBB permeability [99, 100]. An in  vitro 
model of ischemia has shown that activation of the 
β2-adrenergic receptor, a receptor for norepinephrine, 
can induce occludin down-regulation and BBB dam-
age [101]. It was demonstrated that hypoxia-inducible 
factor-1 alpha (HIF-1α) was upregulated in ischemic 
neurons, resulting in neuronal MMP-2 secretion and vas-
cular endothelial growth factor-A (VEGF-A) up-regula-
tion. This result suggests that degradation of occludin in 
the ECs is mediated by the interaction between neurons 
and ECs rather than the direct effects of HIF-1α on ECs.

Besides, bEnd.3 cells, an in  vitro BBB model, exhibit 
a high level of acetylcholine receptor (AchR) expression 
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[102]. It was shown that in this cell line, the cellu-
lar uptake of a dopamine derivative molecule (BPD) is 
mediated by AchR. Abbruscato et al. have shown that in 
another in  vitro BBB model (BBMEC), nicotinic AchR 
mediates the down-regulation of ZO-1 and BBB hyper-
permeability in response to stroke. These cells were 
exposed to nicotine prior to the stroke [103].

Subarachnoid hemorrhage
Neuronal cells, as well as glial, endothelial, and vascular 
smooth muscle cells, are the main components of the 
recently proposed concepts such as that of the NVU. 
An extension of the NVU is the so-called vasculo-neu-
ronal-glia triad model that includes neurons, astrocytes, 
capillary endothelial cells, pericytes, smooth muscle 
cells, noncapillary endothelial cells, perivascular nerves, 
smooth muscle progenitor cells, and veins—in short, 
all the components required to maintain brain function 
[104–106].

The prevention and treatment of non-traumatic suba-
rachnoid hemorrhage (SAH) has remained a challenge 
for decades. The worldwide incidence of SAH shows 
a declining trend with large regional differences [107]. 
Despite up-to-date treatment of SAH, the median case 
fatality remains high—varying between 27 and 44% for 
individual regions [108]. The leading cause of SAH is the 
rupture of an intracranial aneurysm which accounts for 
about 80% of cases. The extravasation of blood follow-
ing SAH into subarachnoid spaces filled with CSF initi-
ates a complex cascade leading to CNS damage [109, 
110]. The two main consequences after SAH are an early 
phase called early brain injury (EBI), and a later phase 
termed delayed cerebral ischemia (DCI). EBI is defined 
as a pathophysiological cascade in the first 72  h after 
SAH, including rapid changes in intracranial pressure, 
cerebral perfusion pressure, cerebral blood flow, ionic 
changes, cortical spreading depolarization, impaired cal-
cium homeostasis in cerebral vessels, increased extracel-
lular glutamate, mechanical stress, etc. [111, 112]. On 
the other hand, DCI develops 3–14  days after the ini-
tial bleeding. Most authors define DCI as symptomatic 
vasospasm, cerebral infarction attributable to vasospasm, 
or both [113–115].

It seems that both EBI and DCI are connected and have 
common mechanisms (Fig. 1) [116, 117]. Moreover, some 
studies have suggested that EBI and DCI are not differ-
ent entities, but ischemic brain injury is probably a late 
manifestation of EBI after SAH [109, 118–120]. Brain 
edema is one of the major components of EBI following 
SAH [121–124]. In literature, brain edema is mainly clas-
sified into vasogenic and cytotoxic. Vasogenic edema is 
caused by the extravasation of plasma proteins and the 
accumulation of fluid in the brain interstitium [125]. It 

is associated with the degradation of TJ proteins, tran-
scellular channels, and endothelial retractions, as well 
as with the accumulation of intravascular proteins out-
side the cells, which result in increased brain volume 
and ICP. In contrast, cytotoxic edema is characterized 
by cell swelling caused by ATP depletion and loss of 
energy for “pumps” like the Na+ K+-ATPase and Ca2+- 
ATPase. Consequently, secondary transporters such as 
ion channels and cotransporters are disrupted, includ-
ing the Na+K+Cl−-cotransporter (NKCC1) and the Na+/ 
Ca2+ exchanger. Alteration of cell membrane transport 
systems leads to abnormal accumulation of fluid in the 
brain cells [125, 126]. In humans, significant BBB altera-
tion was found as early as 24–48 h following SAH (Fig. 2). 
Early identification of BBB disruption seen on MRI was 
associated with disease progression and worse outcomes 
in patients after SAH [127]. In general, increased BBB 
permeability is considered to be a negative prognostic 
factor leading to the development of ischemic complica-
tions following SAH [128, 129].

The most immediate event following the rupture 
of an intracranial aneurysm is sudden increase of the 
ICP and intracranial circulation arrest. The ICP sub-
sequently decreases over several minutes but remains 
higher than normal [130]. Sudden decrease in cerebral 
blood flow (CBF) due to increased ICP is the first step 
in the pathological cascade leading to development of 
cytotoxic edema formation, apoptosis of endothelial 
cells, and BBB disruption, resulting in vasogenic edema 
and further reduction of CBF [121]. This phenomenon 
is confirmed by cellular swelling on apparent diffusion 
coefficient (ADC) maps calculated using MRI with diffu-
sion-weighted imaging (DWI). A sharp decline of ADC 
observed within 2  min following SAH probably reflects 
ischemia due to the overall reduction of cerebral blood 
flow and localized vasospasm. Moreover, decreased ADC 
values was also observed to a lesser extent in the con-
tralateral hemisphere and with a delay of 1 min in non-
heparinized and 3 min in heparinized animals compared 
to the ipsilateral side [131]. These findings demonstrate 
development of global cerebral edema in the first minutes 
following SAH.

Immediately after SAH, several other changes such as 
increase in ICP, reduction of nitric oxide (NO), release 
of vasoactive molecules from platelet aggregation, and 
perivascular glial swelling contribute to disruption of 
BBB [132, 133]. ICP increase in the first minutes after 
bleeding into the subarachnoid space leads to a decrease 
in cerebral blood flow resulting in the reduction of cer-
ebral perfusion pressure (CPP). This initial ischemic 
insult is probably responsible for the swelling of neurons, 
astrocytes, and endothelial cells (cytotoxic edema) and 
creates conditions amenable for aggregation of blood 
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components leading to a non-reflow phenomenon that 
contributes to acute ischemia after SAH [134]. It was 
proposed that this non-reflow phenomenon plays a role 
in the pathophysiology of post-ischemic injury following 
SAH. Several mechanisms have been found to contrib-
ute to the development of the no-reflow phenomenon, 
including platelet activation, fibrin formation, leukocyte 
adhesion, or persistent pericyte contraction [135, 136].

Despite the finding of acute ischemic injury, increased 
permeability of BBB to platelets passing across or around 
the endothelium and platelet-sized holes (approximately 
2–3  µm in diameter) in the basal lamina were found as 
early as 10 min after SAH [137, 138]. However, there is 
evidence that following bleeding, blood components 
spread not only through direct trans-endothelial transfer 
but also in a paravascular fashion.

Although blood elements in the subarachnoid space are 
in direct contact with larger vessels, it seems that some 
blood components such as erythrocytes and damage-
associated molecular patterns (DAMPs) like hemoglobin 
(Hb) may reach BBB through the Virchow-Robin space 
(VRS) and paravascular spaces surrounding arterioles, 
capillaries, and venules [139]. The CSF in VRS is pumped 
into the paravascular space toward the capillary base-
ment membrane completely covered by astrocyte end-
feet equipped with AQP-4. CSF/interstitial fluid (ISF) 
exchange occurs at the level of BBB, and CSF-ISF flows 
through the paravenous spaces toward the CSF or venous 
blood [140]. Blood components, as well as serum pro-
teins, quickly diffuse and invade the paravascular space, 
leading to perivascular glial activation, neuroinflamma-
tion, dysfunction in microcirculation resulting in micro-
infarctions throughout the brain [141].

CSF circulation in the paravascular spaces is impaired 
following SAH. It was found that aggregation of blood 
cells and formation of blood clots within the paravascular 
space block CSF flow as early as 2 min after SAH [141]. 
This impairment is associated with a decreased ability to 
clear interstitial solutes from brain [142]. Alteration and 

occlusion of cerebral paravascular space by coagulated 
blood may exacerbate edema after SAH [140].

However, blood clots and red blood cells in the suba-
rachnoid space undergo lysis and cell-free Hb distributed 
in VRS crosses the glial limiting membrane, entering 
deep into the brain [143]. Larger molecules are trapped 
in the paravascular space and cannot pass into the cor-
tex because the gap between the astrocytic end-feet 
constitutes a physical barrier (gap width ~ 20–30  nm). 
Small molecules from 0.8 to 70  kDa can penetrate the 
glial limiting membrane to various degrees, while larger 
molecules from 150 to 2000  kDa are retained in the 
paravascular spaces [144]. Free Hb (molecular weight 
of 62.6  kDa) and other DAMPs enter the paravascular 
spaces and induce recruitment of monocytes [139, 145]. 
High concentrations of Hb and other vasoactive sub-
stances, as well as DAMPs in the paravascular spaces, 
remain in contact with pericytes [146].

Reaction to SAH of neurovascular unit cells
Reaction of endothelial cells to SAH
SAH induces apoptosis in endothelial cells
The response of endothelial cells to SAH promotes the 
disruption of BBB and contributes to the development of 
EBI and cerebral vasospasm (Fig. 3a; Table 1) [147, 148]. 
Degradation products of erythrocytes such as oxyhemo-
globin (OxyHb), excess iron, and oxidative stress con-
tribute to endothelial cell apoptosis that can be observed 
24  h after SAH induction [149, 150]. Oxidative stress 
induces the production of free radicals that cause cellular 
damage by promoting lipid peroxidation, protein break-
down, and DNA fragmentation. Such changes lead to 
pathological changes such as vacuolization, breakdown 
of tight junctions, irregular and flat extensions inside and 
between endothelial cells, widening of inter-endothe-
lial spaces, cellular apoptosis, necrosis, subendothelial 
fibrosis, and increased BBB permeability [150–155]. 
Transmission electron microscopy revealed that the larg-
est openings in the BBB can be seen at 3 and 72 h after 

Fig. 3  Reaction of endothelial cells to subarachnoid hemorrhage. a ECs disruption after SAH. BBB dysfunction facilitates the passage of blood 
components (Hb, Tb and, serum proteins) into the perivascular space. In response to TLR4 activation, p53 and NF-κB are activated, levels of MAP4K4 
and ROS are increased, and CHOP is upregulated, resulting in the downregulation of ZO, claudins, JAM, and VE-cadherin, that together increase BBB 
permeability. ER stress caused by Bax and PUMA upregulation activates caspase-3 and causes DNA fragmentation and cell apoptosis. Caspase-3 
activation also accrues via caspase-8 signaling triggered by the TNF-α receptor. CHOP upregulation decreases Bcl-2 expression and upregulates Bim. 
MMP-9 upregulation reduces collagen IV and laminin proteins in the basal lamina, thus increasing BBB permeability. The upregulation of adhesion 
molecules promotes leukocyte infiltration, which decreases NO via myeloperoxidase. Cyt c upregulation causes cell death; VSMC contraction is 
regulated by PGF2α upregulation in response to upregulation of TXA2 and TLR4 activation. ECs are stimulated by MAC, upregulating PDGF-BB 
production and affecting VSMC. VEGF upregulation leads to collagen IV exposure and thus to platelet adhesion. b ECs protection mechanisms. Bcl-2 
upregulation caused by S1P1/PI3K/Akt and JAK2/STAT3 pathways is due to TM activation and anti-inflammatory cytokine production, respectively. 
Bcl-2 and STAT-3 upregulation suppress cell apoptosis. Upregulation of OPN activates Akt, decreasing GSK3β expression and TJ protein upregulation. 
AMPKα upregulation and Akt activation can also increase phosphorylated eNOS, resulting in increased NO and VSMC dilatation. Downregulation of 
NF-κB, caspase-3, and BAX results from Akt activation. NF-κB is also downregulated by ApoE upregulation and decreased expression of CypA. TJs are 
upregulated by activation of the ErbB4 receptor, increased Yap, and PIK3CB
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SAH which correlates with decreased expression of TJ 
proteins, ZO-1, and occludin [156]. Severe damage to 
endothelial cells, including detachment from the basal 
lamina and cerebral vasospasm (visible by angiography) 
together, indicate that morphological changes play a key 
role not only in development of EBI but also in ischemic 
injury after SAH [157]. These morphological changes, as 
well as the number of endothelial cells undergoing apop-
tosis, increase with time following SAH. These changes 
have been reported to reach a peak on day 5 and 7 after 
bleeding, which correlates with the development of cer-
ebral vasospasm [158–160]. The number of apoptotic 
endothelial cells is quite high after SAH [161].

On the other hand, there are also mechanisms that 
inhibit cell death in endothelial cells. Levels of ApoE were 
elevated as early as 6 h following SAH, and this was asso-
ciated with EBI inhibition; ApoE levels peaked at 48  h 
and returned to basal levels at 72 h after initial bleeding. 
ApoE can potentially control BBB integrity by suppress-
ing the inflammatory cyclophilin A (CypA)-NF-κB-
MMP-9 pathway [162]. The janus kinase 2 (JAK2)/STAT3 
signaling pathway can partially modulate endothelial cell 
apoptosis as SAH-induced cytokines such as IL-2, IL-3, 

or IL-6 activate the JAK2/STAT3 cascade leading to 
increased expression of anti-apoptotic genes like (B-cell 
lymphoma 2) Bcl-2 and Bcl-xL [163]. JAK2 phosphoryla-
tion and activation is initiated early after SAH, peaking 
on day 3 and gradually decreasing to reach control levels 
at the 7-day time point [164].

Apoptosis in endothelial cells is orchestrated by endo-
plasmic reticulum (ER) stress-induced activation of 
C/EBP homologous protein (CHOP). SAH induces 
increased CHOP levels, which leads to downregulation 
of the anti-apoptotic Bcl-2 protein and induction of Bcl-2 
interacting mediator of cell death (Bim) [165]. Moreover, 
increased levels of key pro-apoptotic proteins like p53 
upregulated modulator of apoptosis (PUMA) and Bcl-
2-associated X protein (Bax) were found in endothelial 
cells 24  h after SAH. PUMA and Bax were co-localized 
with glucose-regulated protein 78 (GRP78), a molecular 
chaperone located in the endoplasmic reticulum (ER) 
lumen, suggesting that ER stress plays a crucial role in 
endothelial cell apoptosis. ER affected by PUMA acti-
vates the recruitment to the mitochondrial membrane of 
DRP1, a dynamin-related GTPase, leading to cytochrome 
c release that results in endothelial cell death [166]. In 

Fig. 3  continued
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Table 1  Reaction of endothelial cells, basal lamina and vascular smooth muscle cells to SAH

Cell Type EBI DCI
0-1 hour 3-12 hours 24 hours 48 hours 72 hours 3-21 days

ECs

NO [133] MMP-9 (3-6h) [200] JAM & VE-cadherin
[197]

IL-6 & IL-6 receptor
[233]

TLR4 [570] Nrf2-ARE 
(3&5d) [181]

p-ERK (5min) [132] E-Selectin (4-6h) [192] p53 [206, 154] VEGF [238] OPN [521]
Neutrophils adhesion

[195]
P-selectin leukocyte-
ECs interaction (2h)

[135]

P-gP [244] COX-2 [218] ErbB4 [183] Neutrophil-
endothelial 
interaction 
(4d) [228]

Cell swelling [134,131] EC apotposis [150,121] Collagenase activity [200,201]

Intracellular Ca2+ [111]

MLCK [237] Collagen IV [200,201]
vWF & TM [246] MMP-9 [200,201]

Laminin & collagen IV
[203]

ETAR ( 3d) up to 14d [251]

BBB permeability [121,127,137,156,199,220,222] (   3 & 72h) [156] Insulin (5d)
[179]Caspase-1 & NLRP [223]

Caspase-3 pathway (up to 5d ) [220,224]
Caspase-8 & caspase-9 (up to 7d) [225,226]

-

ICAM-1[187] Sticking leukocytes (2-4d) [229]
LXA4 6-72h (    24h) [252] CD34 (  3d)  

up to 10d
[194]

ZO-1 & occludin (   3h) [156,197]

BLT1 (6-72h) [230] JAK2/STAT3 
pathway, bcl-2
& bcl-xL (5d)

[163]

ApoE (6-48h)  (    48h) (  72h) [162]

-

S1P1 [184]

-

PI3K/Akt pathway
[177]

Periostin [212] CHOP [165]
TNC [213] ETB receptor ( 7d) up to 14d [251]

NEK7 [227] ET-1 (3-4d) [231]
PKC [243]

-

ICAM-1 &
PSGL-1-
induced 

neutrophil 
TLR4 -NF-κB & p-p38
MAPK pathways [209]

Claudin-5 [197]

Cell Type EBI DCI
0-1 hour 3-12 hours 24 hours 48 hours 72 hours 3-21 days

Mfsd2a (   72h) [245] infiltration 
(4d) [228, 360]

Aggf1 (   72h) [253] iNOS (7d)
[153]

NOX1 &NOX4 
induced by OxyHb

[172]
- -

EC apoptosis 
(5&7d) [158, 

160]

PUMA & Bax [166]
Rolling 

leukocytes 
(6d) [229]Basal lamina Permeability for 

platelets [137]
Collagenase activity

[200] Laminin [202]
Collagenase activity [200, 201]

Collagen IV [200,201] Collagen IV [200, 201]

VSMC

Phospho-JAK1 [218]     PDGFR-β & IRF9 (6-
12h) (    12h) [67]

CFTR,
TNF-α [575]

eNOS, GC 1, sGC 1, 
cGMP, PKG, cGMP
RhoA, & ROCK-II

[508]

Kir6.1[485] KV channel 
(4d) [482]RhoA translocation 

from cytosol to plasma 
membrane [529]

P2 receptor subtype 
P2X1 [567]SIRT-1 (12-24h) ( 24) [545] KCa current 

(4d) [484]
PCNA-positive nuclei (3-72h) [551]

STAT3 –(P) at Tyr705 [218] TNC [541]
-

p-Akt/Akt ratio, 
SMemb, OPN, PAR-

1, TXA2 & AT1
α-SMA [554]

RyR-2
(5d) [494]Collagen-IV (1-6h) [576] p-EGFR, p-ERK1/2 

[555]

-

ETB (3-48h)    (  48h)
AT1 (6-48)  (  48h) 

5-HT1B (12-48h)  (   12h) [267]

FKBP12.6
(5d) [494]

p-ERK1/2 & PCNA (3-7d)  (  7d)
[539]

HO-1 (6-72h)  (   36h)
ferritin (6-72h) (   72h) [579]

PAR1 (5-7d)
7d [558]

α-SMA  (   3d) [568]

-

ETB, AT1, MMP-9, 
MMP-13, CXCL32, 
iNOS, IL-6, ETB, 5-
HT1B, 5-HT1D [530]

ETB & 5-HT1B [559] TLR4 (3-7d) [570]
    TXA2 receptor [524] relaxin/insulin-like family peptide 

receptor 1 (3 & 7d) [577]   ETB, 5-HT1B & AT1
-
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Table 1  (continued)

Cell Type EBI DCI
0-1 hour 3-12 hours 24 hours 48 hours 72 hours 3-21 days

OPN
PPARβ/δ [568]

receptor mRNA, 
pERK1/2 [525]

R-type 
(Cav2.3) (5d)

[504]ETB, 5-HT1B [560]
MMP-9

collagens IV & V [571]
p-PKCδ, p-PKCα, 

ETB & 5-HT1B [565]
R-type 

(Cav2.3) (5d)
[505]Rho translocation to the plasma membrane (24-

48h)  (   24h) [516] PAR1 (5-7d)
7d [557]STAT3 –(P) at Ser727 [218]

TNC (24-48h) [540] KV2 current 
(7d) [484]IL-22, IL-1β, TNF-α & CX3CL1 (   24h) [485]

PARP  (    72h) [485] ETA receptor 
(5-7d) [564]VDCC currents (1-3d)  (  3d) [500]

α-SMA (24-72h)   ( 72h)
SMemb (24-72h) (   72h) [535]

α-actin
vimentin [544]

caveolin-1 (1-7d)     (  7d)
PCNA (1-7d)    (   7d) [553]

HMGB-1 (1-5d)    ( 3d) [243]
SMemb   (   3d) [568]

-

TNF-α, IL-1β, IL-6, 
iNOS, MMP-9, ETB, 5-
HT1B, AT1 & pERK1/2

[526]

P2 receptor subtype 
P2X1

567

Kv 2.2, Kv 3.4, 
BK-1β (7d)

[483]

TLR4, TNF-α [569] L-type (Cav1.2 
& Cav1.3) VD 
Ca2+ channel 
α1  (7d) [503]

CFTR (2d) [575]
PPARβ/δ
OPN [568]

iNOS
eNOS [272] NF-κβ, TNF-α, 

IL-1β, ICAM-
1, & VCAM-1

(5d) [523]

Nrf2, HO-1, NQO1, 
IL-1β, IL-6, & TNF-α

[578]

Cell Type EBI DCI
0-1 hour 3-12 hours 24 hours 48 hours 72 hours 3-21 days

TNF-α, TNF-R1 & 
TNF-R2 [573]

   iNOS, IL-6, IL-1b, 
MMP-9 & TIMP-

1[572]
β-actin mRNA (2-14d)  (   7d) [543]

- -

Calponin (7d)
[522]

mTOR, 
P70S6K1, & 
PCNA (7d)

[538]

β-actin 
mRNA, 

SMemb (7-
14d) [536]

R-type 
(Cav2.3) & T-
type (Cav3.1 & 

Cav3.3) VD 
Ca2+ channel 
α1 (7d) [503]
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addition to cytochrome c-induced cell death, PUMA 
could induce cleaved caspase-3 proteins and thus con-
tribute to apoptosis of endothelial cells after cerebral 
aneurysm rupture [167]. In support of this, p53 regulated 
apoptosis-inducing protein 1 (p53AIP1), and cytochrome 
c were identified on day 7 after SAH [168]. Therefore, 
p53 seems to be one of the key factors in the control of 
endothelial cell apoptosis following SAH. Tumor necro-
sis factor alpha (TNF-α) also plays an important role 
in apoptosis of endothelial cells after SAH through the 
action of TNF-α-receptor that activates caspase-2, -3, 
-8, and -9. Caspase-8 activates caspase-3, which subse-
quently cleaves poly (ADP)-ribose polymerase (PARP), 
resulting in DNA fragmentation and cell death [169].

Endothelial cell damage may initiate a thrombogenic 
state that can worsen ischemia during the cerebral vasos-
pasm following SAH. OxyHb, the superoxide, ferryl, and 
perferryl ions, along with the hydroxyl and peroxy radi-
cals, may play a vital role in the pathophysiology of the 
thrombogenic state [170]. The function of xanthine dehy-
drogenase (XDH), an enzyme present in endothelial cells, 
is transformed to that of a xanthine oxidase (XO) follow-
ing SAH. Although XO can produce free radicals like 
superoxide and hydrogen peroxide, it has been suggested 
that XO has no significant effect on free radical produc-
tion following SAH [171]. The generation of oxygen free 
radicals is promoted by the NADPH oxidases NOX1 and 
NOX4. OxyHb induces increased levels of NOX1 and 
NOX4 in endothelial cells 24 h after exposure to OxyHb 
[172]. NO also plays an important role in free radicals 
production following SAH. Despite its known vasodilat-
ing effect, high NO levels can lead to oxidative injury, 
lipid peroxidation, inhibition of mitochondrial enzymes, 
and disruption of gene transcription.

NO production in endothelial cells following SAH 
Increased levels of inducible nitric oxide synthase 
(iNOS) were found in endothelial cells, VSMC, adven-
titial cells, activated microglia, and glial networks. The 
expression of iNOS corresponded to the distribution of 
the toxic NO reaction product peroxynitrite, suggesting 
that iNOS may be the main source of toxic NO products 
[153]. SAH leads to increased ferritin expression result-
ing in endothelial cell damage, which contributes to the 
production of the superoxide anion and acidosis [173]. 
Moreover, NO synthesized by iNOS increases nitro-
tyrosine, a marker of peroxynitrite in endothelial cells 
after SAH. There is evidence that NO produced by iNOS 
negatively affects the regulatory role of eNOS, decreases 
NO availability, and contributes to VSMC contraction 
[174]. Perivascular OxyHb induces the inactivation of 
Ca2+ channels, and the consequent drop in intracellular 
Ca2+ in endothelial cells leads to reduced eNOS expres-
sion. Type-V phosphodiesterase (PDE-V), an endogenous 

inhibitor of eNOS, is also elevated after SAH. It contrib-
utes to reduced NO level and thus to the development 
of vasospasm [175]. Taken together, decreased expres-
sion and inhibition of eNOS following SAH can result in 
reduced NO production, which subsequently contributes 
to the development of cerebral vasospasm [176]. Activa-
tion of the phosphoinositide 3-kinase (PI3K)/Akt path-
way led to eNOS activation [177]. Inhibition of eNOS by 
asymmetric dimethylarginine (ADMA), a likely response 
to bilirubin oxidation products (BOXes) in the perivas-
cular space, may contribute to the development of cer-
ebral vasospasm. BOXes are eliminated in the later stages 
of vasospasm, and the decreased ADMA levels leads 
to increased NO production by endothelial cells [178]. 
Decreased expression of insulin receptors on endothe-
lial cells probably also has a hand in the reduction of NO 
and development of cerebral vasospasm after SAH. With 
its receptors reduced, even insulin– a strong vasoactive 
molecule—cannot stimulate sufficient NO production in 
endothelial cells [179].

Osuka et al. found activation of eNOS at Ser1177 in the 
endothelium 1 to 2  days after SAH. Phosphorylation of 
eNOS was accompanied by increased expression of phos-
phorylated AMP-activated protein kinase α (p-AMPKα) 
in endothelial cells suggesting a protective mechanism 
against mild vasospasm [180].

Regulation of tight junctions and adhesion molecules 
in endothelial cells following SAH
Protective genes like nuclear factor-erythroid 2-related 
factor 2 (Nrf2) are involved in response to oxidative 
stress as well as inflammation following SAH. The Nrf2-
ARE (antioxidant response element) pathway leads to the 
expression of several detoxifying enzymes and antioxida-
tive proteins, and as such, is considered a key factor in 
cytoprotection. The Nrf2-ARE pathway was activated in 
endothelial cells and VSMC on day 3 and 5 after SAH 
[181, 182].

Promotion of endothelial cell survival under condi-
tions of oxidative stress is important to preserve BBB 
integrity (Fig.  3b). SAH induced expression of v-erb-b2 
avian erythroblastic leukemia viral oncogene homolog 
4 (ErbB4), a kind of epidermal growth factor receptor 
(EGFR) kinase. Increased ErbB4 expression was found 
in endothelial cells 72  h after SAH. ErbB4 activates the 
yes-associated protein (YAP)/PIK3CB (phosphatidylino-
sitol-4,5-Bisphosphate 3-Kinase Catalytic Subunit beta) 
signaling pathway that increases occludin and claudin-5 
expression, reduces brain edema, and contributes to the 
maintenance of BBB integrity [183].

Sphingosine-1-phosphate receptor-1 (S1P1) proteins 
modulate the expression of TJ proteins such as claudin-3 
and claudin-5. S1P1 activates the PI3K/Akt pathway 
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that inhibits glycogen synthase kinase 3 β (GSK3β) and 
stabilizes β-catenin resulting in increased claudin-3 
and -5 expression. However, S1P1 is mainly localized to 
endothelial cells and is downregulated 24  h after SAH, 
resulting in the alteration of TJ protein expression [184]. 
Thrombomodulin (TM) binds thrombin and catalyzes 
protein C into APC [185], and S1P1 can also be activated 
by PAR-1 through the action of endothelial protein C 
receptor (EPCR) and activated protein C (APC).

Blood in the subarachnoid space stimulates upregu-
lation of adhesion molecules on the luminal surface of 
endothelial cells such as intercellular adhesion mol-
ecule-1 (ICAM-1), vascular cell adhesion protein 
(VCAM)-1, lymphocyte function-associated antigen-1 
(LFA-1), macrophage antigen-1 (Mac-1) as well as 
endothelial (E)-selectin [186–190]. These molecules are 
involved in the interaction between endothelial cells and 
leukocytes that mediate the recruitment, adhesion, and 
transmigration of white blood cells to the site of hemor-
rhage [191–193]. CD34, a transmembrane glycoprotein, 
plays a key role in the attachment of leukocytes to the 
endothelial cells, as well as in the recruitment of mono-
cytes and macrophages to the site of injury. Increased 
expression of CD34 was found in parallel with cerebral 
vasospasm, which peaks on day 3, and it decreased to 
values similar to controls on day 10 following SAH [194]. 
However, neutrophil adhesion on endothelial cells and 
neutrophil infiltration of the brain begins in the first 
10  min after SAH. Early neutrophil infiltration corre-
lates with decreased cerebral NO levels by the action of 
the neutrophil-derived enzyme myeloperoxidase, which 
degrades NO 10 min after SAH. Adherent and infiltrat-
ing neutrophils contribute to BBB damage after SAH by 
releasing reactive oxygen species (ROS), elastases, pro-
teases, collagenase, and MMP-9 [195].

