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Abstract 

Background:  Influx and clearance of substances in the brain parenchyma occur by a combination of diffusion and 
convection, but the relative importance of these mechanisms is unclear. Accurate modeling of tracer distributions 
in the brain relies on parameters that are partially unknown and with literature values varying by several orders of 
magnitude. In this work, we rigorously quantified the variability of tracer distribution in the brain resulting from uncer-
tainty in diffusion and convection model parameters.

Methods:  Using the convection–diffusion–reaction equation, we simulated tracer distribution in the brain paren-
chyma after intrathecal injection. Several models were tested to assess the uncertainty both in type of diffusion and 
velocity fields and also the importance of their magnitude. Our results were compared with experimental MRI results 
of tracer enhancement.

Results:  In models of pure diffusion, the expected amount of tracer in the gray matter reached peak value after 15 
h, while the white matter did not reach peak within 24 h with high likelihood. Models of the glymphatic system were 
similar qualitatively to the models of pure diffusion with respect to expected time to peak but displayed less variabil-
ity. However, the expected time to peak was reduced to 11 h when an additional directionality was prescribed for the 
glymphatic circulation. In a model including drainage directly from the brain parenchyma, time to peak occured after 
6–8 h for the gray matter.

Conclusion:  Even when uncertainties are taken into account, we find that diffusion alone is not sufficient to explain 
transport of tracer deep into the white matter as seen in experimental data. A glymphatic velocity field may increase 
transport if a large-scale directional structure is included in the glymphatic circulation.

Keywords:  Cerebrospinal fluid, Interstitial fluid, Diffusion, Convection, Glymphatic system, Paravascular space, 
Uncertainty quantification

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Over the last decade, there has been a significant renewed 
interest in the waterscape of the brain; that is, the physi-
ological mechanisms governing cerebrospinal fluid (CSF) 
and interstitial fluid (ISF) flow in (and around) the brain 
parenchyma. A number of new theories have emerged 

including the glymphatic system  [1, 2], the intramural 
periarterial drainage (IPAD) theory [3, 4], and the Bulat–
Klarica–Oreskovic hypothesis [5], along with critical 
evaluations [6–9]. A great deal of uncertainty and a num-
ber of open questions relating to the roles of diffusion, 
convection and clearance within the brain parenchyma 
remain.

Exchange between CSF and ISF is hypothesized to 
occur along small fluid-filled spaces surrounding large 
penetrating arteries in the brain parenchyma known 
as paravascular spaces (PVS)  [1, 10]. Tracer has been 
observed to move faster in paravascular spaces in 
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response to increased arterial pulsations, and arterial 
pulsation has thus been proposed as the main driver of 
paraarterial flow [11–13]. After entering the extracellular 
space (ECS), a bulk flow of ISF from paraarterial to the 
paravenous spaces has been proposed to occur before 
re-entry to the the subarachnoid space (SAS)  [2]. This 
concept of CSF/ISF fluid circulation has been named the 
glymphatic system, with bulk flow as a mechanism for 
effective waste clearance from the brain parenchyma. 
Xie et  al. [14] showed glymphatic influx to increase in 
sleeping mice, linking the importance of sleep to clear-
ance of waste products. Sleep was also associated with 
an increased interstitial space volume fraction, a possi-
ble explanation for increased flow through the interstitial 
space. MRI investigations have also found evidence for 
glymphatic function in human brains [15, 16].

While several studies demonstrate CSF influx along 
paraarterial spaces  [1, 13, 17, 18], the efflux route is 
more debated. Carare et  al.  [3] found evidence of sol-
utes draining from the brain parenchyma along base-
ment membranes of capillaries and arteries, going in the 
opposite direction of blood flow and possible PVS fluid 
movement. This flow is however not facilitated by arte-
rial pulsations [19], but by the movement of smooth mus-
cle cells  [20]. Bedussi et  al. [21] observed tracers move 
towards the ventricular system, ultimately leaving the 
brain via the cribriform plate and the nose. A continuous 
pathway alongside capillaries to the paravenous space 
has been suggested [22], and capillaries continuously fil-
trate and absorb water inside the brain parenchyma [5, 
6], although not necessarily with a net flux of water [23]. 
In addition, substances may leave the parenchyma cross-
ing the blood-brain barrier, or possibly directly to lymph 
nodes [24].