Activation of the NF-κB inflammatory pathway facili-
tates disruption of TJ between endothelial cells, which 
is considered to be the main cause of post-hemorrhagic 
vasogenic edema [196]. Experimental studies describ-
ing changes in the expression of TJ proteins as one of the 
causes of EBI have focused primarily on the first 24 h fol-
lowing SAH. Generally, experiments using endovascular 
perforation or direct injection of blood into CSF showed 
decreases in TJ protein ZO-1, occluding, claudin-5, JAM-
A, and adherent junction protein VE-cadherin 24 to 48 h 
following SAH [185, 197]. Despite these findings, there 
is also some evidence of biphasic changes in ZO-1 and 
occludin expression with the lowest expression values 
at 3 h after SAH followed by a partial recovery and sub-
sequent decrease 72  h after SAH. Moreover, decreased 
expression of TJ proteins was correlated with increased 
permeability peaking at 3 and 72 h after SAH [156]. The 
assumption that BBB permeability increases early after 

SAH is supported clinically as T2-weighted MRI hyper-
intensities can be seen 4  h after SAH induction [198]. 
However, experimental studies proved that increased 
microvascular permeability occurs already in the first 
few minutes after SAH [137, 199]. One of the pathophysi-
ological cascades that lead to BBB disruption is perturba-
tion in the microvascular basal lamina mediated by loss 
of collagen IV after SAH. While the greatest increase 
of MMP-9 and collagenase activity occurs 3 to 6 h after 
induction of SAH [189, 200], it appears that collagen IV 
expression decreases in two phases. The first decrease 
happens in 3–6  h as described above, and the second 
after 48 -72  h suggests delayed microvascular damage 
after SAH [200, 201]. This biphasic decrease of collagen 
IV expression is consistent with biphasic changes in the 
expression of the TJ proteins ZO-1 and occludin, as was 
described above [156]. Moreover, laminin, one of the 
main components of the basal lamina as well as the sub-
strate for MMP-9, also decreases at 24 h after SAH [202, 
203]. The combined reduction of laminin, occludin, and 
collagen IV correlates with the upregulation of MMP-9 
in endothelial cells 24 h after SAH [154, 204]. Moreover, 
it was suggested that MMP-9 induced laminin degrada-
tion could play a role in the apoptosis of endothelial cells 
following SAH [203]. In addition, increased microvas-
cular collagenase also contributes to the loss of collagen 
IV [200, 201]. The expression of JAM-A is decreased 
after SAH [205], and MMP‐9 has been reported to play 
an important role in JAM-A degradation [206]. Yan et al. 
suggested that the p53—NF-κB—MMP-9 molecular 
signaling pathway is involved in the pathophysiologi-
cal cascades inside cerebral endothelial cells after SAH. 
Inflammation is an important factor in the progression 
of BBB disruption. This assumption is supported by 
increased expression of toll-like receptor (TLR)-4 and 
high-mobility group box 1 (HMGB1) following induction 
of SAH [207, 208]. Increased expression of p53 induced 
the up-regulation of MMP-9 via NF-κB and was recorded 
in brain endothelial cells 24 h after SAH, which leads to 
the degradation of occludin and disruption of basal lam-
ina through the degradation of collagen IV and laminin 
[154, 206]. Inflammatory-induced degradation of TJ 
proteins contributes to vasogenic brain edema 24 h fol-
lowing SAH [209]. Cortical endothelial cells overexpress 
mitogen-activated protein kinase 4 (MAP4K4), whose 
upregulation leads to increased expression of phospho-
rylated NF-κB and MMP-9 and the subsequent degrada-
tion of ZO-1 and claudin-5, resulting in BBB disruption 
[210]. MicroRNA (miR)-630 may also play a role in the 
expression of adhesion molecules and TJ proteins. Low 
miR-630 expression was found in endothelial cells treated 
with arterial blood, indicating a crucial role for exosomal 
miR-630 in maintaining BBB integrity after SAH [211]. 
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Periostin, one of the matricellular proteins, activates the 
MAPK signaling pathway through integrins and modu-
lates downstream pathways such as MMP-9 after SAH. 
Following SAH, the level of periostin was increased 
in capillary endothelial cells 24  h after bleeding [212]. 
Tenascin-C (TNC), a member of the matricellular pro-
tein family, regulates mitogen-activated protein kinase 
(MAPK) activation in endothelial cells after SAH. Activa-
tion of MAPK leads to the induction of MMP-9, resulting 
in ZO-1 degradation. Expression of TNC was upregu-
lated in endothelial cells 24 h after SAH [213]. Increased 
expression of osteopontin (OPN) was found in endothe-
lial cells as well as in astrocytes. OPN induction peaked 
72 h after SAH and was associated with the restoration of 
the BBB. OPN increases MAPK phosphatase-1 (MKP-1) 
acts as an inhibitor of VEGF-A, phospho- Jun N-terminal 
Kinase (JNK), phospho-p38, and phospho-extracellular 
signal-regulated kinase (ERK)-1/2, and thus contributes 
to the stabilization of the BBB [214]. OPN also induces 
the activation of p-Akt and inhibits apoptosis through 
reduced expression of cleaved caspase-3 and Bax while 
increasing the level of anti-apoptotic Bcl-2 [215]. The 
Rho-ROCK (Rho-associated protein kinase)/MAPK, as 
well as the tyrosine kinase cascades, are activated and 
lead to proliferation of VSMC and vascular contraction. 
Activation of the Rho-ROCK/MAPK pathway in VSMC 
occurs through the upregulation of platelet-derived 
growth factor β receptor (PDGFR-β) by prolonged con-
tact with PDGF-BB. Endothelial cells are stimulated 
by the C5b–9 membrane attack complex (MAC) and 
upregulate the production of PDGF-BB that affects the 
VSMC after SAH [216]. TLR4 activation also upregulates 
cyclooxygenase-1 (COX-1) in endothelial cells after SAH, 
and the activation of COXs catalyzes the conversion of 
arachidonic acid to prostaglandin H2 and subsequent 
metabolites like thromboxane A (TXA2), prostaglan-
din F2α, and prostacyclin leading to VCMC contraction 
[217]. COX-2 expression in endothelial cells and VSMC 
also increased at 2 days after SAH. The pro-inflammatory 
cytokine interleukin (IL)-6 in the CSF activates the JAK-
STAT signaling cascade and upregulates transcription of 
early genes, including COX-2 [218]. It was suggested that 
induction of COX-2 after SAH could lead to a synthetic 
shift from vasodilating prostaglandins (PGI2 and PGE2) 
to pro-constriction eicosanoids like PGH2, PGF2α, and 
TXA2 [151, 219].

The biochemical events associated with BBB injury 
occur in the first few minutes following SAH. These 
alterations include caspase-3 activation and collagen-
IV depletion, which lead to endothelial cell damage 
and microvascular basal lamina interruptions [137, 
220–222]. In addition, caspase-1 as well as leucine-
rich repeat (LRR)-containing protein 3 (NLRP3) and 

apoptosis-associated speck-like protein containing a 
CARD (ASC) are increased in the endothelial cells in the 
first 3 days after SAH. Activation of NLRP3 leads to the 
maturation and secretion of proinflammatory molecules 
such as IL-1β and IL-18 [223]. More numerous cleaved 
caspase-3 positive endothelial cells were found as early as 
10 min after SAH induction [220]. In addition, increased 
caspase-3 expression was found in endothelial cells up 
to 5  days after SAH, suggesting long-lasting damage to 
the BBB [224]. Moreover, caspase-8 and caspase-9 were 
elevated during the first few days following SAH, and 
this elevation lasted for 7  days. Higher caspase-8 and 
caspase-9 were accompanied by increased BBB perme-
ability on day 7 after SAH [225, 226]. The serine/threo-
nine protein kinase 7 (NEK7) has an essential role in the 
activation of the NLRP3 inflammasome. NEK7 induces 
neuronal apoptosis, and its expression was found mainly 
in endothelial cells as well as in microglia, peaking at 
24  h after SAH [227]. The endothelium acts as a path-
way for the transfer of proinflammatory cells resulting 
in the development of inflammatory reactions following 
SAH. The neutrophil-endothelial interaction manifests 
as spreading cerebral inflammation, starts shortly after 
SAH, with the highest extent around day 4 after SAH. 
Increased expression of adhesion molecules like P-selec-
tin and intercellular adhesion molecule 1 (ICAM-1) is 
required for neutrophil-endothelial interaction and the 
development of intraparenchymal inflammation [228]. 
Higher numbers of rolling leukocytes were seen on day 6, 
as were higher numbers of adherent leukocytes between 
day 2 and day 4 after SAH, suggesting that neutrophils 
play an important role in the development of neuroin-
flammation in the first few days following SAH [229]. 
However, it seems that cerebrovascular inflammation 
mediated by the P-selectin leukocyte-endothelial cell 
interaction occurs as early as 2  h after SAH. A sudden 
increase in ICP might be among the most important fac-
tors initiating leukocyte-endothelial interactions and the 
inflammatory response following SAH [135]. The LTB4-
BLT1-NF-κB axis resulting in up-regulation of adhesion 
molecules such as ICAM-1 and vascular cell adhesion 
protein 1 (VCAM-1) may play a role in the attachment of 
leukocytes to endothelial cells and their trans-endothelial 
migration. Immunostaining showed increased expres-
sion of the LTB4 receptor 1 (BLT1) in endothelial cells, 
neurons, and microglia starting at 6  h, peaking at 24  h, 
and lasting for 3  days after SAH [230]. ICAM-1 and 
VCAM-1 are upregulated by pro-inflammatory cytokines 
like TNF-α as well as IL-1, which activate NF-κB and 
activator protein 1 (AP-1), a transcription factor that 
initiates cytokine expression [231]. Higher levels of IL-6 
in endothelial cells also induce a pro-inflammatory reac-
tion [232], and overexpression of IL-6 and its receptor 
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was found in BBB endothelial cells. Up-regulation of 
IL-6 is potentiated by an autocrine mechanism 2  days 
after induction of SAH [233]. Activation of NF-κB can 
be induced by Ca2+ oscillation between Ca2+ uptake 
and release through the action of ER Ca2+-ATPase and 
inositol trisphosphate (IP3)-dependent Ca2+ channels. 
Oscillation in intracellular Ca2+concentrations leads 
to increased VCAM-1 expression and endothelial cell 
shrinkage [234]. These pro-inflammatory cascades may 
play an important role in the development of the neuro-
vascular inflammatory reaction following SAH leading to 
poor functional outcomes [235, 236].

Contribution of endothelial cells to EBI and vasospasms 
following SAH
The endothelial cytoskeleton may also play a critical 
role in BBB integrity. Upregulation of myosin light chain 
kinase (MLCK) leads to increased phosphorylation of 
myosin light chain (MLC), resulting in cytoskeletal rear-
rangement, reduced endothelial cell–cell contact, loss of 
BBB integrity, and the development of vasogenic brain 
edema following SAH [237]. Moreover, endothelial tight 
junctions prevent platelets from adhering to extracellular 
collagen, which helps maintain the hemostatic/throm-
botic balance. This balance is disturbed by increased 
expression of endothelial vascular endothelial growth 
factor (VEGF) induced by hypoxia during vasospasm 
between 24 and 72 h after SAH [238–240]. The upregu-
lation of VEGF leads to collagen IV exposure and bind-
ing to glycoprotein Ia-II located on platelets resulting 
in platelet adhesion and disruption of endothelial TJ in 
the acute phase of SAH [199, 241]. These changes lead 
to platelet penetration into the brain, which initiates 
neuroinflammation and EBI after SAH [137, 220, 222]. 
Moreover, altered NO production in endothelial cells is 
insufficient to inhibit platelet adhesion and aggregation, 
and this contributes to ischemic brain injury as one of the 
major complications after SAH [242].

Enhanced expression of protein kinase C (PKC) is con-
sidered to be one of the main mechanisms contributing 
to the development of vasospasms. The PKC family is 
classified based on differences in structure and substrate 
requirements into conventional or Ca2+ dependent PKCs 
(α, βI, βII and γ), novel or Ca2+ independent PKCs (δ, ε, 
η and θ) and atypical PKCs (ζ and ι/λ). The expression 
and location of PKCη correlate with the S100 calcium-
binding protein B (S100B), and PKCβ is accompanied by 
the calcium-binding S100 protein A1 (S100A1). The co-
expression of these S100 proteins suggests that these pro-
teins indirectly activate PKC during cerebral vasospasm 
after SAH [243].

Transport mechanisms across endothelial cells are 
also altered after SAH. However, little is known about 

these mechanisms affecting endothelial cell transport 
following SAH. P-glycoprotein (P-gP), one of the major 
efflux transporters at the BBB endothelium, decreases 
after SAH [244]. Vesicular trafficking in the endothelial 
cells also plays a role in BBB permeability. Activation 
of Mfsd2a inhibits caveolae formation and subsequent 
transcytosis across the endothelial cell. Mfsd2a expres-
sion reaches its lowest level at 72 h after SAH and this, 
in addition to changes in TJ proteins, contributes to 
increased transport across the BBB after SAH [245].

Von Willebrand factor (vWF), and thrombomodu-
lin (TM), and endothelin 1 (ET-1) were considered as 
the “gold standard” for evaluating BBB integrity. The 
increased expression of vWF, TM, as well, as ET-1 indi-
cates a disrupted BBB following SAH [246]. Moreover, 
TM could protect endothelial TJ proteins following SAH 
by inhibiting the p38 MAPK-p53/NF-κB (p65) pathway 
[185].

Endothelial cells affect VSMC through increased 
expression of ET-1 following stimulation with OxyHb 
or erythrocyte lysate [247]. Elevated levels of ET-1 were 
associated with a degree of angiographic vasospasm after 
SAH. ET-1 binds to the ETA receptor of vascular smooth 
muscle cells, activates the ERK1/2 pathway and the Krup-
pel-like transcription factor 4 (KLF4). Activation of KLF4 
induces the transformation of VSMC from the contractile 
to the synthetic phenotype [248, 249]. Increased expres-
sion of ET-1 peaks 3–4  days after SAH, and its expres-
sion is followed by negative feedback via the activation 
of eNOS, resulting in vasodilatation [231]. Increased 
NO levels have an attenuating role and inhibit ET-1 pro-
duction [250]. ET-1 binds to the ETA receptor, which is 
increased in endothelial cells at 2  days, peaks at day 3, 
and remains elevated till day 14. Similarly, endothelin B 
(ETB) receptor increased on day 3, peaked at day 7, and 
remained elevated until day 14 following SAH [251].

One of the ways by which endothelial cells inhibit neu-
trophil infiltration and suppress the expression of pro-
inflammatory cytokines is through lipoxin A4 (LXA4). 
However, the expression of LXA4 decreased in endothe-
lial cells after SAH starting at 6  h, peaked at 24  h, and 
lasted for 3 days after bleeding. LXA4 inhibits the phos-
phorylation of ERK1/2 via FPR2, leading to the modu-
lation of the NF-κB pathway and resulting in decreased 
levels of proinflammatory cytokines like TNF-α, IL-6, 
IL-1β, intercellular adhesion molecule 1 (ICAM-1), and 
neutrophil infiltration [252]. The number of phospho-
rylated ERK-positive endothelial cells increased after 
SAH [132]. The angiogenic factor with G patch and 
FHA domains 1 (Aggf1) may play an important role in 
regulating endothelial TJ proteins and proinflamma-
tory cytokines after SAH. The expression of Aggf1 is 
upregulated mainly in endothelial cells, astrocytes, and 
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microglia in the cerebral cortex over the first few days 
following SAH. Aggf1 activates PI3K/Akt pathway, which 
leads to decreased NF-κB p65 phosphorylation [253].

The response of pericytes to SAH
SAH induces pericyte contraction
Pericytes are one of the main BBB components localized 
between the endothelial cells and the astrocytic endfeet 
[254]. Pericytes are involved in the complex post-SAH 
pathophysiology due to their pleiotropic roles such as 
contractile function, immune or phagocytic function, 
stem cell potential, and angiogenesis (Fig.  4; Table  2) 
[136]. Pericytes regulate cerebral blood flow by control-
ling microvascular diameter at the capillary level [255]. 
Moreover, pericytes are able to transform into alpha-
smooth muscle actin (α-SMA) under pathophysiologi-
cal conditions such as after SAH and accelerate capillary 

lumen constriction [256, 257]. The α-SMA phenotype 
of pericytes regulates BBB integrity by secreting bar-
rier integrity-reducing factors like vascular endothelial 
growth factor (VEGF), MMP-9, and MMP-2 [258, 259]. 
Hb released from lysed erythrocytes reaches the peri-
cytes through perivascular spaces and causes microvas-
cular constriction via NO scavenging early after SAH. 
NO acts as a pericyte dilator, and a decrease in NO levels 
contributes to pericyte contraction after SAH. However, 
pericyte contraction persists into the later phase of SAH 
and is caused by decreased eNOS expression [260, 261]. 
While pericyte contraction is followed by pericyte dilata-
tion, dilated pericytes nevertheless do not reverse blood 
flow. We call this reaction of pericytes the “no-reflow 
phenomenon” [106].

Fig. 4  Reaction of pericytes to SAH. Pericytes are in direct communication with ECs, and thus, pericyte contraction in response to SAH can alter BBB 
integrity. Pericytes are exposed to high concentrations of Hb and other substances such as ET-1, AT2, 20- 20-HETE, TX2, and ATP present in the CSF 
after SAH that have a predominant constrictor effect. CypA release, caused by Hb, and ROS, can activate CD147, which activates the NF-κB pathway, 
causing increased expression of MMP-9 and pro-inflammatory cytokines such as IL-6 and TGF-β, as well as upregulation of adhesion molecules 
(ICAM-1 and VCAM-1). MMP-9 is also upregulated via activation of PAR1/4 by Tb. Upregulation of MMP-9 and elevated cytokines results in the 
degradation of basal lamina and TJ proteins, thus increasing BBB permeability, allowing leukocyte penetration into the CNS
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Inflammatory reaction in pericytes following SAH
The expression of MMP-9 by pericytes seems to be 
extremely high when compared to the high levels seen in 
astrocytes and endothelial cells in response to thrombin 
in the CSF following SAH [262–264]. Thrombin activates 
protease-activated receptors (PARs) on pericytes such as 
PAR1 and PAR4, leading to the activation of G coupled 
proteins and both the PKCθ-Akt and the PKCδ-ERK1/2 
pathways resulting in increased expression of MMP-9 
[263, 265].Apart from thrombin, reactive oxygen spe-
cies (ROS) generated in the brain after SAH may also 
activate the NF-κB inflammatory pathway and induce 
MMP-9 expression. Cyclophilin A (CypA), secreted 
by pericytes, is likely to play a major role in this patho-
physiological cascade. Increased expression of CypA was 
found between 12 and 72 h after SAH and was co-local-
ized with pericyte markers such as lectin and PDGFRβ/
CD13. Autocrine and paracrine activation of CD147 by 
CypA leads to the activation of the downstream NF-κB 
inflammatory pathway [266]. Oxidative stress and nitra-
tive stress, including peroxynitrite formation induced by 
microvascular walls, together lead to a sustained increase 
in intracellular calcium level resulting in pericyte con-
traction, narrowing of capillaries, entrapment of eryth-
rocytes, thus hampering microcirculation [257, 262]. 

Pericytes are exposed to high concentrations of Hb and 
other contractile substances in the CSF after SAH, such 
as endothelin 1 (ET-1), AT2, 20-hydroxyeicosatetraenoic 
acid (20-HETE), TX2, and ATP that have a predomi-
nantly constricting effect [146, 267–271]. On the other 
hand, prostacyclin, epoxyeicosatrienoic acid (EET), as 
well as adenosine released after SAH have a predomi-
nantly vasodilatory effect on pericytes [269, 272–274]. 
Capillary constriction occurs near the apoptotic mural 
cells considered to be pericytes based on their PDGFRβ 
expression, indicating an important role for them in reg-
ulating blood flow following SAH [262].

Excess of ferritin was co-localized within pericytes as 
well as endothelial cells and astrocytes 3 days after SAH. 
This suggests that pericytes store iron after SAH and thus 
contribute to low oxygen tension, high levels of reac-
tive oxygen species (ROS), and acidosis. The non-heme 
iron can be released from ferritin only after reduction to 
Fe2+ under the acidic conditions that occur in extracel-
lular fluid. In this form, Fe2+ accelerates ROS produc-
tion. These conditions include SAH as well as ischemia 
as they lead to electrolyte imbalance and decreased pH 
in extracellular fluid [173]. It was found that pericytes 
could detach from the basal lamina and migrate into 
the perivascular space, where they are indistinguishable 

Table 2  Reaction of pericytes and astrocytes to SAH

Cell Type EBI DCI
0-1 hour 3-12 hours 24 hours 48 hours 72 hours 3-21 days

Perycite -

eNOS (   3h) [261] MMP-9 [263,266]
α-SMA [256] Detach from basal 

lamina [136,275]

-

NO (   3h,
ended after 6h) [261]

Pericytes contraction 
[262,257]

Secretion of CypA ( started from 6h,   24h) [266]
CD147 (started from 12h,     24h) [266]

NF-κB inflammatory pathway [266]
PDGFRβ/CD13 (started from 12h) [266]

-
Secretion of 
cytokines & 

chemokines [136]
-

Astrocyte

Cell swelling
[131,133,134] Gelsolin (12h) [312] AQP-4 & AQP-1

[316,317]
EAAT-2 [297] OPN [214] HDAC2 [298]

Induce scar 
formation,

Neurocan [336]

TXNIP [309] TXNIP [309] Vasoconstriction
4d [329]Norrrin (    6,12,72h,   72h,   24h) [338]

ET-1 (6-72h) [296,302] MyD88 5d
[282]

Distended astrocytic 
endfeet and ECs 
protrusions [146]

GLT-1  (6h-7d) [296]

-

Kir4.1 [319]

- Caspase-12 [310]

BDNF (5 and 
7d) [304]MyD88 [282]

A1 phenotype [288] Activation of 
eHACSs (3-7d)

[323]A2 phenotype [288]

TNF-α, IL-1β, IL-6, 
IL-33 & MMP-9

[296]

TNF-α 21d
[296]

Aggf1 (   72h) [253]
HO-1 (1 to 4d) [296,137]

TLR-4 (    3d) to 15 [280,279]
GFAP (1-14d)     secondary 7d [295]

Key: -(P) phosphorylation,          Maximum or minimum change, VD voltage dependent 
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from perivascular macrophages and reactive microglia 
[136, 275]. DAMPs in the perivascular spaces act as anti-
gens with the ability to activate pericytes. This leads to 
a local pro-inflammatory response characterized by the 
increased expression of intercellular adhesion molecule 
1 (ICAM-1), vascular cell adhesion protein 1 (VCAM-1), 
cytokines, and chemokines, including IL-6 and TGF-β, 
which contributes to the infiltration of leukocytes and the 
degradation of TJs and other molecules such as sphingo-
sine-1 phosphate (S1P) and glycosaminoglycans (GAG) 
[136].

Response of astrocytes to SAH
Morphological changes in astrocytes following SAH 
include distended astrocyte end-feet and endothelial 
protrusions that compress the capillary lumen (Fig.  5a; 
Table 2) [146]. Astrocyte deformations include distortion 
of the foot processes anchored to the basement mem-
brane that leads to disruption of cerebral ultrastructure 
[276]. 4  days after SAH induction, hippocampal astro-
cytes showed cell body swelling, retraction of processes, 
and reduction in capillary coverage of AQP-4 positive 
astrocytic endfeet. Morphological changes in hippocam-
pal astrocytes disrupt astrocyte-capillary interactions 
and thus contribute to the development of long-term 
cognitive dysfunction following SAH [277].

Like pericytes, astrocytes too respond to DAMPs from 
the perivascular space and promote the expression of 
pro-inflammatory cytokines, chemokines, growth fac-
tors, as well as recruitment and activation of peripheral 
immune cells [278].

TLR4 plays an important role in neuroinflammation 
progression. It appears that blood degradation prod-
ucts such as heme and probably other DAMPs from 
lysed blood cells are able to activate the TLR4 receptor, 
whose expression was found also in astrocytes [279–281]. 
Increased expression of TLR4 in astrocytes leads to wors-
ened neuroinflammation, an observation confirmed by 
the overexpression of myeloid differentiation primary 
response protein 88 (MyD88). MyD88 acts as an adapter 

essential for TLR signal delivery down to NF-κB in astro-
cytes but also in microglia at 1 and 5 days following SAH 
induction [282]. Activation of the TLR4/MyD88 pathway 
leads to ubiquitylation of tumor necrosis factor receptor-
associated factor 6 (TRAF6), which can then translocate 
to mitochondria and promote ROS production. Ubiquit-
ination of TRAF6 may increase the degradation of ULK1, 
an enzyme important for autophagy, or reduce its phos-
phorylation, thus inhibiting autophagy, which can exac-
erbate brain injury after SAH [283, 284]. In addition to 
astrocytes, increased expression of TLR4 expression was 
found also in neurons, microglia and VSMC 24 h follow-
ing SAH induction [208]. This finding suggests that not 
only astrocytes, but also other cellular components of the 
neurovascular unit play an important role in the develop-
ment of TLR4-induced neuroinflammation.

In addition to TLR4/MyD88/TRAF6 pathway, specific 
enzymes from the NOX family also contribute to mito-
chondrial ROS formation. Increased expression of NOX 
2 and NOX 4 proteins was found in astrocytes after SAH. 
These proteins transfer electrons from NADPH to oxy-
gen molecules and generate ROS [172].

NF-κB activation via the MyD88-dependent TLR4 sign-
aling pathway leads to the expression of p65, TNF-α, and 
IL-1β. Expression of these proinflammatory molecules 
may be reduced by activating the PI3K/Akt signaling 
cascade, a molecular pathway downstream of angiogenic 
factor with G-patch and FHA domain 1 (Aggf1) action. 
Increased level of Aggf1 was found mainly in astrocytes, 
endothelial cells as well as in microglia 24 h and peaked 
72  h after SAH, indicating an important role for the 
PI3K/Akt signaling cascade in the first days after bleed-
ing [253].

SAH induced polarization of astrocytes
In a stimulus-specific manner, astrocytes can be divided 
into the pro-inflammatory/harmful A1 phenotype and 
the anti-inflammatory/beneficial A2 phenotype [285]. 
Activated microglia following SAH induces A1 polari-
zation by secreting proinflammatory cytokines such as 

Fig. 5  Reaction of astrocytes to SAH. a Astrocyte-ECs interaction after SAH. Extracellular ATP activates P2Y receptors leading to IP3-dependent 
Ca2+ release and astrocyte necrosis. Activation of TLR4/MyD88 pathway leads to TRAF6 ubiquitylation and NF-κB upregulation, promoting ROS 
production. TXNIP can also promote cell death by inducing ROS production. ROS is increased by upregulated NOX as well. Glutamate toxicity results 
from GLT-1 dysfunction due to upregulated HDAC2. ET-1 released by ECs activates ETB receptors, which downregulate the EAAT-2 transporter, 
causing glutamate toxicity. ET-1 activates ATA receptors and causes K+ channel dysfunction by decreasing eNOS and NO production. Another 
effect of ET-1 is to upregulate MMP-2, MMP-9, and VEGF, thus altering BBB permeability. Brain edema is caused by water accumulating inside the 
astrocyte. Accumulation of K+ and upregulated AQP-4 and -1 are mainly responsible for water accumulation, leading to cell swelling and apoptosis. 
b Astrocyte-neuron interaction after SAH. Neuronal activity following SAH increases the K+ level in the synaptic cleft. The released K+ activates 
Kir2.1 and Kir4.1 channels that then import K+ into the astrocytes. K+ increases VSMC contraction and cell swelling. sAC in astrocytes is activated 
by increased extracellular K+ and mediates HCO3

− entry into astrocytes. Increased HCO3
− levels trigger the cAMP cascade causing initiation of 

glycolysis and lactate formation, leading to neuronal injury. Inhibition of GLT-1 leads to glutamate toxicity. mGluR activation in astrocytes stimulated 
by neuronal activity leads to IP3 activation and elevated Ca2+ levels in the astrocyte and K+ efflux via BK channels. Increased levels of Ca2+ could 
lead to cell necrosis. Increased concentration of K+ and glutamate causes spreading depolarization

(See figure on next page.)
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Fig. 5  (See legend on previous page.)



Page 22 of 79Solár et al. Fluids and Barriers of the CNS           (2022) 19:29 

IL-1α or TNFα [286, 287]. TNFα released from activated 
microglia activates in its turn the NF-κB pathway result-
ing in the differentiation of astrocytes into the harmful 
A1 phenotype. However, TNFα may also play a protective 
role by inducing neuronal-derived prokineticin 2 (PK2) 
expression that activates the STAT3 cascade, thereby 
promoting the beneficial A2 astrocytic phenotype [288]. 
Increased immunoreactivity of astrocytic TNFα was 
observed mainly in brain tissue in the vicinity of the cer-
ebral arteries in the first 24  h following SAH induction 
[289].

Astrocytic as well as microglial activation was detected 
by the neuroinflammatory biomarker 18-kDa translo-
cator protein (TSPO) using PET with a specific [18F]
DPA-714 tracer. The degree of astrocytic and microglial 
activation and neuroinflammation correlated with the 
severity of SAH [290]. Long-lasting astrocytic activation 
is accompanied by a chronic inflammatory response and 
may contribute to the formation of scar tissue and neu-
ronal dysfunction that were observed 21 days after SAH 
[291]. Scar formation is a cell-specific process involving 
astrogliosis characterized by increased expression of two 
astrocyte-specific proteins, S100 calcium-binding pro-
tein B (S100B) and glial fibrillary acidic protein (GFAP). 
S100B expression increases following SAH, and S100B 
binds to advanced glycation end products (RAGE), lead-
ing to the stimulation of NF-κB-dependent expression 
of proinflammatory molecules [292, 293]. In addition to 
neuroinflammation, S100B induces oxidative stress that 
can promote neuronal death and damage cerebral vascu-
lar reactivity [294]. GFAP is a highly specific marker for 
astrocytes, and its concentration in CSF was altered fol-
lowing SAH. GFAP levels decreased gradually over the 
first 14 days following SAH, with a temporary increase on 
day 7. This likely coincides with cerebral vasospasm and 
the subsequent ischemia and acidosis to which astrocytes 
are more vulnerable than neurons [295].

Glutamate reduction by astrocytes is impaired follow-
ing SAH Reactive astrocytes have a reduced ability to 
detoxify glutamate from the synaptic cleft (Fig. 5b). This 
phenomenon is caused by the downregulation of gluta-
mate transporter 1 (GLT-1) and EAAT-2 on the astro-
cytic membrane, which leads to neuronal damage [296].

Down-regulation of EAAT-2 in astrocytes follow-
ing SAH is one of the important mechanisms caus-
ing glutamate excitotoxicity and neuronal damage. The 
SAH-induced decrease in Akt phosphorylation leads to 
lowered expression of astrocytic EAAT-2 [297], with his-
tone deacetylase 2 (HDAC2) playing an important role in 
the alteration of GLT-1. Increased expression of HDAC2 
in astrocytes after SAH causes histone deacetylation 
and inhibition of GLT-1 expression leading to long-
term accumulation of glutamate in the synaptic space, 

which results in dephosphorylation of ionized glutamate 
receptors GluA1 as well as GluN2B on the postsynap-
tic membrane. These changes may negatively regulate 
hippocampal synaptogenesis and contribute to cogni-
tive impairment, frequently occurring after SAH [298]. 
Despite the downregulation of astrocytic glutamate 
transporters after SAH, astrocytes are capable to take 
up glutamate and convert it to glutamine via the enzyme 
glutamine synthetase. Glutamine synthesis represents 
astrocytic metabolic activity, and this energy demand 
can be a hindrance during ischemia after SAH. Increased 
interstitial glutamine correlates with the interstitial pyru-
vate level. The levels of glutamine and pyruvate were 
associated with the metabolic activity of astrocytes, 
and increased interstitial concentration of these mol-
ecules was associated with increased cerebral perfusion 
pressure (CPP), low ICP, and good recovery after SAH 
[299–301].

Expression of endothelin 1, heme oxygenase 1 and GFAP 
is increased in astrocytes following SAH
Astrocytes contribute to brain damage also through 
increased expression of endothelin 1 (ET-1) follow-
ing SAH [302]. In vivo and in vitro studies showed that 
astrocytes might be one of the major sources of ET-1 
production [302, 303]. ET-1 activates ETA and ETB recep-
tors which play an important role in the pathophysiology 
after SAH. Activation of astrocytic ETB receptor leads 
to astrocyte hypertrophy and decreases EAAT-2 expres-
sion resulting in higher glutamate toxicity. Other effects 
of ET-1 like the increased expression of MMP-2, MMP-9, 
VEGF also contribute to the BBB alteration.

Nevertheless, there are some potential beneficial effects 
of ET-1, mainly the ability to produce BDNF, glial cell 
line-derived neurotrophic factor (GDNF), and neurotro-
phin-3 (NT3) [248]. Astrocytes secrete BDNF and other 
trophic factors in response to brain damage. BDNF was 
upregulated in astrocytes as well as microglia and neu-
ral stem cells of the subventricular zone between days 
5 and 7 following SAH [304]. As was described above, 
ET-1 contributes to the development of cerebral vasos-
pasm mainly through the activation of the endothelin 
A (ETA) receptor, which lowers the expression of eNOS 
expression as well as NO production through the PKC-
dependent pathway. It leads to K+ channel dysfunction 
and subsequent hyperpolarization and vasodilatation 
[303, 305].

Increased expression of glial fibrillary acidic protein 
(GFAP) and heme oxygenase 1 (HO-1) expression was 
found in reactive astrocytes after SAH. Upregulation 
of GFAP is probably due to PDGF released by plate-
lets crossing the endothelium and basal lamina into the 
brain parenchyma, as was described above [137, 296]. 
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Astrocytes that rapidly upregulate HO-1 and ferritin 
increase their resistance to heme-mediated injury [306, 
307].

Increased ferritin expression in astrocytes is cytopro-
tective as it attenuates neuronal Hb toxicity. Following 
SAH, however, haptoglobin-Hb complexes are taken up 
by CD163 receptors localized on microglia and neurons 
and thus move the iron away from astrocytes [307, 308].

Astrocyte cell death following SAH
Thioredoxin-interacting protein (TXNIP), a natural 
antagonist of thioredoxin (TRX), may play a role in pro-
moting cell death after SAH. Increased TXNIP expres-
sion was found in astrocytes and microglia with a peak 
48  h after SAH followed by a decrease 72  h after SAH 
induction. In addition to apoptosis induction, TXNIP 
is involved in the production of ROS and contributes to 
the development of inflammation after SAH [309]. Find-
ing that apoptosis also occurs in astrocytes only corrobo-
rates the observation of increased caspase-12 peaking at 
3  days after SAH [310]. Moreover, increased astrocytic, 
as well as neuronal cleaved caspase-3 immunoreactiv-
ity, was found in the hippocampus and cortex, but not in 
the brainstem 7  days following SAH. This suggests that 
astrocytes undergo apoptosis also at later stages follow-
ing SAH [311].

Gelsolin (GSN), a protein found in astrocytes, neurons, 
and microglia, mediates the Ca2+-dependent severing, 
capping, and nucleating of actin filaments, and might 
be involved in the apoptotic process following SAH. 
Decreased GSN expression was found 12 h after induc-
tion of SAH, suggesting a role in the pathophysiology of 
EBI after SAH [312].

However, Rollins et  al. observed that apoptosis seems 
to be a minor contributor to astrocytic cell death after 
OxyHb exposure. On the other hand, OxyHb induced 
necrosis was observed in a large proportion of cultured 
astrocytes suggesting that SAH leads predominantly to 
astrocytic necrosis rather than apoptosis [313]. Necrosis 
of astrocytes is accelerated by extracellular ATP, whose 
concentration is many times higher in CSF after SAH 
compared to normal conditions. ATP activates G-pro-
tein-coupled P2Y receptors leading to IP3-dependent 
intracellular Ca2+ release from ER. This massive Ca2+ 
release leads to the opening of mitochondrial permeabil-
ity transition pores and subsequent astrocytic necrosis 
[314].

Transporters and ion changes in astrocytes after SAH
AQP-4 is the main aquaporin expressed in the cir-
cumvascular astrocytic endfeet. It facilitates intersti-
tial fluid (ISF) circulation within the glymphatic system 
[315]. AQP-4 has been proposed to play a role in the 

development of inflammatory changes after SAH. Astro-
cytic AQP-4 channels are in contact with blood com-
ponents and blood degradation products that enter the 
perivascular spaces after SAH. However, the deletion 
of AQP-4 did not alleviate neuroinflammation follow-
ing SAH [141]. Moreover, higher levels of AQP-4 and 
AQP-1 expression were found in the astrocytic pro-
cesses after SAH [316]. This suggests that upregulation 
of AQP-4 expression contributes to reduced brain edema 
by elimination of excess water from the brain following 
SAH [317]. Transport and elimination of ISF along with 
toxic products following a hemorrhagic stroke from the 
brain through AQP-4 may thus be important in detoxify-
ing brain tissue and mitigating both brain edema and EBI 
following SAH [315]. In contrast to this, Cao et al. sug-
gested that AQP-4 expression in astrocytic endfeet may 
be involved in cerebral edema formation following SAH 
[318]. Swelling of pericapillary processes is believed to 
be a key component of cytotoxic brain edema following 
SAH. The normal route for water and potassium efflux 
from the neuron is through the perivascular astrocytic 
endfeet and through molecular channels on the astro-
cytic membrane, where AQP-4 and the inward-rectifying 
K+ channel 4.1 (Kir4.1) mediate the spatial K+ buffering 
action of astrocytes. Following SAH, K+ ions released 
from neurons are moved into astrocytes via K+ chan-
nels like Kir2.1. Since the Kir4.1 channel is impaired in 
astrocytic endfeet after SAH, K+ accumulates in astro-
cytes, and water molecules move passively through the 
more numerous AQP-4 into the astrocytes. It was found 
that AQP-4 and Kir4.1 channel expression is dependent 
on p53 protein activation as well as on the activity of the 
p38MAPK pathway [319].

Changes in K+, Ca2+, and glutamate concentrations 
caused by astrocytic endfeet alterations contribute to the 
disruption of neurovascular coupling after SAH. Neu-
rovascular coupling is shifted from vasodilation under 
physiological conditions to vasoconstriction during SAH.

Moreover, it seems that uncoupling between neuronal 
cells and astrocytes occurs within the first hour of sus-
taining the injury. Astrocytes express soluble adenylyl 
cyclase, a HCO3

− sensor, that is activated by increased 
extracellular K+ after SAH and mediates the entry of 
HCO3

− into astrocytes. Increased HCO3
− levels trig-

ger the cyclic AMP cascade leading to the initiation of 
glycolysis and formation of lactate and subsequent neu-
ronal injury [320]. However, the Ca2+ concentration in 
the astrocytic endfeet isnot significantly different 4  h 
after SAH. This suggests that neurovascular coupling 
is altered by loss of CO2 reactivity, dependent on NO 
signaling rather than through increased Ca2+ concen-
tration in astrocytic endfeet in the immediate aftermath 
of SAH [321, 322]. Increased intracellular Ca2+ levels 
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are potentiated by the activation of metabotropic (P2Y) 
purinergic receptor expression in astrocytes. Extracel-
lular purine nucleotides, like ATP, released after SAH 
activate endfeet Gq-coupled P2Y receptors that contrib-
ute to endfeet high-amplitude Ca2+ signals (eHACSs), a 
mechanism that results in the inversion of neurovascular 
coupling [323].

The generation of eHACSs after SAH is likely due to 
the increased expression of IP3, but increased IP3 recep-
tor sensitivity could also be behind the generation of 
eHACSs—SAH induced a high-amplitude Ca2+  signal 
following IP3 mediated Ca2+ release from the ER. Acti-
vation and production of IP3 is the result of Gq-coupled 
receptor activation after SAH [324, 325].

Increased concentration of cyclooxygenase-1 (COX)-
derived PGE2 that is released from astrocytes and neu-
rons contributes to the alteration of neurovascular 
coupling through the EP1 receptor-mediated constric-
tion of cerebral arterioles after SAH. The PGE2- driven 
vasoconstriction of cerebral arteries was observed only 
at high PGE2 concentrations. On the other hand, low 
amounts of PGE2 released under physiological conditions 
contribute to E-type prostanoid receptor 4 (EP4) recep-
tor-mediated vasodilation. This vasodilatory effect of EP4 
is mediated by the stimulatory G protein (Gs) dependent 
stimulation of adenylyl-cyclase and increased production 
of the vasoactive and neuroprotective cyclic adenosine 
monophosphate (cAMP) and subsequent protein kinase 
A (PKA). But activation of EP1 receptor also leads to an 
increase of intracellular Ca2+ level resulting in vasocon-
striction of vascular smooth muscle cells [326–328].

Metabotropic glutamate receptors (mGluRs) are acti-
vated in astrocytic processes that are stimulated by neu-
ronal activation associated with glutamate release, and 
this leads to activation of the IP3 cascade and elevated 
Ca2+ level in astrocytic endfeet. The increased ampli-
tude of spontaneous Ca2+ oscillations in astrocytic end-
feet engenders a K+ efflux via endfoot large-conductance 
Ca2+-activated K+ (BK) channels. When the threshold 
of perivascular K+ exceeds 20 mM, it induces the depo-
larization of the smooth muscle membrane potential 
and parenchymal arteriolar contraction [329]. Increased 
concentration of K+ and glutamate depolarize not only 
smooth muscle cells but also nearby neurons and cause 
spreading depolarization in the grey matter because of 
contiguity [330]. Elevated intracellular Ca2+ in astro-
cytes and this spreading depolarization together result in 
the release of vasodilators like ATP or NO. On the other 
hand, spreading depolarization also induces astrocytes 
to release molecules such as prostaglandins, thrombox-
ane, or other cyclooxygenase products that have strong 

vasoconstrictive effects. Spreading depolarization after 
SAH may also increase the activity not just of neuronal 
but also astrocytic ATPase. This is associated with a pro-
longed period of elevated O2 utilization required for the 
recovery and reversibility of ion concentrations following 
spreading depolarization [331, 332].

Inflammatory response of astrocytes to SAH
Astrocytes also induce a potent inflammatory response 
after SAH. Increased expression of TNF-α, IL-1β, 
IL-6, IL-33, and MMP-9 was found in astrocytes after 
induction of SAH or stimulation by OxyHb [296, 333]. 
Increased expression of pro-inflammatory molecules 
stimulated by OxyHb results in increased activity of 
NF-κB. Nuclear factor-erythroid 2-related factor 2 (Nrf2) 
plays an important role in regulating the inflammatory 
response after SAH. Loss of Nrf2 in astrocytes enhanced 
the activity of NF-κB, resulting in the aggravation of the 
inflammatory response and apoptosis of astrocytes and 
the consequent poor prognosis [334].

Platelet-derived growth factor β subunit (PDGF-BB) 
levels increased in the CSF after SAH. Activation of 
astrocytic PDGFRβ leads to its phosphorylation and the 
activation of downstream pathways such as the mitogen-
activated protein kinase (MEK)/ERK, STAT3, and PI3K/
Akt pathways, which results in the expression of neuro-
trophic factors and synaptic recovery in the hippocam-
pus after SAH [335].

Yet, reactive astrocytes are able to induce scar forma-
tion and neurocan upregulation. The mechanism of scar 
formation is probably due to leakage of fibrinogen-bound 
latent TGF-β interaction with reactive astrocytes after 
BBB disruption or vascular rupture. This interaction leads 
to active TGF-β formation and activation of the TGF-β/
Smad signaling pathway in astrocytes which induce scar 
formation and neurocan production [336]. On the other 
hand, reactive astrocytes, as well as capillary endothe-
lial cells, are also responsible for the protection of the 
NVU via delayed osteopontin (OPN) upregulation that 
increases MAPK phosphatase-1 (MKP-1) and decreases 
vascular endothelial growth factor-A (VEGF-A) levels in 
the brain after SAH [214]. OPN, as well as Tenascin-C, 
represent matricellular proteins involved in the patho-
physiology of SAH [337].

Moreover, norrin, a small molecule protein secreted 
by astrocytes, may also play a role in this pathophysiol-
ogy. Norrin acts through its receptor Frizzled-4, which 
promotes β-catenin nuclear translocation leading to 
increased expression of occludin, vascular endothelial 
cadherin (VE-cadherin), and ZO-1. In this way, astro-
cytes may affect surrounding endothelial cells as well as 
BBB [338].
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Response of microglia to SAH
Microglial cells are key cells mediating neuroprotection, 
neuroinflammation, and neuronal apoptosis following 
SAH. The reaction of microglial cells on SAH is diffuse 
and results in a systemic response in brain tissue (Fig. 6a; 
Table  3) [296]. Generally speaking, neuroprotection is 
mediated through the detoxification of neurotoxic blood 
products or the expression of neuroprotective proteins 
(Fig. 6b).

Neuroprotection by microglia following SAH
Following SAH, extracellular Hb binds with high affin-
ity to haptoglobin and haptoglobin/Hb complexes, and 
in the absence of haptoglobin, Hb can be taken up by 
microglia via the CD163 receptor with lower affinity. 
Hb is subsequently internalized through the interac-
tion with CD163 and transferred to endosomes, where 
it is degraded to heme, peptides, and amino acids [339]. 
Heme oxygenase-1 (HO-1) plays a significant role in the 
degradation of pro-oxidant heme, and the Hb/hapto-
globin-CD163-HO-1 system contributes to hematoma 
clearance and defense against Hb neurotoxicity as well 
as erythrophagocytosis. Overexpression of CD163 posi-
tive cells was associated with the severity of SAH. Apart 
from microglia, CD163 expression was also found in 
macrophages, neurons, and oligodendrocytes after SAH 
[340, 341]. Further, HO-1 expression was found in micro-
glial cells throughout the brain, including the thalamus, 
striatum, hippocampus, cerebral and cerebellar cortex, 
forebrain white matter, as well as in the choroid plexus 
following SAH [342].

Microglial HO-1 dependent cytokines may influence 
neuron survival after hemorrhagic stroke [343]. Expres-
sion of HO-1 in microglia was associated with the upreg-
ulation of monocyte chemoattractant protein-1 (MCP-1/
CCL2), which causes migration and proliferation of 
microglia without directly activating their inflammatory 
response [343]. However, CCL20 localized on micro-
glia and neurons promotes inflammation via its cognate 
CCR6 receptor also expressed on microglia. CCL20/

CCR6 induces microglial activation and pro-inflam-
matory mediator release, thereby increasing neuronal 
apoptosis [344]. There is some evidence that not only 
cytokines but also the release of carbon monoxide (CO), 
one of the products of heme catabolism by HO-1, con-
tributes to the neuroprotective and antiapoptotic effects 
of HO-1 after SAH [341, 345]. A recent study confirmed 
the neuroprotective effect and the ability of CO to stimu-
late microglial phagocytosis of erythrocytes after hemor-
rhage [346].

One of the protective molecules, ApoE, supposedly 
has a beneficial effect on the pathological process via 
BBB preservation after SAH [162]. ApoE at least partially 
attenuates microglia-induced inflammation by suppress-
ing the JNK/c-Jun signaling cascade [347, 348]. Moreo-
ver, inhibition of the JNK/c-Jun pathway suppresses 
microglial activation and inhibits iNOS and nitrite accu-
mulation [349]. Low-density lipoprotein receptor-related 
protein-1 (LRP1), an endogenous ApoE receptor as well 
as ApoE were co-localized with microglia inside the 
white matter regions and were increased after 72  h fol-
lowing SAH.

LRP1 was expressed mainly in M2 microglia 
(CD206 + / CD163 + / Arg1 +) but less so in M1 micro-
glia (CD11b + / CD16 + / CD32 + / CD86 +), thereby 
pointing to the immunosuppressive phenotype of M2 
positive microglia [347, 350]. The anti-inflammatory 
response of LRP1 in microglia is due to the suppression 
of microglial activation by modulating the JNK/c-Jun and 
NF-κB signaling pathways [351]. The protective effect 
of ApoE may be also explained by the suppression of 
excessive activation of the LRP1/JAK2/STAT3/ NADPH 
oxidase 2 pro-inflammatory cascade that leads to M1 
microglia transformation after SAH [352].

The neuroprotective mGluR5 receptor was expressed 
in activated ED1 (CD68 +) microglia after SAH. Experi-
mental activation of mGluR5 reduces microglia activa-
tion and mRNA levels of the pro-inflammatory cytokines 
IL-1β, IL-6, and TNF-α after SAH. Activation of mGluR5 
leads to neuroprotection by decreasing the number of 

(See figure on next page.)
Fig. 6  Reaction of microglia to SAH. a Activated microglia-induced inflammation. Presence of CD11b+/ CD16+/ CD32+/ CD86+ on microglia 
promotes inflammatory activation of M1 type. TLR4 and BLT1 activation upregulate NF-κB, initiating inflammatory cytokine production and resulting 
in EC and neuronal apoptosis. Upregulated NEK7 and TREM-1 activate NLRP3, promoting caspase-1 and IL-1β maturation, Bax upregulation, 
and Bcl-2 reduction. CCR6 also promotes inflammation after the increased release of CCL20. C5a receptor responds to released C5a and also 
contributes to the increased production of inflammatory cytokines. Downregulation of the CX3CL1/CX3CR1 axis causes an increase in C/EBPα, 
resulting in pro-inflammatory responses. RAGE is activated via HMGB1, causing MAPK upregulation, thus NF-κB activation, and brain inflammation. 
Wnt1 downregulation suppresses the Wnt/Frizzled signaling pathway, which leads to β-catenin reduction. Downregulated PPAR-γ then results in 
inflammatory responses by NF-κB activation. b Protective role of microglia after SAH. Interaction of CD163 with Hb results in Hb internalization 
to endosomes for degradation into heme, peptides, and amino acids. mGluR5 regulates glutamate detoxification and reduces pro-inflammatory 
cytokines IL-1β, IL-6, and TNF-α. Activation of mGluR5 also leads to Bcl-2 upregulation and the downregulation of Bax and active caspase-3. PI3K-Akt 
pathway activation and subsequent cell survival are regulated by mGluR5. The Akt signaling pathway is activated by neuroglobin functioning as 
a ROS scavenger and Cyt c release inhibitor. LRP1 activation by ApoE downregulates the NF-κB inflammatory cascade and inhibits the JNK/c-Jun 
pathway, suppresses microglial activation, and inhibits iNOS and nitrite accumulation
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Fig. 6  (See legend on previous page.)
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apoptotic cells, the up-regulation of Bcl-2 expression, and 
the down-regulation of Bax and active caspase-3 expres-
sion [287]. Several molecular mechanisms have been pro-
posed to explain the neuroprotective action of mGluR5, 
including activation of the PI3K-Akt pathway leading to 
cell survival, action through the GluA2 subunit of AMPA 
receptors, or reactive astrogliosis [353].

Another endogenous neuroprotective molecule, neu-
roglobin (Ngb), is located in microglia as well as in the 
neuronal cytoplasm. After SAH, Ngb activates the Akt 
signaling pathway, which functions as a reactive oxygen 
species (ROS) scavenger, and inhibitor of cytochrome 
c release from mitochondria, thus protecting against 
N-Methyl-D-aspartate (NMDA) toxicity and hypoxia re-
oxygenation injury [354].

BDNF, an important member of the neurotrophic fac-
tor family, was also increased after SAH, its up-regulation 
of BDNF expression being found in microglia, astrocytes, 
and neural stem cells in subventricular zones 5 and 7 
post-SAH [304].

SAH‑induced inflammatory reaction of microglia 
following SAH
It was suggested that resident microglia rather than 
macrophages are responsible for the initial inflamma-
tory reactions. Early on, from day 1 to day 5 after SAH, 
microglia underwent M1-like polarization, to they 
adopted an “activation” morphology with thicker, sim-
pler, less branched processes and a generally swollen and 
more amoeboid form. Almost all of the Iba1 + microglia 
expressed gelsolin (GSN) 1 day after SAH. GSN is a pro-
tein that mediates Ca2+-dependent severing, capping, 
and nucleation of actin filaments, thus acting as a regula-
tor of cell structure and metabolism and could play a role 
in changing morphology [312].

In the delayed phase (10  days after SAH), M1 micro-
glia are converted to M2 phenotype characterized by 
scavenging debris, expression of anti-inflammatory 
molecules, and promoting angiogenesis. Despite the 
finding that BBB is altered after SAH, the majority of 
Iba1-positive cells 5  days following SAH are Ccr2 − /
Cx3cr1 + cells, suggesting that resident microglia rather 
than peripheral immune cells are the cellular mediators 

Table 3  Reaction of microglia to SAH

Cell Type EBI DCI

Microglia

0-1 hour 3-12 hours 24 hours 48 hours 72 hours 3-21 days

-

GSN (12h) [312] NEK7 [227]

-

LRP1 [350] HMGB1 (5d)
[292]

RAGE (    12h) [371] HO-1
[341,343,345,346]

Peli1 in microglia
[367] Ccr2−/Cx3cr1+ 

cells (5d)
[312,355,356]

GLT-1 by C5a (12h)
[375] CD163 [340]

CCL20 [344]CX3CL1 and 
CX3CR1 &          

C/EBPα (12h) [358]

MCP-1 [343] BDNF (5&7d)
[304]

BLT1 (6-72h) [230] CD163 (7d)
[340]

TREM-1 (    24h) [373] M1     M2 
(10d)

[312,355,356]
ApoE (6-48h)  (    48h) (  72h) [162,347,350]

Ngb (  24h) [354]
Wnt1, Frizzled1, & β-catenin (6h to 7d) 48h [368]

M1-like polarization 1-7 [312]

-

mGluR5 prevents 
microglia activation

[287,353]

-

Microglial-
dependent 
neuronal 

apoptosis (7d)
[280]

Prx2-induced microglia 
activation through 

TLR4/MyD88/NF-κB 
signaling pathway

[366]

Iba-1+ cells 4-
28d ( 14d)
[355,360]CX3CR1-GFP+-induced proinflammatory reaction (  72h) [357]
Activated 

microglia (4-
28d) [355]

IL-1β (4-28d) 
IL-1α (4-

28d) TNF α (4-
28d) 14d

IL-6 (4-28d)
[360]

Key: -(P) phosphorylation,          Maximum or minimum change, VD voltage dependent 
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of inflammation in the CNS after SAH [312, 355, 356]. 
Similar results were published by Xu et  al., who found 
that CCR2 macrophages do not enter until at least 48 h 
following induction of SAH [357]. These results suggest 
that inflammatory changes are mainly caused by acti-
vated microglia rather than recruited peripheral mono-
cytes early on after SAH.

CX3C-chemokine ligand 1 (CX3CL1)/ CX3C-
chemokine receptor 1 (CX3CR1) may play an impor-
tant role in microglial activation and EBI after SAH. 
CX3CL1 (fractalkine) expressed in neurons, and its 
receptor CX3CR1 located in microglia form a signal-
ing pathway between neurons and microglia. CX3CL1 
and CX3CR1 protein levels were significantly reduced 
12  h after SAH, which was accompanied by increased 
protein CCAAT-enhancer-binding protein α (C/EBPα) 
expression [358]. C/EBPα is a key regulator of micro-
glia quiescence, and increased levels of this protein were 
associated with higher numbers of activated CD45 + and 
MHC II + microglia resulting in a pro-inflammatory 
response [359]. A robust pro-inflammatory reaction 
induced by resident CX3CR1- green fluorescent protein 
(GFP) + microglial cells develop in the cortex as early as 
24  h after SAH and reaches a maximum at 72  h [357]. 
However, it seems that microglial activation continues 
also later on after SAH [355]. Schneider et al. described 
that the number of Iba-1 positive (activated) microglia 
was highest 14  days after hemorrhage. Double immu-
nostaining using Iba-1/GFP showed that most Iba-1 posi-
tive cells lacked GFP immunofluorescence, suggesting 
that the Iba‐1‐positive cells originate from the pool of 
resident microglia instead of peripherally derived mye-
loid cells [360]. Activated microglia begin to accumulate 
4 days after SAH and decline gradually by day 28. How-
ever, there is some evidence that microglia may play a 
role in brain damage several months or even years after 
SAH [355].

Increased numbers of activated microglia occur follow-
ing neutrophil-endothelial interaction induced by inter-
cellular adhesion molecule 1 (ICAM-1) and P-selectin 
glycoprotein ligand-1 (PSGL-1) during the first 4  days 
after SAH. Intravascular inflammation and subse-
quent microglial activation were described as “cerebral 
spreading inflammation,” reflecting neuronal cell death 
after SAH [228, 360]. However, it remains question-
able whether increased microglial activation following 
increased neutrophil infiltration is independent events 
mediated by parenchymal changes or whether microglia 
activation is somehow related to neutrophil recruitment 
[361].

Controversially, Gris et al. found increased numbers of 
activated resident microglia but also recruited monocytes 
1 and 2  days after induction of SAH. This observation 

points to early intracerebral peripheral monocyte infiltra-
tion and innate immune activation [362].

Different signaling pathways downstream of TLR4 
play a significant role in inflammatory neuronal injury. 
Various TLR4 ligands, including heme, methemoglobin, 
hemin, and OxyHb, are released from lysed erythrocytes 
and act as potent DAMPs [280, 281, 363]. Activation of 
microglial TLR4 by DAMPs was recently shown to cause 
SAH-induced pyrexia [364]. In the early phase of SAH 
(7  days after induction of SAH), neuronal apoptosis is 
largely TLR4-MyD88-dependent and microglial-depend-
ent. On the other hand, in the later phase (15 days follow-
ing induction of SAH), neuronal apoptosis was seen to be 
TLR4/ TLR4–associated activator of interferon (TRIF) 
dependent and microglia-independent [280]. Akamatsu 
et al. suggested that heme released to CSF after SAH acts 
as a potent DAMP and activates the microglial MyD88 
cascade in the early phase while also activating the 
TRIF pathway in the later phase. The MyD88, as well as 
the TRIF cascades, lead to the expression of NF‐κB and 
MAPK, resulting in apoptosis, increased expression of 
pro‐inflammatory genes and adhesion molecules [365]. 
Another TLR4 ligand, peroxiredoxin 2 (Prx2), which 
is abundant in both erythrocytes and neurons, is con-
sidered a DAMP when it is released to the extracellular 
space. Prx2 was found to be the second most elevated 
protein in the CSF following SAH. Prx2 activates micro-
glia to the M1 phenotype through the TLR4/MyD88/
NF-κB signaling pathway. It promotes the synthesis and 
secretion of IL-1β and IL-6 from microglia, which leads 
to neuroinflammation and neuronal apoptosis [366]. 
Activation of the MyD88-dependent signaling pathway is 
facilitated by pellino homolog 1 (Peli1), which increases 
in microglia during the first 72 h after SAH. Peli1 acts by 
activating a cellular inhibitor of apoptosis proteins 1/2 
(cIAP1/2). Up-regulation of cIAP1/2 facilitates phospho-
rylation of the MAPK pathway and promotes microglia 
polarization to the M1 phenotype, releasing pro-inflam-
matory cytokines [367].

These pro-inflammatory cytokines increase the expres-
sion or activity of proteolytic enzymes, which can alter 
vascular endothelial cadherin (VE-cadherin) and gen-
erate VE-cadherin fragments. These fragments inter-
act with the MyD88/NFκB pathway and shift microglia 
towards a more pro-inflammatory state characterized by 
increased microglial cell size of Iba1 immuno-positive 
cells. Schneider et al. found microglia as the sole source 
of IL-6- as well as TNF-α in the later phase of SAH but 
the proportion of microglia expressing IL-6 was much 
lower compared with that expressing TNF-α (approxi-
mately 30%). Moreover, the corresponding cytokine 
receptors were also up-regulated, suggesting a paracrine/
autocrine action of these cytokines [360].
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Expression of NF-κB as a major regulator of inflam-
mation, expression of genes for inflammatory cytokines, 
enzymes, and adhesion molecules may be affected by 
peroxisome proliferator-activated receptor gamma 
(PPAR-γ). Following SAH, expression and secretion of 
Wnt1 protein are decreased, which is accompanied by 
the suppression of the Wnt/Frizzled signaling pathway 
leading to reduction of β-catenin. Downregulation of 
β-catenin leads to decreased intranuclear PPAR-γ expres-
sion and results in ineffective antagonism of NF-κB 
[368]. Similarly, a recent paper revealed that soluble VE-
cadherin fragments in the CSF might interact with the 
MyD88/NFκB pathway and shift microglia towards a 
more pro-inflammatory state [369].

Leukotriene B4 (LTB4) receptor 1 (BLT1) stimulates 
NF-κB-dependent inflammation and may promote the 
inflammatory response after SAH. BLT1 was mainly 
expressed in microglia, neurons, and endothelial cells. 
Its increased expression was found as early as 6  h and 
lasted up to 72 h after SAH [230]. Increased expression 
of HMGB1 may contribute to the maintenance of inflam-
mation in the later stage. Cytosolic levels of HMGB1 
were upregulated in activated microglia 5  days after 
induction of SAH. HMGB1 activates MAP kinase path-
ways through receptors for advanced glycation end prod-
ucts (RAGE); it also up-regulates the transcription factor 
NF-κB and promotes brain inflammation [292].

During the acute phase of SAH, a small number of 
microglia was found to release HMGB1 into the extracel-
lular space. This suggests that microglial HMGB1 may 
be responsible for inflammation in the later stage follow-
ing SAH [370]. Accumulation of RAGE was increased in 
microglia after SAH. However, in contrast to HMGB1, 
increased levels of RAGE were found in the early stage of 
SAH and reached their peak at 12 h after SAH [371].

Microglial cells are the main source of leucine-rich 
repeat (LRR)-containing protein 3 (NLRP3) inflamma-
some belonging to the NLR family—a group of innate 
immune proteins considered to be sensors of PAMPs and 
DAMPs. They are able to promote caspase-1 and IL-1β 
maturation and secretion as well as increase the level of 
pro-apoptotic protein Bax and decrease the expression 
of anti-apoptotic Bcl-2 protein. The serine/threonine 
protein kinase 7 (NEK7) is critical for NLRP3 activation; 
increased NEK7 expression was found in microglia and 
peaked 24 h after SAH [227].

Nonetheless, there are other activators of NLRP3, such 
as extracellular ATP, K+ ionophores, crystals, insoluble 
particles, certain pathogens, ROS, K+ efflux, and endolys-
osomal leakage [372]. Most of these activators are present 
in the brain after SAH. Therefore, NLRP3 inflamma-
some activation may play a key role in the development 
of inflammation and increased barrier permeability after 

SAH. Triggering receptor expressed on myeloid cells 1 
(TREM-1), a transmembrane protein on microglial cells, 
is also involved in NLRP3 inflammasome activation after 
SAH. Increased expression of TREM-1 was found over 
72 h, with a peak at 24 h after SAH [373].

The complement system also plays an important role 
in the innate inflammatory response after SAH. Activa-
tion of the complement system results in the cleavage 
of complement component 5 (C5), yielding C5a and the 
lytic membrane complex C5b-C9. Increased levels of C5a 
were found in the CSF over the first 5  days after SAH. 
C5aR, the receptor for this complement-activated prod-
uct, is also expressed on microglia and contributes to the 
development of neuroinflammation and cerebral vasos-
pasm [374]. Evidence shows that C5a increases microglial 
GLT-1 expression and removes extracellular glutamate, 
which plays an important role in BBB disruption and 
causes excitotoxicity following a stroke [375–377].

Reaction of neurons to SAH
Neuronal protective mechanisms after SAH
One of the main causes of cognitive deficit after SAH is 
the decreased number of neuronal cells [202, 378–380]. 
On the other hand, SAH also triggers some healing cas-
cades by which the brain is protected against the conse-
quences of bleeding from a ruptured aneurysm (Fig.  7; 
Table  4). However, protective and harmful mechanisms 
can occur simultaneously, given the interaction between 
neurons, microglia, and astrocytes. This statement is 
supported by the observation that TNF-α activates 
astrocytes to a deleterious A1 type, whereas expression 
of prokineticin 2 (PK2) in neurons increases and subse-
quently promotes the differentiation of astrocytes into a 
protective A2 type by activating STAT3 [286, 288].

Following SAH, blood degradation products in the 
paravascular space can stimulate endothelial cells and 
pericytes to secrete platelet-derived growth factor β sub-
unit (PDGF-BB), which results in astrocytic activation by 
stimulation of PDGF-Rβ. The PDGF-BB/ PDGF-Rβ path-
way leads to the expression of neurotrophic factors that 
mediate synaptic recovery after SAH [335]. Increased 
neuronal survival is also associated with up-regulation 
of the EGFR family member v-erb-b2 avian erythroblas-
tic leukemia viral oncogene homolog 4 (ErbB4) and yes-
associated protein (YAP and both are highly expressed in 
neurons 72  h after SAH. YAP promotes cellular growth 
probably through the phosphatidylinositol-4,5-bispho-
sphate 3-kinase catalytic subunit beta (PIK3CB), a cata-
lytic subunit of phosphoinositol-3-kinase [381]. On the 
other hand, in neurons, the expression of some pro-
teins such as sirtuin 3 (SIRT3), a member of the family 
of highly conservative NAD-dependent enzymes—is 
decreased after SAH. Downregulation of SIRT3 is 
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associated with increased ROS generation as well as cel-
lular apoptosis [382]. However, SAH causes an increased 
expression of another sirtuin, SIRT1, that is also found 
predominantly in neurons. SIRT1 expression peaks 24 h 
after SAH and remains elevated up to 72  h after SAH. 
Expression of SIRT1 in neurons leads to the deacetyla-
tion of acetylated-forkhead box O (ac-FoxO), acetylated-
NF-κB, and acetylated-p53, resulting in the attenuation 
of oxidative, inflammatory, and apoptotic pathways and 
consequently EBI development [383]. Dynamic changes 

of nerve growth factor (NGF) expression also contribute 
to brain recovery following SAH. The highest expression 
of NGF occurs in the cortex and brainstem 12  h after 
SAH and after 24 h in the hippocampus. NGF expression 
dynamics are similar to its functional receptor tropomyo-
sin receptor kinase A (TrkA), with a recovery at 5  days 
after SAH. These findings suggest that the NGF-TrkA 
interaction contributes to neuronal protection, regen-
eration, and axonal growth that are altered mainly in the 
acute phase of SAH [384]. However, phosphorylation 

Fig. 7  Neuronal protective mechanisms after SAH. SAH-induced neuroprotection involves decreased cell apoptosis, necrosis, neuronal 
regeneration, oxidative injury, inflammation, and removal of damaged mitochondria. Attenuation of neuronal apoptosis is supported by molecules 
up-regulated by TGR5, MANF, Akt, SIRT1, UCP-2, and GPR30. Increased expression of TGR5 leads to up-regulation of anti-apoptotic protein levels 
including cAMP, p-PKCε, ALDH2, HO-1, Bcl-2, and down-regulation of pro-apoptotic proteins such as 4-HNE, Bax, and cleaved caspase-3. SAH 
induced. MANF leads to activation of Akt, resulting in up-regulation of p-MDM2 and Bcl-2 and down-regulation of pro-apoptotic molecules. 
Up-regulation of SIRT1 contributes to the deacetylation of acetylated-forkhead box O, acetylated-NF-κB, and acetylated-p53, thus attenuating the 
oxidative, inflammatory, and apoptotic pathways. Increased UCP2 levels lead to decreased ROS generation. Moreover, an increase in PKA expression 
phosphorylates CREB, which results in UCP2 upregulation and downregulates Bax and Romo-1. Up-regulation of TrkA, NGF, and YAP/PIK3CB 
contribute to neuronal growth and regeneration and BBB maintenance (increased expression of occludin and claudin-5 induced by YAP/ PIK3CB 
pathway). Dephosphorylation of NMDAR via up-regulation of TRPC1/4 and subsequent CN protects neurons from excitotoxicity
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and activation of tropomyosin receptor kinase B (TrkB), 
a BDNF receptor, is reduced during the first 24  h after 
SAH resulting in increased apoptosis of neuronal cells 
[385]. On the other hand, increased BDNF expression is 
seen in the subventricular zone (SVZ) 5 and 7 days after 
SAH, indicating proliferation, differentiation, and migra-
tion of neural stem cells in the later phase of SAH [304]. 
In addition to BDNF, cerebral expression of synaptic pro-
teins such as synapsin-1, postsynaptic density protein-95 
(PSD-95), and growth-associated protein 43 (GAP-43) or 
neuronal differentiation factors like purine-rich binding 
protein-alpha were decreased following SAH [386].

Expression of other endogenous proteins such as 
trans-membrane G protein-coupled receptor-5 (TGR5) 
and mitochondrial aldehyde dehydrogenase 2 (ALDH2) 
gradually increases, peaking at 24  h after SAH. TGR5 
leads to upregulation of protein levels, including cAMP, 
p-PKCε, ALDH2, HO-1, Bcl-2, and the downregula-
tion of 4-Hydroxynonenal (4-HNE), Bax, and cleaved 
caspase-3. ALDH2 contributes to this protective effect 
by decreasing ROS accumulation, inhibition of mito-
chondrial apoptosis, and reversing mitochondrial mem-
brane depolarization resulting in the attenuation of 
neuronal apoptosis after SAH [387]. Increased expres-
sion of mesencephalic astrocyte-derived neurotrophic 

Table 4  Reaction of neurons to SAH

Cell Type EBI DCI
0-1 hour 3-12 hours 24 hours 48 hours 72 hours 3-21 days

Neuron

phosphorylation of 
nNOS at Ser [454]

PK2 (   12h) [288] EphA4 [401]

Cystatin C [413] ferritin [460]

BDNF
5d [304]NHE1 & CHP1 [423] Phosphorylation of 

TrkB [385]NOS-1 (1-24h) [456] TNF-α, IL-1β, 
& ICAM-1    
(5d) [415]

phosphorylation of nNOS at Ser1412 & PKA at 
Thr197 (1-3h) (    3h) [455]

RAGE [462]
Cathepsin-D [429]

CC – 3 (10min- 24h), (   24h) [14] TNF-α, IL-1β, 
& ICAM-1
(5d) [415]

p-AKT (1h cortex, 6h caudate putamen, 24h hippocampus) & p-GSK3β 
(1-24h cortex, 6h caudate putamen, 24h hippocampus) [450]

NF-κβ activity in Hb-incubated neurons (1-48h),    (    1 & 12h) [416] Caspase-3
(7d) [311]GRP78 (1-72h),    (   12h) [400]

SOX-2, & Musashi1 & Musashi 2 (0-40d) [470]
GluR2 (up to 7d) [440]

NF-κβ (1-3 & 10d),   ( 3 & 10d) [416]

- Cytochrome c (2-4h)
(    4h) [412]

FGFR1 (6-12h),
(   12h) - - GluR2 (6d)

[437]

Cell Type EBI DCI
0-1 hour 3-12 hours 24 hours 48 hours 72 hours 3-21 days

FGFR3 (3-24h)
(    6h) [389]

NF-κβ DNA-
binding 

activity (3-7d)
(   5d) [415]

NR2A, NR2B, & 
NR3B (3-5h) [435]

SMIT (6-24h) [414]
IL-6, IL-10,   TNF-α,    Bcl-xL,    Bax,    
Caspase-3,    CDKN1B (12-24h) [417]

GluR1 &
CaMK II (6d)

[437]PC-PLC (12-48h)     ( 48h ) [459]
HMGB1 (2-48h)      (   24h) [229]

REDD1 (7d)
[421]

AMPKα2, p-AMPK, p-ACC & p-LKB1 (6-72h) [419]
CC – 3, 8, 9 (6-48h)   (   48h) [399]

ROS (6-48h)   (   24h)
p-Erk1/2 (6-48h)   (    6h)

p-p53 (6-48h)    (   24h) [399]

GRP78 (6-48h)    (    24h) [400]
CHOP, ASK1, p-JNK & caspase-12 (12-48h)     ( 24h) [400]

Mas (   24h) [393]
AMPKα2 (6-72h) [419] [419]

p-AMPK, p-ACC, p-LKB1 (6-72h)    (    24h) [419]
BLT1 (6-72h) (  1d) [230]

AIM2, GSDMD, GSDMD-N, Caspase-1, & ASC (12-72h)   (    24h) [422]
Neurexin-1β & neuroligin-1 (3-72h)     (   72) [444]

MMP-9 (12-72h)     (   24h)     laminin (12-72h)     (   24h) [447]
ErbB4, YAP & Nrg1 (3-72h) [381]

SIRT3 (12-72h) [382]
(cortex)    NGF (6h-5d)    (   12h)
(cortex)   TrkA (6h-3d)    (   12h)

(hippocampus)    NGF (6h-5d)    (   1d)
(hippocampus) TrkA (6h-5d)   (    1d) [384]

- p-Akt, PI3k, Bcl-xl &
Bcl-2      Bax [390] - -
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factor (MANF) also contributes to the reduction in the 
number of apoptotic neuronal cells after SAH. MANF 
exerts its anti-apoptotic effect through the Akt- depend-
ent pro-survival pathway mainly at 3 h and peaking 24 h 
after SAH. Activation of Akt leads to up-regulation of p–
mouse double minute 2 homolog (p-MDM2) and Bcl-2, 
and the down-regulation of P53, Bax, cleaved caspase-3, 

and MMP-9 [388]. However, Okada et  al. found that 
expression of PI3k and p-Akt is not elevated 24  h after 
SAH. Activation of the PI3k/Akt pathway is partially 
through the fibroblast growth factor-2 (FGF-2), which 
binds to the fibroblast growth factor receptors FGFR-
1, -2, and -3. However, endogenous FGF-2 may not be 
high enough to activate the Akt cascade 24 h after SAH 

Table 4  (continued)

Cell Type EBI DCI
0-1 hour 3-12 hours 24 hours 48 hours 72 hours 3-21 days

DLK, JIP3, MA2K7,
p-JNK & CC – 3 [403]

Bax, & active
caspase-3

Bcl-2 [287]
PKA-Cα, p-CREB,

UCP-2, Bax, Romo-1
Bcl-2 [393]

P2X7R, HMGB1, 
TLR2, TLR4, TIRAP 

& MyD88 [271]
TLR4, p-NF-κB, IL-1β, 

& IL-6 [347]
p-p38 [406]

BDNF, synapsin-1, 
PSD-95, GAP-43, Pura, 

Bcl-2
cytochrome c 

(cytoplasm), Bax, 
caspase-3 [386]

Gelsolin (1-2d) [312]
AMPKα1 (24-48h) [419]

lncRNA MEG3 (3-24h) (  12h) [391]
p-TAK1 (Thr-187) (1-2d) [402]

TGR5 & ALDH2 (6-72h)     (    24h) [387]
MANF (3-72h)    (   24h) [388]

Nix (6-72h)    (    24h) [392]
GPR30 (3-72h) [394]

SENP3 (12-72h)   (    24h) [404]
VDAC (1-3d) [410]

HCN1 (1-3d)    (   3d) [436]

Cell Type EBI DCI
0-1 hour 3-12 hours 24 hours 48 hours 72 hours 3-21 days

Cellular & mitochondrial Ca2+ concetration (1-3d) [431]
Cellular ROS levels (1-3d)   (   1d) [431]

Cellular ATP levels (1-3d) [431]
CC – 3 level   (     2d) [431]
SOD2 (1-3d)    (  3d) [382]
p-PDGFR, p-ERK1/2 [406]

Beclin-1, LC3-II (1-3d)    (    1d) [429]
Mitochondrial cytochrome c (1-3d)
Cellular cytochrome c (1-3d) [431]

NF-κB (NF-κB (1-3 & 10d)   ( 3d, 10d) [441]
IL-1β & TNF-α [441]

Bcl-2 (1-3d)     (5-14d) [441]
Caspase-3 (3-5 & 10d) [441]

TRPC1 & TRPC4 (1-5d)     (5d) [434]
NR2B (1-7d)    (1d) [438]

GLT-1, GLAST & EAAC1 (1-7d) [442]
SynCAM 1 (1-7d)    (1d) [445]

NLK (1-14d)    (3d) [408]
active caspase-3 (1-14d)     (3d)

MSK (1-14d)       (3d) [420]

Key: -(P) phosphorylation,          Maximum or minimum change, VD voltage dependent 
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[389]. Moreover, there is evidence showing significantly 
decreased expression of p-Akt as well as PI3k, Bcl-xl, 
and Bcl-2, along with increased Bax expression following 
SAH [390]. Overexpression of the long non-coding RNA 
(lncRNA) maternally expressed 3 (MEG3) contributes 
to the inhibition of the PI3k/Akt pathway resulting in 
decreased Bcl-2 expression and increased expression of 
the pro-apoptotic Bax protein up to 72 h after SAH [391].

Regulation of quantitative and qualitative control of 
mitochondria is important to maintain neuronal cell sta-
bility. Nix, a B-cell lymphoma 2 -interacting protein 3 like 

protein (Bnip3L), plays a role in the removal of injured 
mitochondria and amelioration of brain injury. Expres-
sion of Nix peaked 24  h after SAH and then gradually 
decreased. This finding supports the assumption that 
mitochondrial damage occurs mainly during the first day 
after SAH onset [392]. The cyclic adenosine monophos-
phate (cAMP) response element-binding protein (CREB) 
plays an important role in memory function, synaptic 
plasticity, regeneration, and cell survival under various 
stress conditions, including those after SAH. CREB can 
be phosphorylated by protein kinase A (PKA), which is 

Fig. 8  Neuronal injury and inflammation after SAH. Schematic illustration of pathophysiological cascades leading to the development of 
inflammation and neuronal injury after SAH. Induction of NF-κB via activation of TLR4 (tenascin C), TAK1 (TNF-α and IL-1β), and BLT1 (LTB4) leads 
to overexpression of proinflammatory molecules such as TNF-α and IL-1β as well as ICAM-1. In addition to pro-inflammatory molecules, NF-κB, 
JNK, and p38 activate the mitochondrial apoptotic pathway and upregulate cleaved-caspase3 resulting in DNA fragmentation and neuronal 
death. Prolonged activation of AMPK leads to induction of Bim, which promotes Cyt c release from mitochondria and subsequent maturation of 
caspase-3. Increased expression of Eph receptor A4 (EphA4) and DLK also contributes to caspase-dependent neuronal death. Down-regulation 
MSK1 leads to decreased phosphorylation of Bcl2-associated agonist of cell death (Bad) and thus promotes neuronal death. Decreased activation 
and phosphorylation of TrkB reduces neuronal protection and thus increases neuronal apoptosis. Similarly, increased expression of CHP1 activates 
Na+H+-exchanger 1 (NHE1), which contributes to oxidative stress resulting in neuronal death. Down-regulation of SIRT3 contributes to the 
increased generation of ROS. The endoplasmic reticulum stress-related apoptotic proteins such as C/EBP homologous protein (CHOP), caspase-12, 
ASK1, and p-JNK are increased following SAH. The induction of these proteins contributes to neuronal apoptosis during the SAH
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accompanied by an increase in uncoupling protein 2 
(UCP2) level leading to decreased production of ROS 
and proapoptotic proteins such as Bax and reactive oxy-
gen species modulator (Romo)-1 [393]. Interestingly, 
SAH induces the expression of G protein-coupled recep-
tor 30 (GPR30), a membrane estrogen receptor, mainly in 
neuronal cells of male rats at 3 h, with a maximum at 24 h 
and declining by 72 h after bleeding. Activation of GPR30 
attenuates apoptosis of neuronal cells through the src/
EGFR/stat3 signaling pathway [394].

Neuronal injury and inflammation after SAH
Diffuse and irreversible neuronal damage develops within 
several hours after SAH in the cerebral cortex, and they 
correlate with the severity of SAH (Fig. 8; Table 4) [395].

Despite the protective mechanisms of neuronal cells, 
SAH leads to morphological abnormalities in cortical 
and hippocampal neurons, including cytoskeletal and 
nuclear changes [396]. Increased expression of cleaved 
caspase-3 has been observed after SAH [362, 397, 398]—
with caspase-3-mediated DNA fragmentation being 
found as early as 10  min after SAH [220]. However, a 
significant increase of neuronal cleaved caspase-3 was 
also found 7 days following induction of SAH, indicating 
neuronal apoptosis also in the later phase [311]. The lev-
els of cleaved caspase-8, caspase-9, and caspase-3 gradu-
ally increased in the hippocampus over a time-course of 
6, 12, 24, and 48 h following SAH [399]. The expression 
of glucose-regulated protein 78 (GRP78) supports the 
observation that apoptosis is highest in the first days after 
SAH [400].

Caspase-dependent neuronal death was associ-
ated with the upregulation of Eph receptor A4 (EphA4) 
after SAH. EphA4 is also able to induce neuronal death 
through Ephexin-1, Ras homolog family member A 
(RhoA), and the ROCK2 signaling pathway, all of which 
are increased 24  h after SAH [401]. Pro-inflammatory 
molecules, including TNF-α and IL-1β, could increase 
TGFβ-activated kinase 1 (TAK1) expression and con-
tribute to neuronal apoptosis 24 h after SAH. Increased 
TAK1 activity in neuronal cells led to the activation of 
NF-κB, JNK, and p38, resulting in cleaved caspase-3 
expression and neuronal death [402]. Upregulation of 
neuronal cleaved caspase-3 expression is also affected by 
dual leucine zipper kinase (DLK), which is increased 24 h 
after SAH. DLK contributes to neuron apoptosis through 
the downstream JIP3/MA2K7/JNK pathway resulting in 
increased cleaved caspase-3 [403].

Cleaved caspase-3 expression in neurons was posi-
tively correlated with the amount of small ubiquitin-like 
modifier-specific protease 3 (SENP3) during the first few 
days after SAH. This finding suggests a role for SENP3 
in inducing apoptosis following SAH [404]. It was found 

that the MAPK signaling pathway is responsible for the 
upregulation of caspase activity and neuronal apoptosis 
[405]. SAH activates PDGF that upregulates tenascin-C 
(TNC) and subsequently activates MAPKs. The termi-
nal MAPKs, extracellular signal-regulated kinase 1/2 
(ERK1/2), and p38 are activated at 24  h, and ERK1/2 is 
activated at 72  h following SAH [406]. TNC plays also 
a role as an endogenous TLR4 activator. Upregulation 
of TNC following SAH contributes to the activation of 
TLR4/NF-κB/ IL-1β and IL-6 pathway leading to cas-
pase-3 activation and neuronal apoptosis [407]. Nemo-
like kinase (NLK) was downregulated 3  days after SAH 
with a gradual increase over 14 days. Decreased expres-
sion of NLK was associated with a peak time-point for 
cell apoptosis, indicating a role for this kinase in the cas-
pase-3 activation pathway [408].

It has been suggested that neuronal apoptosis is the 
major contributor of morbidity and mortality after SAH. 
Neuronal cell loss probably continues into the later 
phase, and the majority of cells that die after SAH are 
neurons [380]. At the same time as apoptosis, necrosis 
and autophagy may occur in neurons. Extensive crosstalk 
has been described between the pathways for autophagy 
and apoptosis [409]. Mitophagy, the selective removal 
of mitochondria by autophagy, is induced by mitochon-
dria itself. Induction of pro-autophagic ROS leads to 
the formation and elongation of phagophores (LC3) 
and avoiding autophagy. However, increased expression 
after SAH of voltage-dependent anion channels (VDAC) 
interacts with LC3 on altered mitochondria and induces 
mitophagy [410].

Moreover, it seems that apoptosis via the mitochon-
drial pathway (associated with reduced cytochrome c 
release) plays a protective role in EBI after SAH [411]. It 
was found that cytochrome c is present in the cytosol of 
neuronal cells 3  h after hemolysate application into the 
subarachnoid space. Cytochrome c in the neuronal cyto-
sol leads to DNA fragmentation resulting in neuronal 
death after SAH [412]. Caspase-independent, as well as 
mitochondrial pathways, play a major role in the patho-
physiology of apoptotic cascades, mainly during the first 
few days following SAH [378]. However, Açıkgöz et  al. 
observed lower neuronal loss during the acute phase 
of SAH than in the later phase (7  days after induction 
of SAH). This finding can be explained by Cystatin C, a 
cysteine protease inhibitor, which was increased 2  days 
after induction of SAH [413]. Brain structures that are 
in direct contact with the blood clot can also be altered 
after SAH. Diffusion of blood degradation products into 
surrounding brain tissue may cause local hyperosmolar-
ity. Areas like the hypothalamus, the amygdala, and the 
temporal cortex are directly affected by blood-borne 
materials. In these areas, expression of Na+/myo-inositol 
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cotransporter (SMIT) reflecting osmotic stress is upregu-
lated between 6 to 24 h after SAH [414].

The development of neuroinflammation after SAH 
is associated with the loss of neurons. The pro-inflam-
matory changes in neurons mainly involve the activa-
tion of NF-κB. NF-κB activity peaked on days 3 and 5 
and remained increased 7 days after SAH. Activation of 
NF-κB contributes to EBI and DCI through the increased 
expression of pro-inflammatory molecules such as TNF- 
α, IL-1β, and intercellular adhesion molecule 1 (ICAM-
1), mainly in neurons after SAH [415]. You et  al. found 
biphasic NF-κB activity peaks 1, 3, and 10  days after 
SAH. The early peak in NF-κB activity was associated 
with decreased number of neurons and increased lac-
tate dehydrogenase released from damaged neurons. On 
the other hand, the late peak did not aggravate neuronal 
damage and even might be beneficial for neuronal sur-
vival [416]. Activation of the NF-κB inflammatory path-
way might be potentiated by BLT1. Expression of both 
BLT1 mRNA and BLT1 protein was increased; they both 
peaked on day 1 and remained increased on day 3 after 
SAH. Moreover, the leukotriene B4 (LTB4)-BLT1 axis 
might be involved in neutrophil recruitment [230].

PPARγ/NF-κB signaling pathway could be involved in 
neuronal cells death after SAH. Overexpression of cyclin-
dependent kinase inhibitor 1B (CDKN1B) could sup-
press apoptosis and inflammation. The beneficial effect of 
CDKN1B manifests through the suppression of NF-κB/
p65 and enhanced expression of PPARγ [417].

Gelsolin plays a role in the apoptotic process after 
SAH. The expression of gelsolin was found mainly in the 
neurons, microglia, and astrocytes in the brain cortex. 
The decreased expression of gelsolin reached a mini-
mum of 12 h after SAH and is probably caused by apop-
tosis-induced gelsolin cleavage [312]. Neurofilament light 
chain, the significant component of the axonal cytoskele-
ton, was detected in the CSF 24 h after SAH. The amount 
of neurofilament light chain in the CSF may reflect cer-
ebral ischemia and disruption of axonal membrane integ-
rity, leading to the release of neurofilament proteins 
[418]. The caspase-dependent apoptosis of neuronal cells 
can be promoted by prolonged AMP-activated protein 
kinase (AMPK). Its activation was associated with the 
induction of the BH3-only protein Bim (Bcl-2 Interacting 
Mediator of cell death), which can promote cytochrome 
C release from mitochondria. Numerous p-AMPK posi-
tive neuronal cells were found in the cortex 24  h after 
SAH [419].

MSK1 (mitogen- and stress-activated protein kinase 
1) was decreased, reaching a minimum at day 3 after 
SAH. MSK1 expression in neurons as well as astrocytes 
enhances phosphorylation of Bcl2-associated agonist of 
cell death (Bad) and promotes cell survival [420]. REDD1 

(Regulated in development and DNA damage responses 
1) may play an essential role through apoptosis and ROS 
induction in neuronal damage after SAH. Primary cor-
tical neurons treated with blood hemolysate showed a 
dose-dependent increase in REDD1 expression. Elevated 
expression of REDD1 in neurons was correlated with 
increased levels of REDD1 in CSF from patients after 
SAH [421].

Pyroptotic neuronal cell death, a form of cell death 
associated with proinflammatory signals, was recently 
described after SAH. Up-regulation of absent in mela-
noma 2 (AIM2), a protein that mediates pyroptosis, was 
found in cortical neurons exposed to OxyHb. Pyroptosis 
could occur through the AIM2/caspase-1/gasdermin D 
(inducer of pyroptosis) pathway, mainly during the first 
3 days after SAH [422].

Ion homeostasis is altered and contributes to neu-
ronal death after SAH. The level of Na+H+-exchanger 1 
(NHE-1), which plays an important role in maintaining 
intracellular pH homeostasis, gradually increased and 
peaked 24  h after SAH. The activity of NHE-1 is regu-
lated through interaction with a calcineurin-like EF hand 
protein 1 (CHP1) that is increased to a peak at 24 h after 
SAH. Up-regulation of NHE-1 probably via CHP1 inter-
action contributes to the development of brain edema, 
oxidative stress, inflammatory response, neuronal cell 
death, and cognitive dysfunction [423].

The endoplasmic reticulum (ER) plays an important 
role in cortical neuronal apoptosis during the first 48  h 
after SAH. Upregulation of endoplasmic reticulum (ER) 
stress-related apoptotic proteins like C/EBP homologous 
protein (CHOP), caspase-12, apoptosis signal-regulating 
kinase 1 (ASK1), and p-JNK peaked at 24 h and decreased 
at 48  h after the SAH [424]. Increased expression of 
phosphorylated JNK1, p38, NF-κB, and p53 promotes the 
activation of the mitochondrial apoptotic pathway and 
pro-inflammatory cellular signaling, thus contributing to 
EBI after SAH [425].

Moreover, direct oxidative damage of RNA leads to 
wrongly folded or truncated proteins that cause endo-
plasmic reticulum (ER) stress and activation of the 
unfolded protein response, resulting in neuronal dysfunc-
tion and death after SAH [426]. Despite the induction of 
pro-apoptotic proteins, ER stress predominantly acts as a 
pro-survival pathway [409]. Alterations of other subcellu-
lar organelles, including mitochondrial dysfunction, the 
autophagy-lysosomal system, and transcription factors 
(e.g., Nrf2, NF-κB, and HIF-1), are also involved in the 
pathophysiology of neuronal injury after SAH [427, 428]. 
Neurons in deep cortical layers of the fronto-basal cortex 
displayed numerous autophagosomes and autolysosomes 
following SAH. The autophagic activity destroys cel-
lular components and may lead to altered cell function. 
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Increased expression of Beclin-1, a Bcl-2 interacting pro-
tein required for autophagy, peaked 1 day after SAH and 
remained elevated for 3 days after SAH. Numerous apop-
totic cells were found in the superficial cortical layers in 
contrast to deep cortical layers. Similarly, cathepsin-D, 
a hydrolytic enzyme, increased immediately after SAH 
and peaked 24 h after SAH with a subsequent reduction 
[429].

Glutamate induced neurotoxicity after SAH
Neuronal mitochondria that are disrupted subsequently 
suppress the formation of N-acetylaspartate (NAA), 
mainly in patients with impaired perfusion or infarc-
tion. Interestingly, in patients without impaired perfu-
sion or infarction after SAH, levels of glutamate and 
glutamine produced in the mitochondrial matrix were 
significantly decreased. Therefore, this might be a con-
sequence of impaired energy metabolism in neurons 
[430]. An essential event for the initiation of neuronal 
death is cytosolic and mitochondrial Ca2+ overload 
caused by SAH [431]. Accumulation of Ca2+ is the con-
sequence of excessive glutamate-mediated excitotoxicity, 
which activates extra-synaptic GluN1/GluN2B contain-
ing N-Methyl-D-aspartate receptors (NMDARs), lead-
ing to Ca2+ influx. Activation of inositol trisphosphate 
(IP3) through mGluR1 releases Ca2+ from the ER and 
also increases the intracellular level of the Ca2+ [432]. 
Sur1-Trpm4 channels that have a protective effect against 
excessive intracellular calcium spiking are upregulated 
in neurons, astrocytes, oligodendrocytes, and microvas-
cular endothelial cells following SAH. These channels 
mediate depolarization, but if unchecked, the ion flow 
through them might end in cytotoxic edema and necrotic 
cell death [433]. Na+H+-exchangers (NHE1) increased in 
neurons with a peak at 24 h after SAH and can also con-
tribute to increased intracellular level of Ca2+. Excessive 
activation of NHE1 may lead to intracellular Na+ over-
load, which subsequently causes Ca2+ entry via Na/Ca 
exchanger (NCX), resulting in excessive cytosolic Ca2+ 
accumulation. However, the upregulated interaction 
with calcineurin-like EF hand protein 1 (CHP1) may also 
play a role in neuronal death related to NHE1 [423]. The 
intracellular accumulation of Ca2+ leads to the activation 
of pro-oxidative pathways, including phospholipases, 
xanthine oxidase as well as nitric oxide synthase. These 
changes are responsible for pathological changes such as 
lipid peroxidation as well as protein and DNA oxidation 
that contribute to neuronal cell death [171].

The N-Methyl-D-aspartate receptors (NMDARs) play 
an important role in EBI pathophysiology after SAH. One 
of the self-defense mechanisms targeted at NMDAR is 
the expression of transient receptor potential channels 
1 and 4 (TRPC1/4), members of the voltage-sensitive 

calcium ion channel family. Increased TRPC1/4 expres-
sion following SAH up-regulates the activity of calcineu-
rin (CN) which promotes NMDAR dephosphorylation 
and protects neurons from excitotoxicity. Moreover, 
activation of CN promotes nuclear transfer of activated 
T cells nuclear factor resulting in increased TRPC1/4 
expression [434].

The neuroprotective mechanism against decreased 
cerebral blood flow induced in the acute phase of SAH 
was apparent in the dentate gyrus but not in the CA1 
hippocampal region. This neuroprotective mechanism 
acts by altering the expression of N-Methyl-D-aspartate 
receptor subunit 2A (NR2A), NR2B, and NR3B, which 
contain the binding site for glutamate—thereby reducing 
NMDAR function and subsequent neuronal death 3 and 
5  h after SAH [435]. However, Hb inhibits hyperpolari-
zation-activated/cyclic nucleotide-gated (HCN) channels 
on CA1 pyramidal neurons and induces hyperexcitabil-
ity. Inhibition of HCN channels is probably caused by 
Hb released from the blood clot and the silencing of NO 
signaling [436].

The number of synapses in the hippocampal CA1 area 
was lower after SAH, and this decrease has been associ-
ated with the loss of long-term potential (LTP) responsi-
ble for synaptic plasticity, memory, and learning. Several 
proteins involved in LTP were reduced following SAH, 
including Ca2+/calmodulin- dependent protein kinase 
II (CamK II), myelin basic protein (MBP), along with a 
marked trend towards reduced GluR1 and increased glu-
tamate receptor type 2 (GluR2) [437]. NMDAR may play 
an important role in the pathogenesis of cognitive dys-
function. Further, the decreased expression of NMDAR 
subunits such as NR2B in the hippocampus may contrib-
ute to the learning deficit after SAH [438].

Platelet aggregation in parenchymal vessels leads to 
the formation of microthrombi and the release of glu-
tamate—the platelet signaling molecule [439]. Platelet-
derived glutamate around the microthrombi reduces 
glutamate receptor type 2 (GluR2) expression on the neu-
ronal surface and thus contributes to neuronal glutamate 
receptor dysfunction [440].

Activation of mGluR5, which seems to be neuropro-
tective, reduces caspase-3/NeuN-positive neurons in the 
cortex, up-regulates expression of Bcl-2, and down-regu-
lates expression of Bax at 24 h after SAH [287]. However, 
You et al. found decreased Bcl-2 gene expression on days 
1 and 3 and increased expression at 5 and 14 days after 
SAH [441]. Changes in extracellular glutamate levels 
were also found after SAH. Increased extracellular gluta-
mate concentration was associated with downregulation 
of glutamate transporter 1 (GLT-1), glutamate/aspartate 
transporter (GLAST), and excitatory amino acid carrier 1 
(EAAC1). These changes in glutamate transporters were 
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accompanied by hippocampal neuronal degeneration 
during the first 7 days after SAH [442]. The mechanism 
of glutamate-induced neurotoxicity is summarized in 
Fig. 9 and Table 4.

Hippocampal damage after SAH
Despite the loss of long-term potential (LTP) at the Schaf-
fer collateral-CA1 synapses in the hippocampus, there 
was no neuronal or other structural damage after SAH 

[443]. Neurexin-1β and postsynaptic membrane protein 
neuroligin-1 play an important role in synapse forma-
tion in the CNS. Decreased expression of neurexin-1β 
and neuroligin-1 in hippocampal and cortical neu-
rons can contribute to cognitive dysfunction following 
SAH. Downregulation of neurexin-1β and neuroligin-1 
was observed as early as 3 h after SAH, with the lowest 
expression at 72 h after SAH [444]. During the early stage 
of SAH, synaptic cell adhesion molecule 1 (SynCAM 1), 

Fig. 9  Glutamate induced neurotoxicity after SAH. Schematic illustration of channels and receptor dysfunction after SAH. Increased extracellular 
glutamate concentration generated after SAH leads to downregulation of GLT-1, GLAST, and EAAC1, resulting in neuronal degeneration. 
Dysfunction of mGluR2 may play a role in cognitive deterioration. Activation of extra-synaptic GluN1/GluN2B containing N-Methyl-D-aspartate 
receptors (NMDARs) leads to increased intracellular Ca2+ accumulation. Another glutamate receptor, mGluR1, activates IP3 and releases Ca2+ 
from the endoplasmic reticulum. Increased expression of NHE1 leads to intracellular accumulation of Na+, which causes Ca2+ entry via Na/Ca 
exchanger and thus contributes to excessive cytosolic Ca2+levels. Increased intracellular Ca2+levels lead to increased ROS generation resulting in 
neuronal injury following SAH. Extracellular glutamate activates mGluR5 and resulting in neuroprotection via increased expression of Bcl-2 and 
downregulation of Bax. Inhibition of HCN channels probably via exhausted NO signaling facilitates neuronal excitability after SAH
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a homophilic cell adhesion molecule at the synapse, was 
downregulated on days 1 and 3 but was back to normal 
on day 14 [445]. These findings are in accordance with 
the suggestion that there are mechanisms other than 
neuronal death responsible for LTP loss and learning def-
icit after SAH [446]. However, Guo et al. reported higher 
numbers of apoptotic neurons in the hippocampus 24 h 
after SAH, and this increased neuronal death was asso-
ciated with elevated levels of MMP-9 [202]. Increased 
MMP-9 levels last up to 72  h after SAH but show a 
decreasing tendency. During the first 3 days after SAH in 
the hippocampus, neuronal anoikis was observed, which 
is a form of programmed cell death where cells lose their 
attachment to the extracellular matrix caused especially 
by laminin cleavage [447].

In contrast, Thal et  al. found no neuronal loss or 
changes in cellular morphology in the hippocampal 
CA1-3 region up to 72  h after SAH and suggested that 
these changes are more pronounced in later time points 
after SAH [448]. This observation is in accordance with 
decreased cholinergic basal forebrain neurons as well as 
hippocampal and neocortical cholinergic terminals at the 
later stage between 4- and 14-days following application 
of blood into the subarachnoid space. Saline injection 
produced no significant changes [449].

Increased phosphorylation of Akt (on serine-473) and 
GSK3β (on serine-9) in the late phase was found in the 
hippocampus, confirming hippocampal neuronal injury 
in the later stage of SAH. However, phosphorylation of 
these proteins was accelerated and was correlated with 
acute brain injury in the cortex [450].

These observations partially correlate with the obser-
vation that blood and its degradation products mainly 
cause neuronal damage in the basal frontal and temporal 
lobes. On the other hand, vasospasm, hypoxemia, hypo-
tension, as well as low CPP lead to neuronal apoptosis 
that, although is widely distributed in the brain, occur 
mainly in the hippocampus in the later phase of SAH 
[451]. It has been reported that the hippocampal CA3 
region is the most sensitive to SAH-induced neuronal 
damage [452]. Neuronal death in the granule cell layer of 
the hippocampal dentate gyrus is predominantly apop-
totic, whereas the hippocampal pyramidal cells usually 
showed necrotic death [453].

Changes in the hippocampus are induced not only by 
blood products after SAH but also by increased ICP. A 
sudden increase in ICP activates calmodulin-depend-
ent protein kinase IIα in the hippocampus, which leads 
to phosphorylation of the Ser-847 of neuronal NOS 1 h 
after SAH. The consequent decrease in the enzymatic 
activity of neuronal NOS prevents excessive production 
of harmful NO [454]. Rapid ICP increase may also affect 
neuronal survival in the first seconds after SAH. It was 

found that rapid blood injection decreased immunore-
activity of NeuN 6 h after SAH in the dentate gyrus but 
not in CA3/CA4, CA1, and cortical neurons. Compared 
to slow application, a sudden ICP increase produced 
by rapid saline injection leads to decreased numbers of 
NeuN positive cells in the hippocampal CA1 region. This 
finding suggests that there might be some association 
between neuronal damage and the ICP spike after SAH 
[379].

Moreover, a sudden ICP increase induces neuronal 
NOS (nNOS) and protein kinase A (PKA) phospho-
rylation at Ser1412 in the hippocampal dentate gyrus 
already 1  h after either SAH induction or saline appli-
cation. The excess NO produced by Ser1412 phospho-
rylated nNOS gets converted to peroxynitrite, causing 
neuronal cell damage [455]. A triphasic pattern of change 
was observed in nNOS-1 and inducible NOS-2 over 96 h 
after experimental SAH. The number of NOS-1 posi-
tive cells increased initially (between 1 and 3 h), gradu-
ally decreased to below control values between 6 to 72 h, 
and got back up to control values 4 days after SAH. Simi-
larly, the number of NOS-2 positive cells increased at 1 h, 
decreased to control values at 24 h, and increased above 
control values 4 days after SAH [456].

Blood induced neurotoxicity
In vitro studies confirmed that Hb at clinically relevant 
concentrations is toxic to cultured neuronal cells [457, 
458]. Following SAH, the release of OxyHb induces 
ERK phosphorylation and increases proapoptotic p53 
by upregulating c-Myc [399]. OxyHb could increase 
phosphatidylcholine-specific phospholipase C (PC-PLC) 
in cultured neurons, which mediates neuron apopto-
sis probably by activating the NF-κB signaling pathway 
[459]. Most non-heme iron in the brain is bound to fer-
ritin as Fe3+ and is localized mainly in the neurons and 
microglial cells after SAH. Iron deposition causes oxida-
tive injury leading to brain edema and neuronal death, 
and brain atrophy after SAH [460]. OxyHb released from 
a subarachnoid clot can scavenge NO and destroy nNOS 
expressing neurons due to its neurotoxic effect. Reduc-
ing the availability of NO leads to vasoconstriction [178]. 
During the first hour after SAH, when NO is depleted, 
NOS synthetic potential remains stable but subsequently 
increases over the next few hours [456].

Toll-like receptors (TLRs) play an important role in 
the development of pro-inflammatory and pro-apop-
totic responses after SAH. TLR4 may be necessary for 
neuronal apoptosis marked by TLR4–associated acti-
vator of interferon (TRIF), mainly in the late phase of 
SAH [280]. TLR-associated inflammation may be ampli-
fied by cortical spreading depolarization (CSD) after 
SAH. CSD induces the release of HMGB1, a TLR ligand, 
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potentiating the inflammatory reaction [461]. HMGB1 is 
released passively from necrotic cells and actively from 
cortical neurons as early as 2  h after induction of SAH 
[370]. The extracellular HMGB1 serves as a DAMP and 
potentiates inflammation through its interaction with 
TLR2, TLR4 as well as with the receptor for advanced 
glycation end products (RAGE). HMGB1 activates the 
RAGE and the downstream MAPKs and NF-κB signaling 
pathways [370, 462].

The release of ATP and other molecules known as 
DAMPs is facilitated by Pannexin-1 after SAH. Pan-
nexin-1is a membrane channel-forming protein and is 
expressed mainly on neurons and microglia. DAMPs 
such as ATP and other molecules released after Pan-
nexin-1 stimulation are recognized by TLR2/TLR4 and 
mediates the NF-κB inflammatory response. Moreo-
ver, ATP as a danger signal binds to the P2X7 receptor 
(P2X7R), which is upregulated after SAH, leading to 
the activation of NLR family pyrin domain containing 
3 (NALP3), caspase-1 as well as HMGB1 release, and 
thus contributes to the development of inflammatory 
response after SAH [271].

Cortical spreading depolarization after SAH
Several studies have shown that CSD contributes to neu-
ronal death after SAH [463, 464]. CSD leads to microvas-
cular spasms instead of vasodilation, and the subsequent 
ischemia delays cortical repolarization resulting in wide-
spread cortical necrosis after SAH [465]. It has been 
found that CSD begins 1 ± 2.2 min after SAH induction 
of and repolarization occurs within 2.3 ± 1.2  min. The 
direction of CSD is from the frontal lobe cortex in the 
direction of the occipital lobe cortex at a rate of 3 mm per 
minute [466]. CSD is a multifactorial phenomenon with 
some degree of contribution from glutamate, ATP, extra-
cellular K+ release, intracellular Ca2+ accumulation, as 
well as local anoxia [332].

It was experimentally found that local application of K+ 
and hemoglobin to the cortex to mimic hemolysis after 
SAH caused CSD, which led to spreading ischemia and 
widespread neuronal necrosis [467, 468]. Similarly, when 
fresh blood is applied, sulcal clot thicknesses were associ-
ated with greater CSD and the probability of recurrence 
[469]. Neuronal hyperexcitability in the hippocampal 
CA1 region contributes to CSD development. Increased 
neuronal excitability may be induced by Hb and the inhi-
bition of hyperpolarization-activated/cyclic nucleotide-
gated (HCN) channels. It was suggested that exhausted 
NO signaling in the CA1 region inhibits HCN channels 
and facilitates neuronal excitability after SAH [436].

The activation of neural progenitor cells can promote 
spontaneous recovery following SAH. Brain tissue sam-
ples from patients after SAH are positive for neural 

proliferation markers like SRY-Box transcription factor 
(SOX)-2 and Musashi. However, it remains questionable 
whether the newly formed neurons are functional [470]. 
On the other hand, neurogenesis decreased 1  day after 
experimentally induced SAH, reaching a minimum at 
day 3 and then increased gradually. The progenitor cells 
migrate from the subgranular zone to the granule cell line 
in the hippocampus and differentiate into mature neu-
rons as early as 14 days after SAH induction [471]. These 
neuronal progenitors were also detected in the subven-
tricular zone and the dentate gyrus, where they were 
decreased at 3 days and recovered to control numbers at 
7 days after SAH. The majority of newly proliferated cells 
differentiated into neurons and migrated into the granu-
lar cell layer of the dentate gyrus within 30  days [472]. 
Blood-induced neurotoxicity is summarized in Fig.  10 
and Table 4.

Reaction of vascular smooth muscle cells to SAH
Morphological changes in vascular smooth muscle cells 
following SAH
Vascular smooth muscle cells (VSMC) are key cellular 
components involved in SAH pathophysiology. Vasos-
pasms induced by VSMC contraction lead to hypoper-
fusion of brain tissue and result in the development of 
ischemic brain injury [473]. Morphological examination 
after SAH showed that VSMC have shortened, rounded 
and dystrophic morphology with numerous vacuoles and 
condensed chromatin [474]. Moreover, upon application 
of OxyHb as one of the degradation products of eryth-
rocytes, VSMC lose their shape to become irregular, and 
the plasma and nuclear membrane disintegrate, leading 
to loss of the complex internal structure. These changes, 
along with the apoptosis and necrosis caused by blood 
and its degradation products, result in reduced VSMC 
density following SAH [475, 476].

SAH induced changes in calcium and potassium content 
of vascular smooth muscle cells
Despite their lowered numbers, VSMC play a major role 
in vasoconstriction, and the development of vasospasm 
as one of the main complications of SAH.

The predominant physiological consequence of SAH is 
the accumulation of intracellular Ca2+ leading to VSMC 
membrane depolarization which results in contraction 
and subsequent vasospasms. Membrane ion channels 
and G protein-coupled receptors are involved in Ca2+ 
dependent contraction [477, 478].

One of the many mechanisms of blood-induced 
increase in calcium level following SAH is activation of 
matrix metalloprotease and production of heparin-bind-
ing EGF-like growth factor, which activates the EGFR 
tyrosine kinase. This then leads to the internalization of 
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voltage-gated potassium (Kv) channels and the suppres-
sion of voltage-dependent outward K+ currents in cer-
ebral artery VSMC. Decreased Kv channels may cause 
membrane depolarization and enhance Ca2+  influx via 
voltage-dependent Ca2+ channels (VDCCs), resulting 
in vasoconstriction [479–482]. The mRNA and pro-
tein of KV2.1 and KV2.2 channels were decreased 3 and 
7 days following SAH [483, 484]. However, several types 
of potassium channels are involved in the excitability of 
VSMC after SAH. The function of ATP-sensitive potas-
sium channels (sKATP) and the currents through them 
are inhibited after SAH. Modification of sKATP makes 
the channel open at a higher level of suprathreshold 

stimulation, which leads to a reduction in their activ-
ity followed by VSMC contraction. sKATP contains 
two subunits, an inward-rectifying K+ channel (Kir)-6.1 
and a sulphonylurea receptor (SUR2B). These channels 
maintain basal VSMC tension and increased blood flow 
during hypoxia or ischemia. However, SAH leads to alter-
ation of Kir6.1 72 h after SAH promoting the contraction 
of smooth muscle [485]. Large conductance calcium-acti-
vated potassium (BK) channels expressed in the VSMC 
also play a role in vasoconstriction after SAH [486]. 
Kv7 (KCNQ) channels are suppressed by different vaso-
constrictors associated with vasospasms like serotonin, 
endothelin, and vasopressin. Kv7 current suppression is 

Fig. 10  Blood induced neurotoxicity. Schematic illustration of blood and DAMPs induced neurotoxicity. OxyHb leads to phosphorylation of ERK 
that increases the pro-apoptotic p53 through the up-regulation of c-Myc. Other effects of OxyHb, such as increased PC-PLC mediating the NF-κB 
signaling pathway and scavenging of NO and destruction of nNOS expressing neurons, contribute to neuronal injury and vasoconstriction of blood 
vessels after SAH. DAMPs, including ATP and HMGB1, interact with TLR2, TLR4, and RAGE that activate the NF-κB and the MAPK pathways resulting 
in neuroinflammation, development of ROS, and neuronal death. HMGB1 is released due to CSD, passively from necrotic cells and actively from 
cortical neurons through the stimulation of P2X7R receptors. Activation of P2X7R receptors by ATP released from Pannexin-1 leads to the activation 
of NALP3 and caspase-1, contributing to the development of neuroinflammation. The iron storage protein ferritin binds most non-heme iron as 
Fe3+ ions. This iron deposition contributes to oxidative stress and neuronal death after SAH
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probably mediated by the activation of PKC that activates 
Gq/11-coupled receptors resulting in the inhibition of 
Kv7 channels [487, 488].

BK channels respond to depolarization as well as 
increased intracellular Ca2+ by opening and releasing K+ 
to the extracellular space [489]. However, mRNA expres-
sion of the BK channel β1 subunit decreases following 
SAH. Reduction in the mRNA for the BK-β1 subunit 
and also Kv 2.2 was correlated with the degree of vasos-
pasm [483]. It seems that SAH-induced reduction of 
β1-subunit could reduce the sensitivity of BK channels 
to Ca2+, shift its voltage dependence to more depolarized 
potentials and thus contribute to vascular contraction 
[490]. BK channels, as well as astrocytic endfeet, increase 
K+ in the perivascular space. Once the concentration of 
K+ exceeds an approximately ∼20 mM threshold, vaso-
constriction occurs instead of vasodilation [329]. Several 
potent vasoactive molecules, including angiotensin II, 
thromboxane A2, 5-hydroxytryptamine (5-HT), as well 
as heme and bilirubin oxidation end products (BOXes), 
are able to inhibit BK channels and are released following 
SAH [491, 492].

Nevertheless, the frequency of Ca2+  release-spikes 
from the sarcoplasmic reticulum is reduced after SAH. 
Altered Ca2+  spikes lead to reduced BK channel activ-
ity and increased voltage-dependent Ca2+ channels 
(VDCCs) activity resulting in elevated global cytosolic 
Ca2+  and membrane depolarization [493]. Reduction of 
Ca2+  spike frequency results from reduced expression 
of ryanodine receptor type 2 (RyR-2) Ca2+-release chan-
nels located on the sarcoplasmic reticulum and increased 
RyR-2- stabilizing protein, FKBP12.6 [494]. Moreover, 
Ca2+ activated K+ channels are inhibited by 20-hydrox-
yeicosatetraenoic acid (20-HETE) via activation of PKC 
and Rho kinase. Angiotensin II, endothelin, ATP, and 
serotonin are released following SAH and induce the for-
mation of 20-HETE. On the other hand, the formation of 
20-HETE is inhibited by NO, CO, and superoxide radi-
cals that are also generated after SAH [495]. However, 
it has been reported that 20-HETE blocks K+ channels 
and increases cerebral vascular tone after SAH [496]. 
Synthesis of 20-HETE is stimulated by 5-HT1B activation 
by 5-HT. This cascade potentiates the vasoconstriction 
response of 5-HT in VSMC after SAH [497].

In addition to K+, the intracellular level of Ca2+ plays 
a determining role in smooth muscle contraction. It is 
known that VDCCs such as L-type Ca2+ channels are 
involved in the pathophysiology of vasospasm after 
SAH [498, 499]. VDCC currents are increased 72 h after 
SAH and may play a significant role in the develop-
ment of cerebral vasospasm following SAH [500]. L-type 
Ca2+  channels could be inhibited by NO, and this sup-
pression of Ca2+ current may be one of the mechanisms 

of NO-induced relaxation of VSMC contraction [501]. 
Moreover, the NO-cGMP pathway also plays an impor-
tant role in smooth muscle dysfunction following SAH, 
and the alteration in this pathway is due more to changes 
in cGMP levels rather than to the disruption of the NO-
cGMP downstream pathway [502].

Interestingly, the expression of high voltage-acti-
vated L-type VDCCs subunits was decreased following 
SAH. On the other hand, the expression of low voltage-
activated T-Type VDCCs subunits was increased. This 
reduction in L-type currents after SAH may be one of 
the reasons for the low efficacy of L-type channel antag-
onists such as nimodipine [503]. In addition to L-type 
VDCC, OxyHb released after SAH induces the expres-
sion of R-type Ca2+ channels, reduces the sensitivity of 
L-type Ca2+ channels, and also contributes to reduced 
function of L-type VDCC antagonists [504, 505]. Despite 
these observations, Nystoriak et al. report an increase in 
L-type VDCC mediated Ca2+ influx in parenchymal arte-
riolar VSMC after SAH [506]. Vasoconstriction follow-
ing SAH may also be enhanced by vascular superoxide 
that increases Ca2+ entry probably through L-type chan-
nels [507]. In addition to ROS, elevation in intravascular 
pressure leads to greater membrane potential depolari-
zation and pressure-dependent contraction through the 
increased activity of L-type Ca2+ channels [506]. Besides 
L-type Ca2+  channel-induced entry of Ca2+ and the 
metabotropic Ca2+ release from the sarcoplasmic reticu-
lum, Ras homolog family member A (RhoA)/ROCK acti-
vation also contributes to VSMC contraction. OxyHb 
activates RhoA/ROCK, which enhances VSMC contrac-
tion. Increased intracellular Ca2+levels, along with ROCK 
activity, may participate in the observed increase in tonic 
VSMC contraction on day 5 after SAH [508, 509].

The ROCK family promotes smooth muscle contrac-
tion by phosphorylation of myosin light chain phos-
phatase (MLCP) at the myosin-binding subunit and 
inhibition of its enzymatic activity [151, 510, 511]. Inhibi-
tion of VSMC phosphatase was suggested as one of the 
mechanisms contributing to SAH-induced vasoconstric-
tion [512]. Bilirubin oxidation products (BOXes), and 
biliverdin that are present in the CSF after SAH, activate 
the alpha and delta PKC isoforms as well as RhoA in 
arterial VSCM leading to the activation of ROCK which 
phosphorylates and inactivates MLCP [513]. Moreover, 
BOXes increases contractile protein myosin ATPase that 
contributes to VSMC contraction and luminal constric-
tion [514]. Apart from the development of vasospasm, 
BOXes may play a role in vascular remodeling after SAH 
[515]. Apart from BOXes, OxyHb is also involved in 
activating PKCε and, to a lesser extent of PKCα [516]. It 
was found that PKCα and PKCδ play a pivotal role in the 
development of vasospasm after SAH [517].
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Sphingosyl-phosphorylcholine (SPC) is another potent 
vasoconstrictor that is increased after SAH in the CSF, 
where it also contributes to the ROCK-mediated phos-
phorylation and inactivation of MLCP [518, 519]. Fur-
ther, SPC activates p38MAPK and increases the activity 
of proinflammatory NF-κB and CCAAT-enhancer-bind-
ing proteins (C/EBP), a family of transcription factors in 
VSMC [520].

Inflammatory response of vascular smooth muscle cells 
after SAH
Stress, along with several molecules associated with SAH 
such as OxyHb, BOXes, endothelin 1 (ET-1), ATP, EGF, 
PDGF, IL-1β, TNF-α, activate membrane receptors lead-
ing to MAPK activation in the VSMC. The substrates 
for MAPK are caldesmon and calponin, that block myo-
sin binding to actin and inhibit actin-dependent myo-
sin ATPase activity in the VSMC. Phosphorylation of 
these proteins by MAPK reverses the inhibitory effect 
on VSMC contraction after SAH [521]. In line with this, 
calponin degradation following SAH was reported, indi-
cating a role for it in the regulation of VSMC contraction 
[522].

NF-κB, an ancient protein transcription factor, and C/
EBP proteins are involved in the regulation of inflam-
mation, cell proliferation, and cell survival following 
SAH. Activation of these transcription factors leads to 
increased expression of the chemokine monocyte che-
moattractant protein-1 (MCP-1/CCL2) as well as other 
pro-inflammatory molecules like TNF-α and IL-1β, 
which contribute to the development of inflammation 
following SAH [520, 523].

It has been suggested that the initial drop in CBF 
induced by SAH triggers molecular cascades that result 
in vasoconstriction. The presence of blood in the suba-
rachnoid space under higher pressure following SAH 
leads to the activation of integrins, mechanoreceptors, 
and plasma membrane receptors that activate the down-
stream Raf-mitogen-activated protein kinase (MEK1/2)–
ERK1/2 pathway and consequently transcription factors 
including STAT3.

The decreased arterial wall tension reduced blood flow. 
The presence of blood in the subarachnoid space follow-
ing SAH results in the activation of integrins, mechano-
receptors, and plasma membrane receptors that activate 
the downstream Raf-mitogen-activated protein kinase 
(MEK1/2)–ERK1/2 pathway and consequently tran-
scription factors, including STAT3. These transcription 
factors then induce increased expression of pro-inflam-
matory cytokines like TNF-α, IL-1β, IL-6, as well as 
MMPs, iNOS, and receptors for angiotensin II type 1 
(AT1) endothelin B (ETB), 5-HT1B, and TX2a [524–527].

The increased expression of endothelin A (ETA) led to 
VSMC contraction after SAH [218, 528]. Stimulation of 
the ETA receptor activates PKC and Ras homolog fam-
ily member A (RhoA)/Rho kinase, leading to increased 
phosphorylation of MLCP, contributing to cerebral 
vasospasm development [529]. Expression of other con-
tractile receptors for ETB, 5-HT1B, and AT1 reached a 
maximum at 48  h after SAH. Along with the expres-
sion of the 5-HT1D receptor in VSMC contributing to 
increased contractility after SAH [530], these changes in 
receptor expression were associated with cerebral blood 
flow reduction [267].

Pro-inflammatory cytokines, growth factors, and oxy-
gen radicals cause dedifferentiation of VSMC, giving rise 
to the so-called phenotypic transformation that contrib-
utes to cerebral vasospasm [531]. Phenotypic transfor-
mation changes VSMC from the contractile phenotype 
(under normal physiological conditions) to the synthetic 
phenotype in which vascular tone becomes difficult to 
regulate. The synthetic phenotype is characterized by 
increased proliferation of extracellular matrix compo-
nents, including an excess of collagen leading to vascu-
lar wall thickening and stenosis, narrowing of the lumen, 
and reduced expression of contractile genes [532, 533]. 
Expression of embryonic smooth muscle myosin heavy 
chain (SMemb), a marker of the synthetic phenotype, 
increased at 24 h after SAH [534, 535]. These phenotypic 
changes may explain the sustained VSMC contraction 
that can be seen for more than 2 weeks after SAH [536, 
537].

Mammalian target of rapamycin (mTOR) and prolif-
erating cell nuclear antigen (PCNA) may play a role in 
regulating growth, proliferation, survival, and protein 
synthesis in VSMC. This suggestion is supported by 
increased expression of mTOR and PCNA in contracted 
VSMC seen at 7 days after SAH induction [538]. More-
over, PCNA expression increased simultaneously with 
p-ERK1/2 and peaked on day 7 after SAH indicating a 
prolonged inflammatory response [539].

Remodeling the vascular wall during phenotypic trans-
formation was also associated with the increased tenas-
cin-C (TNC) levels found mainly in the VSMC layers. 
The extent of this increase was higher in patients with 
vasospasm [540]. The TNC protein level was elevated 
on day 1 and decreased on day 3 after SAH. Immuno-
reactivity of another matricellular protein, osteopontin 
(OPN), was decreased on day 3 after induction of SAH 
[541]. The beneficial effect of OPN is probably medi-
ated upon VSMC phenotypic transformation through 
the integrin-linked kinase (ILK) and Rac-1 that preserves 
VSMC phenotype [535, 542]. Remodeling VSMC during 
phenotypic transformation was also characterized by the 
expression of beta-actin rather than alpha-actin. Vascular 
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remodeling after SAH, as well as cellular growth, could be 
mainly attributed to increased beta-actin mRNA expres-
sion [543]. The decreased alpha-actin intensity in VSMC 
probably contributes to the VSMC shift towards a more 
synthetic (less differentiated) phenotype [544].

Remodeling of vascular smooth muscle cells following SAH
SAH stimulates receptors, including platelet-derived 
growth factor receptor β (PDGFR-β), that are expressed 
on VSMC. The PDGFR-β signaling cascade activates 
IRF9/SIRT-1/NF-κB pathway and contributes to VSMC 
phenotypic transformation during EBI after SAH [545]. 
Platelets, macrophages, and endothelial cells release 
PDGF-β that peaks 7  days after SAH and activates the 
PDGF receptor on VSMC. Moreover, activation of PDGF 
receptor leads to activation of cellular proliferation path-
ways such as MAPK, ERK1/2, PI3K, and Rho-ROCK 
resulting in the intracellular accumulation of Ca2+, and 
the hyperplasia and hypertrophy of VSMC after SAH 
[546, 547]. However, it seems that increased PI3K activ-
ity (rather than elevated PI3K protein expression) con-
tributes to VSMC contraction on day 7 following SAH 
induction [548]. Prolonged increases in PDGF-β upregu-
lates the PDGF-β receptor, which increases VSMC con-
tractility in response to PDGF-β [216]. Upregulation of 
Rho kinase activity after SAH also contributes to the con-
traction of VSMC and the increased sensitivity of myofil-
aments to Ca2+, especially to ET-1 [549]. Rho kinase also 
augmented contraction in response to serotonin in the 
VSMC following SAH [550]. Borel et al. found that vascu-
lar and perivascular proliferation associated with PDGF 
protein was mainly associated with regions affected by 
thrombi [551]. PDGF-induced contraction is depend-
ent mainly on Ca2+ elevation through phospholipase 
C-γ. Activation of phospholipase C-γ and subsequent 
IP3 production leads to increased MLC phosphorylation 
and contraction of VSMC [552]. PDGF receptor activa-
tion could be inhibited by caveolin-1, a primary caveolae 
protein, which shows strong anti-mitogenic and anti-
proliferative effects. Decreased expression of caveolin-1 
in VSMC was found at 7 days, which then recovered on 
day 14 after SAH induction [553]. Phenotypic switching 
of VSMC from the contractile to the synthetic phenotype 
and consequent vascular remodeling is partly regulated 
by HMGB1, which acts by activating the PI3K/ Akt path-
way. HMGB1 expression peaked at 72  h and remained 
elevated 5 days after SAH [554].

It seems that signaling cascades downstream of EGFR 
also play a role in the pathophysiology of SAH. Vasoac-
tive molecules like ET-1, thrombin, and angiotensin 
II activate EGFR and its intracellular protein tyrosine 
kinase via G protein-coupled receptors, resulting in 
ERK1/2 activation and vasoconstriction [555]. Thrombin 

is one of the major activators of protease-activated 
receptors (PAR) after SAH [556]. Among other effects, 
thrombin activates PAR-1, -3 and, -4 and induces con-
traction of VSMC mainly through PAR-1 [557]. SAH 
was accompanied by up-regulation of PAR-1 and hyper-
responsiveness to thrombin. Moreover, thrombin leads to 
prolonged contraction of VSMC by persistent activation 
of PAR-1 caused by impaired feedback inactivation of 
PAR [558]. The mitogen-activated protein kinase (MEK)/
ERK1/2 pathway plays an important role in VSMC 
structural changes. Activation of the MEK/ERK cascade 
results in increased expression of contractile receptors 
such as angiotensin II type 1 (AT1), ETB, 5-HT1B, TX2a 
and thus potentiates vasoconstriction [559–561]. ERK1/2 
could also be stimulated by endothelin 1 (ET-1) through 
transactivation of EGFR protein tyrosine kinase lead-
ing to ERK1/2 stimulation, which contributes to VSMC 
contraction [562]. Stimulation of VSMC by endothelin A 
(ETA) receptor and ETB activated by ET-1 results in myo-
sin light-chain kinase (MLCK) activation and VSMC con-
traction [563].

SAH increases the expression of ET-1 and enhances 
myofilament Ca2+ sensitization via protein kinase Cα 
(PKCα) and the ROCK2 signaling pathway. It seems 
that PKCα is associated with transient phosphorylation, 
whereas ROCK2 mediates prolonged phosphorylation of 
MYPT1 at T853 and possibly also at T696 [564]. PKCα 
and PKCδ are activated and involved in ETB and 5-HT1B 
receptor upregulation following SAH [565]. ET-1 stimu-
lates store-operated Ca2+  channel (SOCC) and nonse-
lective cation channels-2 (NSCC-2) via phospholipase C 
leading to Ca2+ influx. Extracellular Ca2+ influx thus con-
tributes to ET-1 induced VSMC contraction after SAH 
[566]. Further, it was reported that ET-1 transactivates 
EGFR protein tyrosine kinase resulting in ERK1/2 stimu-
lation [562].

P2 nucleotide/purinergic receptors play a role in the 
accumulation of intracellular Ca2+. The expression of P2 
receptor subtype P2X1 mRNA was lowered 3  days after 
SAH and recovered between day 5 and 7 after SAH. 
On the other hand, expression of the P2Y1 subtype was 
increased 5  days after SAH returning to normal values 
at day 7 following SAH [567]. Continuously elevated 
intracellular Ca2+ levels result in vasospasm after SAH 
probably via the activation of μ-calpain and Ca2+/calm-
odulin-dependent MLCK phosphorylation of the myo-
sin light chain (MLC) [478]. The contractile phenotype 
(more differentiated) of VSMC is partially maintained fol-
lowing SAH by peroxisome proliferator-activated recep-
tor β/δ (PPARβ/δ) that induces PI3K/ Akt activation. 
However, Hb causes a decrease in PPARβ/δ expression 
and thus contributes to vascular remodeling [568]. The 
beneficial effect of PPARγ is also mediated by blocking 
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TLR4 activation and cytokine release from VSMC [569]. 
Increased expression of TLR4 in VSMC occurs 3 and 
5 days after SAH induction. Elevated expression of TLR4 
in VSMC likely contributes to inflammation of the vascu-
lar wall and thus influences VSMC contraction [570].

Moreover, there is evidence that increased MMP-9 
expression and decreased expression of collagen IV and 
V may enhance contractility of VSMC, resulting in vasos-
pasm after SAH [571]. Expression of MMP-9, as well as 
that of tissue inhibitors of metalloproteinase -1 (TIMP-
1), was elevated 48 h after SAH. The imbalance between 
MMP-9 and TIMP-1 expression is probably caused by 
the activation of the MEK/ERK1/2 pathway after SAH 
[572]. Activation of the MEK/ERK signaling pathway 
was associated with increased expression of TNF-α, TNF 
receptor (TNF-R)-1 and -2. Stimulation of these recep-
tors by TNF-α leads to activation of MAPK, and the 
subsequent transcription factors NF-κB and activator 
protein-1 (AP-1) induce the expression of pro-inflamma-
tory molecules in VSMC such as IL-1α, IL-1β, and IL-8 
[573, 574]. TNF-α is one of the major cytokines involved 
in the pathophysiology of SAH. In addition to its pro-
inflammatory properties, it also enhances vascular tone 
by affecting the sphingosine-1-phosphate (S1P) signal-
ing pathway. Increased bioavailability of S1P enhances 
its pro-constrictive effects. TNF-α activates sphingosine 
kinase 1 (Sphk1) gene expression that encodes S1P and 
inhibits S1P degradation partially via downregulation of 
the cystic fibrosis transmembrane conductance regulator 
(CFTR) [575].

Adenosine 1 (A1) receptor on the VSMC of the cerebral 
vasculature is considered to be the mediator of the aden-
osine response and is associated with vasodilation prob-
ably by maintaining normal iNOS and eNOS expression, 
opening KATP channels, or inhibiting N-, P- and Q-type 
Ca2+ channels [272]. However, Sehba et  al. found that 
inhibition of adenosine A2 (A2A) receptors decreases ICP 
and the constriction of major vessels while increasing 
CPP and microvascular collagen-IV [576]. Therefore, its 
affecting adenosine receptors in order to attenuate brain 
injury after SAH remains controversial.

Vascular smooth cells contribute to neuroprotection 
following SAH
Apart from the predominantly negative and some contro-
versial effects after SAH, there are also some mechanisms 
that contribute to neuroprotection. The increased expres-
sion of relaxin-1 (RLN1) following SAH causes vasodila-
tation, antifibrosis, anti-inflammation and probably also 
dilates arteries. Expression of RLN1 was increased on day 
7 after SAH induction. However, expression of relaxin/
insulin-like family peptide receptor-1 (RXFP1) was 
downregulated on day 3 after SAH and caused functional 

RLN1 reduction in cerebral VSMC [577]. On the other 
hand, OxyHb also induces VSMC expression of Nrf2 that 
upregulates expression of HO-1 and NAD(P)H: quinone 
oxidoreductase-1 (NQO1) after 48 h of OxyHb exposure. 
HO-1 and NQO1 have anti-inflammatory and antioxida-
tive effects and maintain redox homeostasis [578]. When 
exposed to Hb and its breakdown products, cultured rat 
basilar artery VSMC responded by increasing HO-1 pro-
tein expression after 6 h. Increased expression of ferritin 
was observed up to 72 h which might be related to sup-
pressing iron toxicity [579]. Transferrin, an iron-binding 
glycoprotein, may also play a role in the pathological 
cascades leading to vasospasm. Increasing transferrin 
concentration in the CSF following SAH induces iNOS 
mRNA in VSMC. This suggests that there might be some 
relationship between transferrin and cerebral vasospasm 
[580].

VSMC, as well as endothelium, contain D2-dopamine 
receptor (D2R) that mediate eNOS and iNOS as well 
as decreased intracellular Ca2+ concentrations after 
its stimulation by a D2R agonist following SAH [581]. 
Another receptor potentially involved in the pathophysi-
ology of vasospasm is parathyroid hormone receptor-1 
(PTH-R1). Expression of PTH-R1 mRNA was downregu-
lated after 3  days and upregulated 14  days from induc-
tion of SAH. Stimulation of PTH-R1 on VSMC by PTH 
leads to the activation of adenylate cyclase, accumulation 
of cyclic adenosine monophosphate, and activation of 
PKCα, thereby decreasing Ca2+ influx through voltage-
gated Ca2+ channels and resulting in vascular relaxation 
[582].

The role of gender and sex hormones after SAH
Numerous studies have focused on the potential thera-
peutic effect of sex hormones such as 17β-estradiol 
(estrogen; E2), progesterone and testosterone. However, 
the impact of gender.

on pathophysiological cascades after SAH has not been 
extensively studied [583].

Endothelium-dependent vasodilatory response is 
greater in women than in men. Moreover, endothelial 
cells in women are more resistant to the effects of vari-
ous signals mediating vasoconstriction. These differences 
in vasoreactivity are partially mediated by sex hormones 
and include increased eNOS synthesis, decreased levels 
of vasoconstrictor signals such as ET-1 and TXA2 [584]. 
In addition to vasoreactivity, female brain endothelial 
cells are more resistant to ischemic injury. The mecha-
nism of endothelial cell resistance to ischemic damage is 
due in part to lower expression of soluble epoxide hydro-
lase and higher expression of epoxyeicosatrienoic acids 
(EETs) in females. A higher level of EETs inhibits ROCK 
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activation induced by oxygen–glucose deprivation fol-
lowing ischemic injury [585].

Other positive effects of EETs may play a role in the 
pathophysiology of SAK, such as the inhibition of plate-
let aggregation and apoptosis, regulation of neurovascu-
lar coupling, decreased expression of PLA2, COX2 and 
PGE2, as well as increased expression of BDNF [273].

Vascular reactivity is important in patients after SAH. 
A few studies looked at vascular reactivity using sex 
hormones. The majority of them focused on functional 
outcome which is related to vasoreactivity and found no 
differences between women and men [583, 586]. How-
ever, an experimental study focused on gender differ-
ences in SAH pathology in rats found greater collagen-IV 
loss in males, which may be the result of a more severe 
inflammatory reaction. While the number of apoptotic 
cells increased (as revealed by caspase-3 activity), their 
number was greater in males when compared to females. 
This finding suggests that the initial impact of SAH is 
more severe in males than in females [587].

The major female sex hormone, E2, exhibits vasodila-
tory, anti-inflammatory, and neuroprotective properties. 
E2 maintains normal expression of eNOS and reduces 
expression of iNOS and ET-1, thus contributing to vas-
odilation. It was found that NFκB activation leads to 
increased iNOS expression. E2 induced downregulation 
of iNOS expression may act through disruption of NFκB/
iNOS binding activity. Administration of E2 not only 
attenuates vasospasm and secondary ischemic damage 
but also reduces mortality after SAH [588–591].

The anti-inflammatory response of E2 is mediated 
by suppression of JNK activity and the subsequent 
decreased expression of TNFα. Moreover, E2 binds to 
estrogen receptor β (ERβ) leading to decreased expres-
sion of ICAM-1, VCAM-1, MCP-1, P-selectin, and 
cytokine-induced neutrophils chemoattractant-2β 
(CINC-2β) resulting in decreased leukocyte chemotaxis. 
The neuroprotective action of E2 is mediated via the 
increased expression of thioredoxin (Trx) which leads to 
reduced lipid peroxidation and caspase-3 activation. E2 
neuroprotection is also mediated by its activating ERβ 
and the subsequent action of Ngb, which contributes to 
maintaining oxygen homeostasis in neurons. Ngb also 
offers protection against ROS-induced oxidative damage. 
Ngb has an anti-apoptotic effect as it inhibits the release 
of cytochrome c from mitochondria, and the increased 
expression of adenosine A2a receptor (A2aAR) and 
ERK1/2, as well as activating estrogen receptor α (ERα). 
Activation of ERα prevents suppression of the Akt sign-
aling cascade in the dentate gyrus after SAH [590, 592–
594]. Moreover, Akt induces phosphorylation of mTOR 
which promotes cell growth through the up-regulation 
of anti-apoptotic Bcl-2 [595, 596]. Despite increased 

Bcl-2 expression, the amount of pro-apoptotic Bax is not 
affected by E2 treatment [597].

Progesterone was shown experimentally to play a role 
in preventing vasospasm induced by SAH. Vasospasm 
is alleviated through the increased expression of eNOS 
via the upregulation of phospho-Akt protein expres-
sion [598]. In addition to increased eNOS, administra-
tion of progesterone also reduces synaptic injury by 
restoration of synaptic GluR1 levels and reduces micro-
glial activation as measured by Iba-1 expression [599]. 
Progesterone contributes further to neuroprotection 
by reducing pro-inflammatory molecules such as IL-β, 
TNF-α, IL-6, ICAM-1 and MCP-1. Decreased expres-
sion of pro-inflammatory molecules is brought about by 
attenuating the TLR4/NF-κB signaling pathway in the 
cortex following SAH [600]. BBB disruption and edema 
formation after SAH may also be alleviated by progester-
one and its down-regulating effect on MMP-9 and cas-
pase-3 [601]. Despite these beneficial effects of female 
hormones inferred from experimental studies, it appears 
that elderly women have a higher risk of developing DCI 
than men. However, studies are not unanimous about 
whether developing of DCI is caused by menopause or 
not [602–605].

A neuroprotective effect in the central nervous sys-
tem of testosterone, the main male sex hormone, has 
also been observed previously [583, 606]. Testosterone 
acts through ion channels and leads to the inhibition of 
L-type voltage-dependent Ca2+ channel (VDCC), and 
the opening of a voltage-dependent K+ channel follow-
ing SAH. Their combined action leads to VSMC relaxa-
tion and vasodilation. Other possible mechanisms of 
testosterone vasodilatory activity are via reduced ROS 
formation, an anti-inflammatory effect and increased NO 
synthesis [607].

In males, increased expression of some beneficial genes 
such as Nos3 and Thbd contributes to the neuroprotec-
tive effect. Nos3 encodes eNOS and thus contributes to 
vasodilatation. Thbd encodes thrombomodulin which is 
expressed on the surface of endothelial cells and mediates 
anti-inflammatory and anti-coagulant effects [608, 609].

On the other hand, testosterone also increases TXA2 
receptors in VSMC which may contribute to vasocon-
striction [584].

Potential drugs used in SAH treatment
Although SAH is currently considered treatable, it 
remains a condition associated with a high mortality 
rate [1]. In current practice, pharmacological treatment 
is limited to nimodipine, which should be administered 
to all patients after aneurysmal SAH as recommended in 
the 2012 guidelines [2]. However, continuous intra-arte-
rial nimodipine infusion is associated with side effects 



Page 46 of 79Solár et al. Fluids and Barriers of the CNS           (2022) 19:29 

such as increased levels of ICP, reduction of systolic and 
diastolic blood pressure, increase in infectious complica-
tions, and worsening of gastrointestinal tract motility [3, 
4].

Therefore, over the past few years, preclinical research 
has been focused on potential active substances that 
could have beneficial effects on pathophysiological pro-
cesses after SAH.

Table 5  Potential drugs affecting endothelial cells after SAH—from 2010 to 2021
Drug Drug descrip�on Model of SAH Mechanism Effect Author

(S)-4-
carboxyphenylgly

cine (S-4-CPG)

A selec�ve 
inhibitor of 
mGluR1 and 

mGluR5

Cisterna magna model/
single hemorrhage 

method/mice

Maintaining the phosphorylation levels of 
vasodilator-stimulated phosphoprotein (VASP)

Cerebral vasospasm
Garzon-

Muvdi et 
al. [30]

1,25-
dihydroxyvitamin 

D3 (1,25-VitD3)

An ac�ve form of 
vitamin D

Cisterna magna/single 
hemorrhage 
model/mice

SDF1α produc�on by �ssue-resident myeloid 
cells,  SDF1α binds its receptor CXCR4 on 

Cerebral vasospasm
Kashefiolas

l et al.
[179]

endothelial cells and induc�on of protec�ve 
genes

2,2ʹ-dipyridyl A fat-soluble Fe2+ 
chelator

Cisterna magna model/
two-hemorrhage 
method/rabbits

Caspase-3 &the number of apoptotic cells Oxidative stress-induced ECs 
apoptosis.

Yu et al.
[224]

6-
Mercaptopurine

A deoxyribonucleic 
acid 

an�metabolite

Cisterna magna model/
single- hemorrhage 

method/rats

Production of serum IL-1, IL-6, TNF-α & CSF 
ET-1

Cerebral vasospasm Chang et 
al. [616]

AE1-329 EP4 receptor 
selec�ve agonist

Endovascular 
perfora�on model/rats

Microglial ac�va�on, TNF-α, IL-1β & IL-6 in 
cortex, Ser1177 p-eNOS,

number of TUNEL-posi�ve cells & ac�ve 
caspase-3

Microglial activation, amelioration 
of brain edema, cellulsr apoptosis and 

BBB damage

Xu et al.
[617]

Alpha lipoic acid 
(ALA)

A naturally 
occurring thiol 

an�oxidant

Cisterna magna model/
single- hemorrhage 

method/rabbits
Number of apoptotic ECs Cerebral vasospasm & apoptosis Erdi et al. 

[618]

Aminoguanidine
A rela�vely

selec�ve inhibitor 
of iNOS ac�vity

Cisterna magna model/
single- hemorrhage 

method/rabbits

Disruption of mitochondrial crest and TJs

eNOS mRNA, reversed the decreased levels of 
eNOS protein and immunoreactivity of 

nitrotyrosine

Cerebral vasospasm

restoration of the ultrastructural 
morphological changes of ECs

Zheng et al.
[174]

Angiogenic factor 
with G patch and 

FHA domains 1 
(Aggf1, also 

known as VG5Q)

Vascular 
endothelium-

derived protein 
and promoted 

angiogenesis as 
strongly as 

vascular 
endothelial growth 
factor A (VEGFA)

Endovascular 
perfora�on model/rat

PI3K, p-Akt, occludin, claudin-5, & VE-cadherin
p-NF-κB p65, IL-1β, & TNF-α

Brain edema and BBB disrup�on,
Numbers of infiltra�ng neutrophils & 
ac�vated microglia in the ipsilateral 

cortex

Zhu et al.
[253]

Apigenin A less toxic and 
non-mutagenic 

Endovascular 
perfora�on model/rats

ZO-1 & occludin

TLR4-NF-κB and its downstream pathway

BBB disruption

inflammation after SAH

Zhang et al.
[208]

flavones subclass 
of flavonoids

Arc�genin An extract from 
Arc�um lappa L.

Cisterna magna model/
double -hemorrhage 

method/rats

eNOS, the levels of the phosphor-PI3K/Akt
ET-1 Cerebral vasospasm Chang et 

al. [177]

Artesunate Medica�on used 
to treat malaria

Endovascular 
perfora�on model/rats

Sphingosine-1-phosphate receptor-1,
PI3K/Akt pathway

GSK3β thus stabiliza�onof  β-catenin,
claudin-3 and claudin-5

Brain edema & BBB disruption Zuo et al.
[184]

Atorvasta�n

Inhibitor of the 3-
hydroxy-3-

methylglu- taryl-
coenzyme A 
(HMG-CoA) 
reductase

Cisterna magna 
model/rabbits

Von Willebrand factor, thrombomodulin & ET-
1,

Protec�ng vascular endothelial cell 
func�on and maintaining cerebral 

vessel autoregula�on

Chen et al.
[246]

Atorvasta�n
Inhibitor of the 

HMG-CoA 
reductase

Cisterna magna model/
doublehemorrhage 

method/rats

Bioac�vity of the eNOS protein
ET-1 CSF Cerebral vasospasm Chang et 

al. [619]

C/EBP 
homologous 

protein (CHOP) 
siRNA

CHOP-cellular 
stress sensor

Endovascular 
perfora�on model/rats

B cell lymphoma-2 interac�ng mediator of cell 
death & cleaved caspase-3

bcl-2
Cerebral vasospasm & apoptosis He et al.

[165]

Celecoxib Selec�ve COX-2 
inhibitor

Cisterna magna model/ 
two-hemorrhage 
method/rabbits

eNOS
ET-1 & ETAR Cerebral vasospasm Munakata 

et al. [176]

Deferoxamine An iron chelator Endovascular 
perfora�on model/rats Occludin, ZO-1 & claudin-5 Acute BBB disruption & neurologic 

impairment
Li et al.
[173]
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Endothelial cells, astrocytes, microglia, neurons, and 
VSMCs can be targeted by synthetic and semi-synthetic 
molecules as well as herbal substances, as was proved 
in experimental animal studies. Some of these drugs 
are commonly used in clinical practice to treat various 
pathological conditions, and some are only used experi-
mentally (Tables  5, 6, 7, 8, 9). Obviously, different cells 
respond to SAH differently, and a single drug cannot suf-
ficiently affect all components of the vasculo-neuronal-
glial triad. On the other hand, some substances appear 
to act through different molecular mechanisms and may 

have a wide range of effects. In general, the purpose of 
these substances is to affect the main pathophysiological 
cascades after SAH that either contribute to neuropro-
tection or lead to neuroinflammation, BBB disruption, 
ROS formation, vasospasm, or cell death.

The effects of some drugs that elicited good results in 
experimental studies have been evaluated in clinical tri-
als. Although experimental data showed that administra-
tion of statins alleviates vasospasm and BBB disruption 
after SAH, randomized clinical trials did not demonstrate 
any benefit of simvastatin after SAH [610, 611].

Table 5  (continued)

growth factor 
receptor (EGFR) 

inhibitor 
(AG1478)

EGFR inhibitor Endovascular 
perfora	on model/mice

Phosphorylated EGFR & phosphorylated ERK 
1/2 Microvasospasm Nakano et 

al. [555]

1(mGluR1) 
nega�ve 
allosteric 

modulator 
JNJ16259685

Modified citrus 
pec�n (MCP)

Galec	n­3’s 
inhibitor

Endovascular 
perfora	on model/mice

galec	n­3
inac	va	on of ERK1/2, STAT­3, & MMP­9, 

preserva	on of a TJ protein ZO­1

Neurological impairments, brain 
edema, & BBB disrup	on

Nishikawa 
et al. [624]

Osteopon�n
Extracellular 

matrix 
glycoprotein

Cisterna magna model/
two-hemorrhage 

method/rats

p-Akt, Bcl-2

cleaved caspase-3 & Bax protein

Vasospasm,

apoptosis

He et al.
[215]

Osteopon�n Extracellular 
matrix 

glycoprotein

Endovascular 
perfora�on model/rats

MKP-1

VEGF-A & phospho-JNK levels
BBB disruption Suzuki et 

al. [214]

Proanthocyanidin
s  (PR) A plant  condensed  

tannins

Cisterna magna model/
doublehemorrhage 

method/rats

Swelling and vacuoliza�on of endothelial cells
number of pro-apopto�c and pro-necro�c 

degenerated endothelial cells

Cerebral vasospasm
neuroprotec�ve effect

Yilmaz et 
all. [155]

Rosuvasta�n
Inhibitor of the 

HMG-CoA 
reductase

Endovascular
perfora�on model/rats

Ac�va�on of NF-κB
MMP-9 BBB disruption & inflammation Uekawa et 

al. [204]

Sodium 
orthovanadate 

(SOV)

A tyrosine 
phosphatase 

inhibitor

Endovascular 
perfora�on model/rats

Occludin & PTEN phosphoryla�on
MMP-9 & phosphoryla�on levels of JNK, ECs 

apoptosis
BBB disruption &apoptosis Hasegawa 

et al. [626]

Tetramethylpyraz
ine

An ac�ve 
ingredient of 
Chinese herb 

Szechwan lovage 
rhizome

Cisterna magna model/ 
doble- hemorrhage 

method/rabbits

intra-endothelium Ca2+  (dose-dependent), NO 
level, Cerebral vasospasm Shao et al.

[175]

Thrombomodulin

A membrane 
protein mainly 
expressed by 

endothelial cells

Endovascular 
perfora�on model/mice

Activity of p38 MAPK-p53/NF-κB (p65) 
pathway, protective roles through APC/PAR-1

Brain edema

Maintain the microvascular integrity

Xu et al.
[185]

Urinary trypsin 
inhibitor

A glycoprotein 
with a molecular 

weight of 67,000, a 
protease inhibitor

Endovascular 
perfora�on model/rats

p-JNK, p-NF-jB (p65), TNF-a, IL- 6, p-p53 & 
caspase-3

Brain edema, inflammation,

microvascular permeability

Zhou et al.
[232]

Valproic acid

First-line drug to 
treat epilepsy, a 

histone 
deacetylase 

inhibitor

Endovascular 
perforation model/rats

HSP70
cleaved caspase-3 &MMP-9

occludin, claudin- 5, p-Akt & bcl-2

BBB disruption, neural apoptosis, & 
brain edema Ying et al.

[627]

Valproic acid

First-line drug to 
treat epilepsy, a 

histone 
deacetylase 

inhibitor

Cisterna magna model/
double hemorrhage 

method/rats
ICAM-1 & E-selec�n which corresponds to the 

decreased CD45(+) cells
Inflammation & cerebral vasospasm Chang et 

al. [231]

Vitamin D A neuroprotec�ve 
hormone

Endovascular 
perfora�on model/rats

Endogenous brain OPN in astrocytes & it 
triggers the CD44/P-gp glycosyla�on pathway 

in ECs
BBB disruption Enkhjargal 

et al. [244]

Inhibi�on      Ac�va�on       A�enua�on      Increase      Deacrese         Suppression

Drug Drug descrip�on Model of SAH Mechanism Effect Author
Epidermal 
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The ALISAH (Albumin in Subarachnoid Hemorrhage) 
Pilot Clinical Trial evaluating the effect of albumin in 
patients after SAH showed a possible neuroprotective 
effect including a lower incidence of vasospasm, DCI, 
and cerebral infarction in a dose-dependent manner 
90  days after SAH [612, 613]. Reducing the pro-inflam-
matory polarization of microglia can contribute to the 
beneficial effect of albumin after SAH.

Inhibiting IL-1α results in the attenuation of neuro-
inflammation after SAH, and this was achieved in an 
experimental SAH model using an IL-1 receptor antago-
nist. The SCIL-SAH (The subcutaneous Interleukin-1Ra 

in SAH) clinical trial using the IL-1 receptor antagonist 
showed suppression of the IL-1–mediated response and 
inflammation following SAH but did not demonstrate an 
effect on outcome [614].

Experimental evidence shows that heparin decreases 
the number of Iba1-positive microglia and reduces neu-
roinflammation after SAH. Therefore, promising results 
can be expected from the ongoing ASTROH (Aneu-
rysmal Subarachnoid Hemorrhage Trial RandOmizing 
Heparin) trial aimed at evaluating the effect of continu-
ous low-dose intravenous unfractionated heparin on the 

Table 6  Potential drugs affecting vascular smooth muscle cells after SAH—from 2010 to 2021

Drug Drug descrip�on Model of SAH Mechanism Effect Author
4ʹ-O-β-d-glucosyl-

5-O-
methylvisamminol 

(4OGOMV)

An ac�ve ingredient of 
Saposhnikovia 

divaricata

Cisterna magna double 
blood injec�on 
model/rabbits

Ac�vated caspase-3, caspase-9a, IL-1β, IL-6 
& MCP-1

Prolifera�on of VSMC

cerebral vasospasm

Chang et al. 
[475]

AG1478 A specific EGFR 
inhibitor

Endovascular 
perfora�on 
model/mice

p-EGFR & p-ERK1/2 VAMC contrac�on Nakano et 
al. [555]

An�-HMGB1 
an�body

An�-HMGB1 an�body Endovascular 
perfora�on model/rats

α-SMA & SM-MHC
OPN, Smemb, PAR-1, TXA2 & AT1 receptors

VSMC phenotypic 
transforma�on

Wang et al. 
[554]

vasoconstric�on
An�-HMGB1 

an�body
An�-HMGB1 an�body Cisterna magna single 

blood injec�on 
model/rats

TNF-α, TLR4, IL-6, iNOS, PAR1, TXA2, AT1, 
ETA, α1A-AR Hurama et 

al. [628]

Bexarotene An an�neoplas�c 
agent used to treat 

refractory cutaneous 
T-cell lymphoma

Endovascular 
perfora�on model/rats

α-SMA
SMemb,
PPARγ,

FLAP & LTB4

VSMC phenotypic 
transforma�on

Zhang et 
al.[629]

KMUP-1 A xanthine-based 
vasodilator

Cisterna magna single 
blood injec�on 

model/rats
BKCa-β1 protein Cerebral vasospasm Chen et 

al.[490]

Mesenchymal 
stem cells

AKA mesenchymal 
stromal cells

Not available myo-necrosis myo-necrosis Khalili et 
al.[630]

Rapamycin A mTORC1-selec�ve 
inhibitor

Cisterna magna double 
blood injec�on 

model/dogs

mTOR and its downstream P70S6K1, 4E-BP1 
& PCNA Cerebral vasospasm & 

VSMC prolifera�on
Zhang et 
al.[538]

Recombinant 
osteopon�n

An extracellular matrix 
glycoprotein

Endovascular 
perfora�on model/rats

Prevented the changes of SMemb and α-
SMA,

ILK and p-FAK

VSMC phenotypic 
transforma�on

Wu et 
al.[535]

Resveratrol A natural polyphenolic 
compound extracted 

from pines and 
grapevines

Endovascular 
perfora�on model/rats

SIRT1

NF-kB & proliferation marker Cyclin D1
VSMC phenotypic 

transforma�on
Wan et 
al.[545]

Re�gabine or 
celecoxib

A Kv7 channel openers Cisterna magna single 
blood injec�on 

model/rats

L-type VSCC ac�vity
enhanced Kv7 channel ac�vity

Cerebral vasospasm Mani et 
al.[488]

Rosiglitazone A PPAR agonist Cisterna magna double 
blood injec�on 

model/rats

caveolin-1,
prolifera�ng cell nuclear an�gen Cerebral vasospasm Cheng et 

al.[553]

SB386023-b A selec�ve and potent 
raf inhibitor

Prechiasma�c 
model/rats

ras/raf/MEK/ERK1/2 pathway Cerebral vasospasm Ansar et 
al.[525]

Sildenafil citrate 
(Viagra™)

A number of highly 
selec�ve PDE5 

inhibitors

Endovascular 
perfora�on 
model/mice

SAH-induced downregula�on of the NO-
cGMP pathway by reducing PDE5 ac�vity 

and restoring cGMP levels
Vasospasm Han et 

al.[63]

Simvasta�n An inhibitor of HMG-
CoA reductase

Cisterna magna double 
blood injec�on 
model/rabbits

α-SMA, PCNA, PDGF-β prolifera�on of VSMC Duan et 
al.[632]

U0126 A MEK1/2 inhibitor Prechiasma�c 
model/rats

ETB receptor, lowered ET-1max 
contrac�ons

VAMC contrac�on Christensen 
et al.[633]

Inhibi�on      Ac�va�on       A�enua�on Increase      Deacrese         Suppression
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Table 7  Potential drugs affecting astrocytes after SAH- from 2010 to 2020
Drug Drug descrip�on Model of SAH Mechanism Effect Author

6-mercaptopurine a hypoxanthine analogue
Cisterna magna 

double blood 
injec�on model/rats

IL-1b, IL-6, TNF-a, TLR2, TLR4 Neuroinflamma�on Chang et 
al. [634]

6R-ethyl-23(S)-
methylcholic acid (S-

EMCA, INT-777)
A semisynthe�c TGR5 agonist

Endovascular 
perfora�on 
model/rats

cAMP, p-PKCε, ALDH2, HO-1, Bcl-2
4-HNE, Bax & cleaved caspase-3

Oxida�ve stress injury & 
neuronal apoptosis

Zuo et al.
[387]

Apigenin
A less toxic and non-

mutagenic flavones subclass 
of flavonoids

Endovascular 
perfora�on 
model/rats

ZO-1 & occludin
Inhibi�on of TLR4 and NF-κB expression 

and its downstream pathway

BBB disrup�on
suppresion of inflamma�on 

a�er SAH

Zhang et 
al. [208]

Ponesimod a bioac�ve lysophospholipid endovascular 
perfora�on

propor�on of A1 astrocytes neuronal death
Zhang et 

al.
[635]

Baicalein
A flavonoid extract from 
Scutellaria ba- icalensis 

Georgi

Cisterna magna
double blood 

injec�on model/rats

GLT-1 expression, astrocy�c ac�vity, SOD 
and catalase

glutamate and malondialdehyde levels,

Glutamate neurotoxicity & 
oxida�ve stress

Kuo et al.
[636]

Ceftriaxone sodium
An an�bacterial drug

Cisterna magna 
double blood 

injec�on model/rats
EAAT-2, p-Akt, p-IKKα expression Apoptosis

neuroprotec�on
Feng et al.

[297]

Deferoxamine (DFX) An iron chelator
Endovascular 
perfora�on 
model/rats

Ferri�n expression
a�enua�on of TJ degrada�on,

Ferritin expression &BBB 
disruption

Li et al.
[173]

Fluoxe�ne A serotonin selec�ve 
reuptake inhibitor

Endovascular 
perfora�on 
model/rats

NLRP3 inflammasome & caspase-1
activation

Neuroinflamma�on
apoptosis

Li et al.
[637]

Gastrodin
A phenolic glycoside from the 

rhizome of the plant 
Gastrodia elata

Endovascular 
perfora�on 
model/rats

A�enua�on MDA, 3-NT, and 8-OHDG 
eleva�on, restored the decrease of SOD

Nrf2 and HO-1 expression

Microglial, astrocy�c ac�va�on 
& oxida�ve stress

Wang et 
al. [638]

H2 A Molecular hydrogen
Endovascular 
perfora�on 
model/rats

S100B and p-JNK, & reac�ve astrogliosis EBI and delayed brain injury Kumagai 
et al. [639]

Hydrogen sulfide (H2S) Biological gaseous 
transmi�er

Endovascular 
perfora�on 
model/rats

Number of TUNEL posi�ve cells,
MMP­9 & AQP­4 expression,

claudin­5 & ZO­1

BBB disrup�on
neuroinflamma�on

Cao et al.
[318]

Mesencephalic 
astrocyte­derived 

neurotrophic factor 
(MANF)

A secreted neurotrophic
factor

Endovascular 
perfora�on 
model/rats

Activation of  p-Akt
p-MDM2 and Bcl-2

p53 and Bax and cleaved caspase-3,
suppresion the expression of MMP-9

Apoptosis, decreased BBB 
disruption

Li et al.
[388]

Mesenchymal stem cell 
(intranasal applica�on)

Also known as mesenchymal 
stromal cells

Endovascular 
perfora�on 
model/rats

Ipsilateral Iba-1 expression & ac�va�on 
of astrocytes

Regenera�on of the cerebral 
lesion

neuroinflamma�on

Nijboer et 
al. [640]

Norrin

Small molecule protein 
expressed in embryo 

development to regulate 
angiogenesis

Endovascular 
perfora�on 
model/rats

Preserved expression of Occludin, VE-
Cadherin and ZO-1

nuclear por�on of β-catenin levels
BBB disrup�on Chen et al.

[338]

NS398 A specific COX-2 inhibitor
Endovascular 
perfora�on 
model/mice

COX-2 expression Neuroinflamma�on & brain 
edema

Ayer et al.
[641]

Pentoxifylline

A methylxanthine deriva�ve 
used in the treatment of 

vasculopathy of the 
peripheral arteries

Prechiasma�c blood 
applica�on

TNF- α, cleaved-caspase-3, nitrite & 
nitrate

Neuroinflamma�on
apoptosis

Goksu et 
al. [276]

Recombinant 
osteopon�n

An extracellular matrix 
glycoprotein

Endovascular 
perfora�on 
model/rats

MKP-1 induc�on,
VEGF-A

JNK
BBB disrup�on Suzuki et 

al. [214]

Resveratrol
A natural polyphenolic 

compound extracted from 
pines and grapevines

Cisterna magna 
double blood 

injec�on model/rats

ROS and MDA
Nrf2 and HO-1

GRP78 and CHOP

Inhibi�on of neuronal apoptosis
brain edema
inflamma�on

Xie et al.
[642]

Resveratrol
A natural polyphenolic 

compound extracted from 
pines and grapevines

Endovascular 
perfora�on 
model/rats

Suppression of thioredoxin-interac�ng 
protein

Neuroinflammation, ER stress & 
apoptosis

Zhao et al.
[309]

Rosiglitazone
An an�diabe�cdrug/insulin 

sensi�zer,
PPAR agonist

Cisterna magna 
double blood 

injec�on model/rats

GLT-1 expression & astrocy�c ac�vity, 
glutamate levels,

Glutamate neurotoxicity & 
oxida�ve stress

Lin et al.
[643]

RP001 A structural analog of 
Fingolimod

Endovascular 
perfora�on 
model/mice

MCP-1, MMP-9, NOX2 & microglial 
ac�va�on

Inflamma�on Li et al.
[644]

U0126
A specific mitogen-ac�vated 

protein kinase kinase 
(MEK)1/2 inhibitor

Prechiasma�c blood 
applica�on/rats

TNFα Neuroinflamma�on Maddahi 
et al. [289]

Vitamin D
A neuroprotec�ve hormone

Endovascular 
perfora�on 
model/rats

Endogenous brain OPN in astrocytes and 
it triggers the CD44/P-gp glycosyla�on 

pathway in the endothelial cells

BBB disruption Enkhjargal
et al. [244]

      Inhibi�on      Ac�va�on       A§enua�on      Increase      Deacrese         Suppression 
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Table 8  Potential drugs affecting microglia after SAH—from 2010 to 2021
Drug Drug descrip�on Model of SAH Mechanism Effect Author
6-

Mercaptopu
rine

A deoxyribonucleic acid 
an�metabolite

Double hemorrhage 
model/cisterna 

magna/rats

Number of leukocyte common 
an�gen (CD45+) posi�ve microglia

Neuro-inflamma�on Chang et 
al. [616]

6R-ethyl-
23(S)-

methylcholi
c acid (S-

EMCA, INT-
777)

A specific semisynthe�c 
TGR5 agonist

Endovascular perfora�on 
model/rats

NLRP3-ASC-mediated inflamma�on 
via TGR5/cAMP/PKA pathway

Neuro-inflamma�on Hu et al.
[646]

AE1-329 An EP4 receptor 
selec�ve agonist

Endovascular perfora�on 
model/rats

Microglial activation Neuro-inflamma�on Xu et al.
[617]

An�-
HMGB1 

mAb

An an�body against 
HMGB1

Single hemorrhage 
model/cisterna 

magna/rats
Number of Iba-1 posi�ve cells Microglial ac�va�on Haruma et 

al. [628]

Apelin-13
An endogenous ligand 

for the G protein-
coupled receptor APJ

Endovascular perfora�on 
model/rats

ER stress overac�va�on, TXNIP, 
NLRP3, Bip, cleaved caspase-1, IL-1β, 

TNFα, MPO, & ROS

Neuro-inflamma�on & pro-inflammatory 
polariza�on of microglia

Xu et al.
[649]

Apigenin A flavone distributes in 
fruits and vegetables

Endovascular perfora�on 
model/rats

Ac�va�on of TLR4 Neuro-inflamma�on Zhang et 
al. [208]

Astaxanthi
n

A xanthophyll 
carotenoid

Prechiasma�c cistern 
SAH model/rats

TLR4,

SIRT1 expression
Neuro-inflamma�on Zhang et 

al. [651]

BBeerrbbeerriinnee

An isoquinoline alkaloid 
isolated from Chinese 
herb Cop�s chinensis

Prechiasma�c cistern 
SAH model/rats

HMGB1/Nf-κB signaling &
SIRT1

Neuro-inflamma�on, neural apoptosis, 
brain edema

Zhang et 
al. [652]

Bexarotene
A highly selec�ve and 

blood-brain barrier 
permeable RXR agonist

Endovascular perfora�on 
model/rats

PPARγ and SIRT6
FoxO3a phosphoryla�on, IL-1β, IL-6, 

and TNF-α
Neuro-inflamma�on Zuo et al.

[653]

Bexarotene
A highly selec�ve and 

blood-brain barrier 
permeable RXR agonist

Endovascular perfora�on 
model/mice Expression of PPARγ Neuro-inflamma�on and pro-inflammatory 

polariza�on of microglia
Tu et al.

[654]

BMS-
470539

A strong and selec�ve 
agonist of melanocor�n 

1receptor (MC1R)

Endovascular perfora�on 
model/rats

Number of microglia M2 phenotype 
& the levels of p-AMPK & p-TBK1

NF-κB, IL-1β, TNF-α
Neuro-inflamma�on Xu et al.

[655]

Carbon 
monoxide 

(CO)

a potent neurotoxic, 
colorless, odorless, and 
tasteless flammable gas

Prechiasma�c cistern 
SAH model/mice

CD36 surface-expression & 
erythrophagocytosis Neuroprotec�ve effect a�er SAH Kaiser et 

all. [346]

Carnosine
An endogenous 

dipep�de (β-alanyl-L-
his�dine)

Double hemorrhage 
model/cisterna 

magna/rats
ED1 posi�ve cells Microglial ac�va�on Zhang et 

al. [656]

COG1410 An ApoE-mimic pep�de, 
LPR1 ligand

Endovascular perfora�on 
model/rats

Intracellular adaptor protein Shc1, 
PI3K, p-Akt, M2 microglial phenotype 

marker CD206 and normal myelin 
marker MBP

d M1 microglial phenotype markers

Neuro-inflamma�on & pro-inflammatory 
polariza�on of microglia

Peng et al.
[350]

COG1410 An ApoE-mimic pep�de Endovascular perfora�on 
model/mice

Number of microglia in the cortex, 
decreased expression of IL-1β, IL-6 

and TNF- α

Neuro-inflamma�on and pro-inflammatory 
polariza�on of microglia

Wu et al.
[348]

Curcumin

A natural an�-
inflammatory, an�-

oxidant and an�-tumor 
compound

Prechiasma�c cistern 
SAH model/mice

TLR4/Myd88/NF-κB signaling 
pathway,

promo�ng microglial M2 polariza�on
Neuro-inflamma�on Gao et al.

[657]

Curcumin
An ac�ve extract from 

the rhizomes of 
Curcuma longa

Endovascular perfora�on 
model/mice

Number Iba-1-posi�ve cells Microglial ac�va�on Yuan et al.
[658]

Curcumin-
Loaded 
PLGA 

Nanopar�cl
es

A natural anti-
inflammatory, anti-

oxidant and anti-tumor 
compound

Endovascular perfora�on 
model/rats

Number of ac�vated microglia, ED-1, 
mRNA & proinflammatory cytokines 

IL-1β, IL-6, and TNF-α

Neuro-inflamma�on & pro-inflammatory 
polariza�on of microglia

Zhang et 
al. [659]

Dehydroepi
androsteron

e (DHEA)

An endogenous steroid 
hormone precursor

Endovascular perfora�on 
model/mice

H3K27 demethylase & JMJD3, JMJD3 
gene expression through the 
TrkA/Akt signalling pathway

Pro-inflammatory polariza�on of microglia Tao et al.
[660]

Ethyl 
pyruvate

A stable lipophilic ester 
deriva�ve of pyruvate

Endovascular perfora�on 
model/rats

Microglia ac�va�on,
expression of proinflammatory 

cytokines IL-1β and TNF-α

Neuro-inflamma�on and pro-inflammatory 
polariza�on of microglia

Fang et al.
[661]
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Table 8  (continued)

Fluoxe�ne Serotonin selec�ve 
reuptake inhibitor

Endovascular perfora�on 
model/rats

TLR4/MyD88/NF-κB signaling 
pathway, 

number of Iba-1-positive microglia
Neuro-inflammation Liu et al.

[662]

Gastrodin
A phenolic glycoside 

from the rhizome of the 
plant Gastrodia elata

Endovascular perfora�on 
model/rats

MDA, 3-NT, & 8-OHDG eleva�on, 
restored the decrease of SOD

Nrf2 and HO-1 expression

Microglial and astrocy�c ac�va�on and 
oxida�ve stress

Wang et 
al. [638]

Glycine A non-essen�al amino 
acid

Endovascular perfora�on 
model/rats

miRNA-26b leading
PTEN downregula�on

AKT ac�va�on

Neuro-inflamma�on & pro-inflammatory 
polariza�on of microglia

Qin et al.
[664]

Heparin

A member of a family of 
polyanionic 

polysaccharides called 
glycosaminoglycans

Bilateral stereotac
c 
injec
ons of autologous 

blood into the 
subarachnoid space of 
the entorhinal cortex

Number of Iba-1 posi
ve cells, less 
prominent Iba1-posi
ve cells, small 

cell and finer processes

Neuro-inflamma
on and pro-inflammatory 
polariza
on of microglia

Simard et 
al. [665]

Human 
serum 

albumin

A heart-shaped plasma 
protein with a single 585 
amino acid polypep
de 

chain

Endovascular perfora
on 
model/rats

Microglial M1 phenotype 
polariza
on, deac
va
on the 

downstream CARD9/Bcl-10 and 
NLPR3/caspase-1 pathways,

reduced sequen�al IL-1β produc�on 
through the microglial Mincle 

receptor

Neuro-inflamma�on and pro-inflammatory 
polariza�on of microglia

Xie et al.
[666]

Hydrogen 
sulfide 
(H2S)

A noxious and toxic gas Endovascular perfora�on 
model/rats TLR4/NF-κB pathway in microglia Neuro-inflamma�on Duan et 

al. [667]

CHPG/VU03
60172

A selec�ve mGluR5 
orthosteric agonist/

mGluR5 posi�ve 
allosteric modulator

Endovascular perfora�on 
model/rats

the number of ac�vated microglia 
(ED-1 posi�ve), ED-1 protein 

expression, & the protein and mRNA 
levels of pro- inflammatory cytokines 

IL-1β, IL-6 and TNF-a

Neuro-inflamma�on and pro-inflammatory 
polariza�on of microglia

Zhang et 
al. [287]

IL-1 
receptor 

antagonist 
(IL-1Ra)

A protein that 
completely blocks 

signalling at the 
receptor

Endovascular perfora�on 
model/rats IL-1α -driven inflamma�on Neuro-inflamma�on

Greenhalg
h et al.
[668]

L-cysteine A semi-essen�al amino 
acid

Endovascular perfora�on 
model/rats

Endoplasma�c re�culum stress by 
genera�ng H2S,

ac�va�on the eIF2α phosphoryla�on 
& ac�va�on of the PERK

ATF6α

Neuroinflamma�on & complement 
deposi�on, relieve oxida�ve stress & 

endoplasma�c re�culum stress

Xiong et 
al. [669]

Drug Drug descrip�on Model of SAH Mechanism Effect Author

Melatonin

A hormone primarily 
released by the pineal 

gland that regulates the 
sleep–wake cycle

Endovascular perfora�on 
model/mice

NLRP3 signal, & the downstream 
expression of caspase-1 and IL-1β

Neuro-inflamma�on & apoptosis Liu et al.
[670]

Mesenchym
al stem cell 
(intranasal 

applica�on)

Also known as 
mesenchymal stromal 

cells

Endovascular perfora�on 
model/rats

Ipsilateral Iba-1 expression & 
ac�va�on of astrocytes

Regenera�on of the cerebral lesion,
a�enua�on of neuroinflamma�on

Nijboer et 
al. [640]

Mesenchym
al stem cells

Also known as 
mesenchymal stromal 

cells

Endovascular perfora	on 
model/rats

Notch1 sig- naling, which 
subsequently repressed NF-κB 

phosphoryla	on
Neuro-inflamma	on Liu et al.

[672]

Methylene 
blue

An older drug approved 
by the FDA for trea	ng 
methemoglobinemia 
and cyanide poisoning

Endovascular perfora	on 
model/rats

Number of Iba-1-positive cells, 
Akt/GSK3β  signaling pathway

levels of nuclear MEF2D

Neuro-inflamma	on and pro-inflammatory 
polariza	on of microglia

Xu et al.
[673]

Milk fat 
globule-

epidermal 
growth 
factor-8 

(MFG-E8)

A secreted 
mul	func	onal 

glycoprotein

Prechiasma	c cistern 
SAH model/mice

M2 microglia func	on-related 
proteins,

M2 phenotypic shi� through the 
integrin β3/SOCS3/STAT3 signaling 

pathway

Neuro-inflamma	on Gao et al.
[674]

Minocycline A second-genera	on, 
semi-synthe	c 

tetracycline

Endovascular perfora	on 
model/rats

Number of Iba-1 posi	ve cells, 
reduced ROS levels

Microglial ac	va	on and neuroprotec	on Li et al.
[675]
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miR-146a
A small non-coding RNA 
that is encoded by the 

MIR146A gene

Endovascular perfora�on 
model/rats

Hb-induced microglial inflammatory 
response through TRAF6/IRAK1 

inhibi�on

Neuro-inflamma�on & pro-inflammatory 
polariza�on of microglia

Liu et al.
[676]

N-(6- oxo-
5,6-

dihydrophe
nanthridin-

A Poly (ADP-ribose) 
polymerase (PARP) 

inhibitor

Endovascular perfora�on 
model/rats

Number of Iba-1 posi�ve cells Microglial ac�va�on Chen et al.
[677]

2-yl)-N,N-
dimethylace

tamide 
(PJ34)

Oleanolic 
acid

A naturally occurring 
pentacyclic triterpenoid 
related to betulinic acid

Endovascular perfora
on 
model/rats

HO-1 Blood-induced injury Han et al.
[678]

Paeoniflorin
A single terpenoid 

glycoside compound 
(C23H28O11)

Endovascular perfora
on 
model/rats

SAH-induced Iba1-posi
ve cells 
increase, & SAH-elevated the IL- 1β, 

IL-6, TNF-α expression
Neuro-inflamma
on & microglial ac
va
on Wang et 

al. [679]

Peroxiredox
in

A ubiquitous family of 
cysteine-dependent 
peroxidase enzymes

Progesteron
e

an endogenous steroid 
and progestogen sex 

hormone

Cisterna magna model/ 
mice

Iba-1 posi�ve microglial cells Microglial ac�va�on Turan et 
al. [680]

Rapamycin An mTOR C1 inhibitor Prechiasma�c cistern 
SAH model/rats

Microglia polariza�on towards the 
M2 phenotype,

Neuro-inflammation You et al.
[681]

Recombina
nt ADAMTS-

13 
(rADAMTS-

13)

A von Willebrand factor-
cleaving protease

Prechiasma c cistern 
SAH model/mice

Microglial ac va on Microglial ac va on and neuronal injury Wan et al.
[682]

Recombina
nt human 

angiogenic 
factor with 

G-patch and 
FHA domain 

1 (Aggf1)

A vascular endothelium-
derived protein and 

promoted angiogenesis 
as strongly as vascular 

endothelial growth 
factor A

Endovascular perfora on 
model/rats

Numbers of ac vated microglia, 
Aggf1/PI3K/Akt

phosphoryla on of downstream NF-
κB p65

Neuro-inflamma�on and BBB disrup�on Zhu et al.
[253]

Recombina
nt human 

erythropoie
�n (rhEPO)

A hormone produced by 
the kidney that 

promotes the forma�on 
of red blood cells by the 

bone marrow

Prechiasma�c cistern 
SAH model/mice

Microglia polarization towards the 
M2 phenotype,

JAK2/STAT3 pathway

Neuro-inflamma�on and pro-inflammatory 
polariza�on of microglia

Wei et al.
[683]

Recombina
nt human 
NTN-1 (rh-

NTN-1)

A family of laminin-
related secreted 

proteins

Endovascular perfora�on 
model/rats

Suppressed microglia ac�va�on 
mediated by PPARγ/NFκB signaling 

cascade

Neuro-inflamma�on and pro-inflammatory 
polariza�on of microglia

Xie et al.
[684]

Recombina
nt human 

TSG-6
(rh-TSG-6)

A mul�func�onal 
glycoprotein composed 
of a hyaluronan-binding 

link domain

Endovascular perfora�on 
model/rats

Expression of p-STAT3
expression of SOCS3 and IL-10

Neuro-inflamma�on and pro-inflammatory 
polariza�on of microglia

Li et al.
[685]

Resveratrol

A natural occurring 
polyphenolic compound 

extracted from pines 
and grapevines

Prechiasma�c cistern 
SAH model/rats

Number of Iba-1-positive cells,

NLRP3 inflammasome activation

Neuro-inflamma�on and pro-inflammatory 
polariza�on of microglia

Zhang et 
al. [686]

Ro5-4864
An exogenous ligand of 

TSPO, deriva�ve of 
benzodiazepines

Endovascular perfora�on 
model/mice

Phosphoryla�on of Akt, which 
promote the conversion of microglia 

to the M2 phenotype
Neuro-inflamma�on Zhou et al.

[687]

Rolipram A phosphodiesterase-4 
(PDE4) inhibitor

Endovascular perfora�on 
model/rats

Number of Iba-1 posi�ve microglia Neuro-inflamma�on and pro-inflammatory 
polariza�on of microglia

Peng et al.
[688]

RvD1
A metabolite of 

docosahexaenoic acid 
(DHA)

Endovascular perfora�on 
model/rats

RvD1-ALX/FPR2 nega�vely regulates
IRAK1/TRAF6 signaling ac�vi�es

Neuro-inflamma�on & pro-inflammatory 
polariza�on of microglia

Liu et al.
[689]

Sir�nol A SIRT1-specific 
inhibitor

Prechiasma�c cistern 
SAH model/rats

SIRT1, microglia ac�va�on and pro-
inflammatory cytokines release

Neuro-inflamma�on and pro-inflammatory 
polariza�on of microglia

Zhang et 
al. [383]

TAT-Pep5P A specific antagonist of 
the p75NTR

Endovascular perfora�on 
model/mice

CCL-2, IL-6, IL-1β, TNF- α & 
microglial activation Neuro-inflamma�on & pro-inflammatory 

polariza�on of microglia
Xu et al.

[357]

Drug Drug descrip�on Model of SAH Mechanism Effect Author
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Table 9  Potential drugs affecting neurons after SAH—from 2010 to 2021
Drug Drug descrip�on Model of SAH Mechanism Effect Author

(-)-
epigallocat

echin-3-
gallate 
(EGCG)

A major catechin found 
in green tea

Cisterna magna single 
blood injec�on 

model/mice

Blocked OxyHb-induced Ca2+ influx 
via L-type VDCCs,

OxyHb-induced mitochondrial Ca2+

uniporter opening,
LC3B and Becn-1, Atg5,

Becn-1

Mitochondrial dysfunc�on neuronal cell 
death

Chen et al.
[693]

(RS)-2-
chloro-5-

hydroxyphe
nylglycine

A selec�ve mGluR5 
orthosteric agonist

Endovascular 
perfora�on model/rats

Bcl-2
Bax & caspase-3 Neuronal apoptosis Zhang et al.

[287]

2-
methoxyest

radiol
A HIF-1α inhibitor Endovascular 

perfora�on model/rats
HIF-1α, BNIP3 & VEGF Neuronal apoptosis & brain edema Wu et al. 

[694]

5Z-7-
oxozeaenol a TAK1 inhibitor Prechiasma�c model of 

SAH/rats

Phosphoryla�on of p38 & JNK, the 
nuclear transloca�on of NF-κB p65, 

& IκBα degrada�on

Neuronal apoptosis, Zhang et al.
[402]

6R-ethyl-
23(S)-

methylcholi
c acid (S-

EMCA, INT-
777)

A semisynthe�c TGR5 
agonist

Endovascular 
perfora�on model/rats

cAMP, p-PKCε, ALDH2, HO-1, Bcl-2
4-HNE, Bax & cleaved caspase-3

Decreases in oxida�ve stress injury and 
neuronal apoptosis

Zuo et al.
[387]

ADAMTS-13 A VWF-cleaving 
protease

Endovascular 
perfora�on 

model/mouse
Ameliora�on of microthrombosis Numbers of apopto�c &degenera�ve 

neurons
Muroi et al.

[695]

Apelin-13 A pep�de with 77 
amino acids

Endovascular 
perfora�on model/rats

Ac�va�on of ATF6/CHOP pathway
Bcl-2/Bax ra�o

caspase-3.
Neuronal apoptosis, neuroprotec�on Xu et al. [696]

Apigenin
A less toxic and non-
mutagenic flavones 

subclass of flavonoids

Endovascular 
perfora�on model/rats

TLR4, NF-κB, iNOS, COX-2, TNF-α, IL-
6 and IL-1β,

ZO-1 & occludin
Inflamma�on & BBB disrup�on Zhang et al.

[208]

Astaxanthin A naturally occurring 
xanthophyll carotenoid

Prechiasma�c model of 
SAH/rats

Bax/Bcl-2 ra�o
cytochrome C release in cytoplasm

caspase-3 enzyme ac�vity,
BDNF, synapsin-1, PSD95 & GAP-43

Neuronal apoptosis
improved mitochondrial func�ons and 

neuronal survival

Wang et al.
[386]

Astaxanthin A naturally occurring 
xanthophyll carotenoid

Prechiasma�c model of 
SAH/rats

Caspase-3
ac�va�on of the Akt/Bad pathway

Neuronal apoptosis Zhang et al.
[697]

Atorvasta�
n

An inhibitor of (HMG-
CoA) reductase

Cisterna magna double 
blood injec�on 
model/rabbits

Caspase-3, vWF, TM & ET-1 Neuronal apoptosis, cerebral vasospasm & 
endothelial cell dysfunc�on

Chen et al.
[246]

Atorvasta�
n

An inhibitor of (HMG-
CoA) reductase Caspase-3, AQP-4, ER stress related 

proteins CHOP & GRP78
Neuronal apoptosis Qi et al. [698]

AVE 0991 
(AVE)

A non-pep�de analogue
of Ang-(1−7)

Endovascular 
perfora�on model/rats

PKA-Cα, p-CREB, UCP-2, & Bcl-2
Bax & Romo-1

Neuronal apoptosis Mo et al.
[393]

Baicalein
A flavonoid extract 
from Scutellaria ba-

icalensis Georgi

Cisterna magna double 
blood injec�on 

model/rats

Neuronal degenera�on,
preserved ac�vi�es of SOD & 

catalase, malondialdehyde
Oxida�ve stress,
neuroprotec�on

Kuo et al.
[636]

Biochanin A An organic isoflavone 
derived from natural 

plant sources

Prechiasma�c model of 
SAH/rats

TLR/MyD88/TIRAP/NF-κB-signaling 
pathway

Neuronal apoptosis & inflamma�on Wu et al.
[700]

Brilliant 
blue G

A selec�ve P2X7 
receptor (P2X7R) 

antagonist

Endovascular 
perfora�on model/rats

Bcl-2,
cleaved caspase-3 & phosphorylated 

p38 MAPK
Neuronal apoptosis, Chen et al.

[701]

Calpep�n
a Ca2+-dependent 
neutral cysteine 

hydrolase

Endovascular 
perfora�on model/rats

Ac�va�on of caspase-3, caspase-9, 
caspase-12, & PARP

Neuronal apoptosis Zhou et al.
[702]

Carnosine An endogenous 
dipep�de

Cisterna magna double 
blood injec�on 

model/rats

Tissue copper/zinc superoxide 
dismutase (CuZn-SOD) & glutathione 

peroxidase
lactate dehydrogenase (LDH) 
ac�vity, the concentra�on of 
malondialdehyde (MDA), 3-

nitrotyrosine (3-NT), 8-
hydroxydeoxyguanosine (8-OHDG), 

IL-1β, IL-6, & TNF-α

Neuronal apoptosis & inflamma�on,
neuroprotec�on

Zhang et al.
[656]
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Ceftriaxon
e sodium

An an�bacterial drug

Cisterna magna double 
blood injec�on 

model/rats

Reversed the down-regula�on of 
EAAT-2 expression, increased 

nuclear transloca�on of p65 and 
ac�va�on of NF-jB as well as 

phosphoryla�on of Akt

Apoptosis
neuroprotec�on

Feng et al.
[297]

Cerium 
oxide 

nanopar�cl
e

A potent and versa�le 
ROS scavenger

Endovascular 
perfora�on model/rats

Elimina�on of ROS including 
superoxide, hydrogen peroxide, & 

hydroxyl radicals

Neuroprotec�on,
inflamma�on

Jeong et al.
[704]

CN-105 An apolipoprotein E 
mime�c pep�de

Endovascular 
perfora�on 

model/mouse

Neuronal density
F4/80 posi�ve cells Neuronal injury & inflamma�on Liu et al. [705]

Deferoxami
ne An iron chelator Endovascular 

perfora�on model/rats
Ferri�n, transferrin & transferrin 

receptor
Oxida�ve stress & neuronal apoptosis Lee et al.

[460]
Deferoxami

ne (DFX) An iron chelator Endovascular 
perfora�on model/rats

ZO-1 and claudin-5,
Ferri�n

Neuronal apoptosis & BBB disrup�on Li et al. [173]

dipotassiu
m 

bisperoxo(p
yridine-2-
carboxyl) 

oxovanadat
e (BPV(pic))

A PTEN inhibitor Endovascular 
perfora�on model/rats

GluR1,
GluR2 and GluR3 Neuroprotec�on Chen et al.

[706]

Docosahexa
enoic acid 

(DHA)

An omega-3 fa�y acid) 
(also called ω-3 FA)

Endovascular 
perfora�on model/rats

Malondialdehyde levels & 
superoxide dismutase stress

Bcl2 & Bcl-xl,
Bax & cleaved caspase-3

mitochondrial fusion-related protein 
Op�c Atrophy 1

mitochondrial fission-related protein 
DRP1& Serine 616 phosphorylated 

DRP1

Neuronal apoptosis & mitochondrial 
dysfunc�on neuroprotec�on

Zhang et al.
[707]

Edaravone 
combined 

with 
cinepazide 

maleate

Edaravone (a free 
radical scavenger),

cinepazide maleate (a 
vasodilator)

Cisterna magna double 
blood injec�on 

model/rats Beclin-1 & LC3-11 levels Neuronal cell death Cai et al. [708]

EGb 761 A standardized extract 
of Ginkgo biloba

Endovascular 
perfora�on model/rats

Akt signaling pathway
Bcl-2

Bax & cleaved caspase-3
Neuronal apoptosis, neuroprotec�on Yu et al. [709]

Ethyl 
pyruvate

A lipophilic ester 
deriva�ve of pyruvate

Endovascular 
perfora�on 

model/rabbits

TNF-α, pJNK and Bax,
Bcl-2 Meuronal apoptosis & inflamma�on Lv et al. [710]

Exos/miR-
193b-3p

A member of  family of 
non-coding RNAs

Suprachiasma�c model 
of SAH/mice HDAC3/NF-κB signal pathway. Neuroinflamma�on Lai et al. [711]

Fibroblast 
growth 
factor 

(FGF)-2

A member of the 
fibroblast growth factor 

family

Endovascular 
perfora�on model/rats

PI3k & p-Akt
Bax Neuronal apoptosis Okada et al.

[389]

Fluoxe�ne A selec�ve serotonin 
reuptake inhibitor

Endovascular 
perfora�on model/rats

IL-6, TNF-α & IL-1β Neuronal apoptosis & inflamma�on Hu et al. [712]

Fluoxe�ne A selec�ve serotonin 
reuptake inhibitor

Endovascular 
perfora�on model/rats

NLRP3, cleaved caspase-1, IL-1β and 
IL-18

Neuronal apoptosis & inflamma�on Li et al. [637]

G1 A selec�ve ac�vator of 
GPR30

Endovascular 
perfora�on model/rats

GPR30, p-src, p-EGFR, & p-stat3,
Bcl-2

Neuronal apoptosis Peng et al.
[394]

Gastrodin
A phenolic glycoside 

from the rhizome of the 
plant Gastrodia elata

Endovascular 
perfora�on model/rats

Nrf2 & HO-1 expression,
preserva�on expression of Bcl-2

Bax and cleaved caspase-3

Neuronal apoptosis, oxida�ve stress, 
microglial & astrocyte ac�va�on

Wang et al.
[638]

Ghrelin

A 28-amino acid 
pep�de secreted 
mainly from the 

stomach

Prechiasma�c model of 
SAH/rats

Ac�va�on of Akt
cleaved caspase-3 Neuronal apoptosis Hao et al.

[715]

Glycyrrhizin A triterpenoid saponin,  
produced by the root of 

Prechiasma�c model of 
SAH/rats

HMGB1, TNF-α and IL-1β Inflamma�on Ieong et al.
[716]

the licorice plant, 
Glycyrrhiza glabra

GSK’872
A selec�ve RIPK3 

inhibitor Endovascular 
perfora�on model/rats

RIPK3, MLKL, cytoplasmic 
translocation & expression of 

HMGB1
Neuronal necrosis & inflamma�on Chen et al.

[717]

Drug Drug descrip�on Model of SAH Mechanism Effect Author
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Heparin

A member of a family 
of polyanionic 

polysaccharides called 
glycosaminoglycans

Prechiasma�c model of 
SAH/rats

Preserva�on of neurons in the 
ipsilateral hippocampal CA1 region Neuronal apoptosis Simard et al.

[666]

HLY78

a small molecular 
lycorine deriva�ve, an 
ac�vator of the Wnt/β-

catenin signaling 
pathway

Endovascular 
perfora�on model/rats

p-LRP6, p-GSK3β (Ser9), β-catenin, & 
Bcl-2

p-β-catenin, Bax, & cleaved caspase 
3

Neuronal apoptosis Luo et al.
[719]

Human 
umbilical 

cord 
derived 

mesenchym
al stem 
cells-

derived 
miR-206-

knockdown 
exosomes

Cisterna magna double 
blood injec�on 

model/rats
BDNF, TrkB & p-CREB Neuronal apoptosis Zhao et al.

[720]

Hydrogen-
rich saline

A colorless, odorless, 
tasteless, flammable 

gas/ a novel and 
effec�ve an�oxidant

Endovascular 
perfora�on model/rats

Bax, cleaved caspase-3,
Bcl-2, pAkt & pGSK3β,

induc�on of phosphoryla�on of Akt 
and GSK3β

Neuronal apoptosis Hong et al.
[721]

CHOP 
siRNA

A small interfering 
RNAs for CHOP

Endovascular 
perfora�on model/rats

Bcl2,
Caspase-3

Neuronal apoptosis He et al. [722]

Ifenprodil A nega�ve allosteric 
modulators specifically 

Endovascular 
perfora�on model/rats

Mitochondrial Ca2+, Bax, capase-9, Neuronal apoptosis Zhang et al.
[432]

for inhibi�on of 
GluN1/GluN2B NMDA 

receptors

caspase-3 & release of cytochrome c 
from mitochondria to cytoplasm

Bcl-2

LP17 A selec�ve inhibitor of 
TREM-1

Endovascular 
perfora�on model/mice

Microglia ac�va�on & neutrophil 
infiltra�on

Neuroinflamma�on Xu et al. [373]

Magnesium 
lithosperma

te B

A bioac�ve ingredient 
extracted from Salvia 

mil�orrhiza

Endovascular 
perfora�on model/rats

TNF- & cleaved caspase-3
SIRT1

acetyla�on of NF- B
Neuronal apoptosis & inflamma�on Peng et al.

[723]

Mdivi-1 A selec�ve inhibitor of 
DRP1

Endovascular 
perfora�on model/rats

PERK/ eIF2α/ CHOP pathway,
ROS, MMP-9, TNF-ɑ, IL-6 & IL-1ß.

prevented degrada�on of occludin, 
claudin-5 & ZO-1

Neuronal apoptosis & inflamma�on Fan et al.
[724]

Melatonin
A hormone released by 

the pineal gland at 
night

Endovascular 
perfora�on 

model/mouse

Bax, SOD2, cleaved caspase-3 and 
MDA level,

SIRT3, Bcl-2 & GSH: GSSG ra�o
Neuronal apoptosis,

neuroprotec�on
Yang et al.

[725]

Melatonin
A hormone released by 

the pineal gland at 
night

Endovascular 
perfora�on 

model/mouse

H19, miR-675, & NGF
let-7a & TP53 levels Neuronal apoptosis Yang et al.

[726]

Melatonin
A hormone released by 

the pineal gland at 
night

Endovascular 
perfora�on model/rats

Mitophagy-associated proteins 
(PINK1/Parkin)

Mitochondrial dysfunc�on and ROS,  
NLRP3 inflammasome ac�va�on

Inflamma�on
neuroprotec�on

Cao et al.
[727]

Meman�ne 
nitrate MN-

08

a nitrate deriva�ve of 
meman�ne

Endovascular 
perfora�on model/rats, 

cisterna magna single 
blood injec�on 
model/rabbits

NO
caspase-3 Neuronal apoptosis & vasospasm Luo et al.

[728]

Mesenceph
alic 

astrocyte-

A secreted 
neurotrophic factor

Endovascular 
perfora�on model/rats

p-Akt, p-MDM2 and Bcl-2
p53, Bax, cleaved caspase-3 & MMP-

9

Neuronal apoptosis,
neuroprotec�on Li et al. [388]

derived 
neurotroph

ic factor 
(MANF) 
protein

Methazola
mide

A potent carbonic 
anhydrase inhibitor

Endovascular 
perfora�on model/mice

Caspase-3
ROS produc�on

Neuronal apoptosis Li et al. [397]

Drug Drug descrip�on Model of SAH Mechanism Effect Author
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Table 9  (continued)

N-[2-(5-
hydroxy-

1H-indol-3-
yl) ethyl]-2-
oxopiperidi

ne-3-
carboxamid

e (HIOC)

An N-acetyl serotonin’s 
deriva�ve that  

selec�vely ac�vates 
TrkB receptor

Endovascular 
perfora�on model/rats

Cleaved caspase-3,
p-TrkB & p-ERK

Neuronal apoptosis Tang et al.
[729]

N-benzyl-4-
chloro-N-

cyclohexylb
enzamide 
(FPS-ZM1)

A specific inhibitor of 
RAGE

Prechiasma�c model of 
SAH/rats

COX-2, TNF-α, IL-1β, Bcl-2, LC3, 
beclin-1

expression of Iba-1
cleaved caspase-3, Bax,

Inflamma�on, autophagy
neuronal apoptosis Li et al. [730]

Netrin-1 
(NTN-1)

A laminin-related 
protein

Endovascular 
perfora�on model/rats

APPL-1, p-AKT & Bcl-2,
apopto�c marker CC-3.

Neuronal apoptosis Xie et al.
[731]

Neuregulin 
1β1 (Nrg 

1β1)

An ak�vátor of ErbB4 
receptors

Endovascular 
perfora�on model/rats

YAP, PIK3CB & p-Akt,
cleaved caspase-3 Neuronal apoptosis & inflamma�on Yan et al.

[381]

Osteoponti
n

An extracellular matrix 
protein

Endovascular 
perfora�on model/rats

p-FAK & p-Akt,
cleaved caspase-3 expression

Neuronal cell death Topkoru et al.
[732]

OX40 
(CD134, 

TNFRSF4)

A member of the TNF 
receptor family Endovascular 

perfora�on model/rats

Bax, cleaved Caspase-3
Bcl-2, Bcl-XL, & PI3K/AKT pathway Neuronal apoptosis Wu et al.

[733]

PPaaeeoonniifflloorriinn

A single terpenoid 
glycoside compound 

derived from Paeoniae 
Radix

Endovascular 
perfora�on model/rats

IL-1β, IL-6 & TNF-α, forma�on of 
MDA, 3-Nitrotyrosine, 8-OHDG & 

Iba1-posi�ve cells
Neuronal apoptosis, neuroinflamma�on & 

oxida�ve stress
Wang et al.

[679]

PJ34 A PARP inhibitor, Endovascular 
perfora�on model/rats

IL-1ß, IL-6 and TNF-α and MMP-9,
occludin and claudin-5

Neuronal apoptosis and inflamma�on Chen et al.
[677]

PNU-
282987

An alpha7 nico�nic 
acetylcholine receptor 

(α7nAChR) agonist

Endovascular 
perfora�on model/rats

p-Akt,
cleaved caspase-3 Neuronal apoptosis Duris et al.

[736]

Progranulin A 589-amino acid–
secreted glycoprotein

Endovascular 
perfora�on model/rats

p-Akt and Bcl-2, cleaved caspase-3 Neuronal apoptosis Li et al. [737]

Radix 
trichosanthi

s

A Chinese herbal 
medicine

Cisterna magna single 
blood injec�on 

model/mice

iNOS, p38 phosphoryla�on and p53 
ac�vi�es,

Mn-SOD ac�vity,
Neuroprotec�on Chen et al.

[738]

Rapamycin
A specific mTOR C1 

inhibitor Endovascular 
perfora�on model/rats

Release of mitochondrial Cyt c & 
allevia�on of excessive 

mitochondrial fission and 
dysfunc�on

Neuronal apoptosis & mitochondrial 
injury Li et al. [739]

Recombina
nt human 

erythropoie
�n

A hormone produced 
by the kidneys

Prechiasma�c model of 
SAH/mice

p-JAK2 and p-STAT3, TNF-α & IL-1β,
IL-4 and IL-10 Neuronal apoptosis & inflamma�on Wei et al.

[683]

Recombina
nt human 

erythropoie
�n

A hormone produced 
by the kidneys

Cisterna magna double 
blood injec�on 

model/rats
Number of vital neurons Neuronal apoptosis, neuroprotec�on Güresir et al.

[741]

recombinan
t OPN

A pleiotropic 
glycoprotein

Endovascular 
perfora�on model/rats

Beclin 1 & LC3
p62 & phosphoryla�on level of 

ERK1/2
Neuroprotec�on Sun et al.

[742]

Resveratrol A natural polyphenolic 
compound extracted 

Cisterna magna double 
blood injec�on 

model/rats

ROS & MDA
Nrf2 and HO-1, GRP78 & CHOP

Neuronal apoptosis & brain edema
inflamma�on

Xie et al.
[642]

from pines and 
grapevines

Resveratrol

A natural polyphenolic 
compound extracted 

from pines and 
grapevines

Endovascular 
perfora�on model/rats

AC-p53 & total p53,
ZO-1, Occludin & Claudin-5 Neuronal apoptosis & BBB disrup�on Qian et al.

[744]

Resveratrol

A natural polyphenolic
compound extracted 

from pines and 
grapevines

Prechiasma�c model of 
SAH/rats

p-Akt,
cleaved caspase-3

Neuronal apoptosis Zhou et al.
[745]

Resveratrol

A natural polyphenolic, 
thioredoxin-interac�ng 

protein (TXNIP) 
inhibitor

Endovascular 
perfora�on model/rats

Mitochondrial thioredoxin 2
release of mitochondrial Cyt c, p-
ASK1/ASK1, the Bax/Bcl2 ra�o & 

cleaved caspase-3

Neuronal apoptosis, Liang et al.
[746]

Drug Drug descrip�on Model of SAH Mechanism Effect Author
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Table 9  (continued)

Resveratrol
A natural polyphenolic, 
thioredoxin-interac�ng 

protein inhibitor

Endovascular 
perfora�on model/rats ASK1-dependent apoptosis Neuronal apoptosis Zhao et al.

[747]

Resveratrol
A natural polyphenolic, 
thioredoxin-interac�ng 

protein inhibitor

Endovascular 
perfora�on model/rats

NLRP3, cleaved caspase-1, & cleaved 
IL-1β

thioredoxin
Neuronal apoptosis & inflamma�on Zhao et al.

[309]

Resveratrol
A natural polyphenolic, 
thioredoxin-interac�ng 

protein inhibitor

Endovascular 
perfora�on model/rats

Neuronal pyknosis, swelling
beclin-1, LC3-B, & LC3-II/LC3-I

p-Akt, p-mTOR, p62, & apoptosis 
proteins

Enhancement of autophagy, apoptosis
neuroprotec�on Guo et al.

[748]

Rosuvasta�
n

An inhibitor of (HMG-
CoA) reductase Endovascular 

perfora�on model/rats

p65 phosphoryla�on,TNF-α, MMP-9,

& COX-2–positive cells
Oxida�ve stress & inflamma�on Uekawa et al.

[204]

Ruthenium 
red/ 

spermine

An mitochondrial 
calcium uniporter 

inhibitors

Prechiasma�c model of 
SAH/rats

IRP1/2 & iron–sulfur cluster scaffold 
protein

ROS genera�on & caspase-3 
expression

Neuronal apoptosis Yan et al.
[749]

Salvinorin
A selec�ve and potent 
kappa opioid receptor 

(KOR) agonist

Endovascular 
perfora�on model/rats

ra�o of P-PI3K/PI3K & P-Akt/Akt
FoxO1, Bim, Bax, & Cleaved-caspase-

3, p-IKKα/β, p-NF-κB/NF-κB

Neuronal apoptosis and 
neuroinflamma�on

Sun et al.
[735]

SB-3CT An inhibitor of MMP-9 Prechiasma�c model of 
SAH/rats

Degrada�on of laminin &MMP-9 Neuronal apoptosis Guo et al.
[703]

SC 57461A A selec�ve inhibitor of 
LTA4 hydrolase

Prechiasma�c model of 
SAH/rats

Infiltra�on of neutrophil,TNF-α, ROS, 
cleaved caspase-3 & Bax,

Bcl-2.
Neuronal apoptosis & inflamma�on Ye at al. [650]

Sodium 
hydrosulfid

e (NaHS)
A donor of H2S Prechiasma�c model of 

SAH/rats

Plasma levels of IL-1β, IL-10, & TNF-
α,

CBS and 3MST
Neuronal apoptosis & inflamma�on Cui et al.

[648]

SS-31 Cell-permeable tetra-
pep�de

Prechiasma�c model of 
SAH/rats

Bax transloca�on into the 
mitochondrial membrane and 

mi�ga�on of cytochrome c release 
from the mi-tochondria to the 

cytoplasm

Neuronal apoptosis Shen et al.
[647]

ST2825 A synthe�c analogue of 
MyD88

Ac�va�on of p38, JNK, NF-κB, IL-1β 
& TNF-α

Neuronal apoptosis & inflamma�on Yan et al.
[743]

TAT-Ngb

Transac�vator of 
transcrip�on-

neuroglobin fusion 
protein

Prechiasma�c model of 
SAH/rabbits

Cleaved caspase 3, cleaved caspase 
9 & Bax,

Bcl-2

Neuronal apoptosis,
neuroprotec�on

Chen et al.
[740]

Tauroursod
eoxycholic 

acid 
(TUDCA)

An endogenous 
hydrophilic bile acid

Endovascular 
perfora�on model/rats

SIRT3 and BCL-2
BAX & cleaved caspase-3 Neuronal apoptosis Wu et al.

[714]

Tetramethy
lpyrazine

An ac�ve ingredient of 
the Chinese herbal 

medicine Chuanxiong

Cisterna magna single 
blood injec�on 
model/rabbits

Bcl-2, Nrf2 & HO-1,
Bax, Cyt-c & ROS levels

Neuronal apoptosis &oxida�ve stress Wu et al.
[663]

The ca�le 
encephalon 

glycoside 

A mul�targeted 
neurotrophic drug

Endovascular 
perfora�on model/rats

Cleaved caspase-3, Bax, cytochrome 
c, & PUMA

Bcl-2
Neuronal apoptosis, neuroprotec�on Ma et al.

[734]

and igno�n 
(CEGI)

Topiramate
A carbonic anhydrase 
inhibitor medica�on 

used to treat epilepsy

Endovascular 
perfora�on model/rats

TNF-α, IL-1β, IL-6, & ICAM-1, Bac, 
cleaved caspase-3,

Bcl-2
Neuronal apoptosis & inflamma�on Tian et al.

[718]

Tozaser�b An Aurora kinase 
inhibitor

Endovascular 
perfora�on model/rats

DLK, MA2K7, p-JNK, Bim, CC-9, & CC-
3,

Bcl-2
Neuronal apoptosis & inflamma�on Yin et al. [671]

Trans-
ac�va�ng 
regulatory 
protein-

metabotrop
ic 

glutamate 
receptor 1 

(TAT-
mGluR1)

A fusion pep�de Endovascular 
perfora�on model/rats

Preven�on of C-terminal trunca�on 
of mGluR1α

phosphoryla�on of PI3K, Akt, & 
GSK3β,

Bax
Bcl-2

ac�va�on of caspase-3,

Neuronal apoptosis, neuroprotec�on Wang et al.
[713]

Drug Drug descrip�on Model of SAH Mechanism Effect Author
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development of inflammation and outcome in patients 
after SAH [615].

Although hydroxyethyl starch stabilizes the BBB by 
increased ZO-1 and occludin expression, no beneficial 
effect has been demonstrated in clinical use. In line with 
this, a randomized clinical trial assessing the effect of 
euvolemia induced by hydroxyethyl starch did not show 
any effect on patient outcome after SAH.

The development of cerebrovascular inflammation is 
one of the main pathophysiological cascades after SAH. 
Many experimental studies have concentrated on allevi-
ating inflammatory changes after bleeding. Despite the 
positive effect of various anti-inflammatory drugs, there 
are only a few clinical studies describing the effect of 
these drugs in clinical practice [619].

Concluding remarks
As described in this review, every single component of 
the NVU has a significant role in SAH pathophysiology. 
One important observation from our review and other 
sources is that the strict classical division of main phases 
following SAH into EBI and DCI is obsolete. It is more 
likely that DCI is just a continuation of EBI. Nonetheless, 
the main pathophysiological event after SAH is the devel-
opment of neuroinflammation in different components 
of the BBB and NVU.

We may conclude, that endothelial cells, by expressing 
tight junction proteins as well as regulating transporter 
systems, are responsible for the major barrier function. 
Hence, during SAH, alteration of BBB integrity and sub-
sequent behavioral changes of endothelial cells could 
influence interactions in the NVU. Vascular smooth 
muscles are characterized by their contractile ability and 
their role in vasospasms. Vasospasms occur in the later 
phase of the SAH due to ion channel misregulation. SAH 
elicits a general inflammatory reaction in the CNS, pre-
dominantly affecting pericytes, microglia, and astrocytes. 
Blood and blood degradation products induce neuronal 
death by initiating apoptosis. Nevertheless, NVU compo-
nents can modulate these outcomes through their pro-
tective mechanisms. Importantly, there seem to be some 
gender differences in how the NVU unit reacts to SAH, 
and this is driven by sex hormones. Nonetheless, their 
effects should be more carefully analyzed, mainly because 
of the wide use of contraceptives.

As we have seen, the pathophysiology of SAH is highly 
complex. Therefore, it is clear that treatment of the SAH 
should be similarly complex as well. We cannot expect 
one molecule to affect all components of the NVU in a 
positive direction. Future research should therefore focus 
on finding an ideal combination of drugs affecting the 
major pathophysiological aspects of SAH and should 

concentrate mainly on clinical practice by employing ran-
domized clinical trials.
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