In a recent review, Abbott and colleagues [25] con-
cluded that bulk flow within the parenchyma is likely to 
be restricted to the PVS and possibly white matter tracts. 
Earlier studies have reported a bulk flow velocity magni-
tude of less than 1  µm/s [26], while recent evidence sug-
gests average net bulk flow of around 20 µm/s, restricted 
to the PVS [13, 27]. Nevertheless, since tracer movement 
in in-vivo studies does not necessarily directly reflect 
underlying fluid flow [28], the exact velocity field govern-
ing ISF flow in the brain remains unknown.

All of the aforementioned in-vivo studies have used 
tracers or micro-spheres to track the movement of fluid 
within the intracranial space. Injection of fluid at rates 
as low as 1 µL/min can cause a significant increase of 
local intracranial pressure (ICP) [29], which may lead to 
pressure gradients driving bulk flow. On the other hand, 
non-invasive methods such as diffusion tensor imag-
ing may serve as a promising tool due to its sensitivity to 
dispersion and bulk flow. This method has been applied 

successfully to demonstrate increased diffusivity with 
vascular pulsation compared to diastole [30]. The diffu-
sion coefficient was found to be anisotropic and highest 
parallel to PVS, however a value of the bulk fluid veloc-
ity magnitude could not be reported from these meas-
urements. In addition to both invasive and non-invasive 
experiments, computational models have been used to 
assess the possibility and plausibility of bulk flow within 
the parenchyma. Tracer movement in the extracellular 
space has been found to be dominated by diffusion [31], 
a conclusion similar to that of Smith et al. [9] in experi-
mental studies with very low infusion rates.

Even though computational models can distinguish 
between diffusion and bulk flow, a major challenge 
remains with regard to the unknown material param-
eters, boundary conditions and other model configura-
tions needed to accurately predict the movement of ISF 
in the brain parenchyma. For instance, the permeability 
of brain tissue used in computational models varies from 
10−10 to 10−17 m2  [31, 32]. Because the permeability is 
directly linked to the Darcy fluid velocity in these mod-
els, this parameter choice could result in a difference of 
7 orders of magnitude in predicted ISF flow. In addition, 
CSF dynamics vary between subjects  [33] and human 
CSF production has been reported to increase in the 
sleeping state [34] which may alter ISF flow. Recently it 
has been pointed out that there is an overarching need 
to reduce uncertainty when characterizing the anatomy 
and fluid dynamics parameters in models considering the 
glymphatic circulation [35].

Replacing partial differential equation (PDE) param-
eters subject to uncertainty with spatially correlated 
random fields is a common modelling choice in the 
uncertainty quantification (UQ) literature  [36–38] and 
Monte Carlo methods have been successfully used in 
biology to quantify how uncertainty in model input prop-
agates to uncertainty in model output. However, these 
methods have mainly been applied to simulations of the 
cardiovascular system [39, 40] and, to our knowledge, 
there has only been one study in which Monte Carlo 
methods have been used for UQ in brain modelling [41]. 
To the authors’ knowledge, there has been no previous 
work on forward uncertainty quantification for simula-
tions of tracer transport with the brain parenchyma.

Study outline
With this study, we aim to rigorously quantify how the 
aforementioned uncertainties in the physiological param-
eters and in ISF flow affect the spread of a tracer from 
the SAS into the brain parenchyma. We assume move-
ment of tracer in the brain parenchyma to occur by dif-
fusion and/or convection. To account for uncertainty and 
variability, we circumvent the lack of precise parameter 
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values by modelling velocity and diffusivity as stochastic 
(random) fields. We then set up a stochastic1 PDE model 
with these random fields as coefficients and quantify the 
uncertainty in the model prediction via the Monte Carlo 
(MC) method.

More specifically, we model the MRI study performed 
by Ringstad et  al. [15], assessing glymphatic function in 
the human brain, and derive a baseline convection–diffu-
sion–reaction PDE. The model coefficients are designed 
to represent different hypotheses on CSF flow and clear-
ance, including diffusion, the glymphatic system and pos-
sible capillary absorption, and uncertainty within each 
hypothesis. A total of five different models were investi-
gated, each with stochastic model coefficients. For each 
model, we compute the expected values and 99.73% pre-
diction intervals for different quantities of interest. The 
results reported in the study by Ringstad et al. are com-
pared with the range of uncertainty in our model. We 
find that although the uncertainty associated with diffu-
sion yields great variability in tracer distribution, diffu-
sion alone is not sufficient to explain transport of tracer 
deep into the white matter as seen in experimental data. 
A glymphatic velocity field may increase tracer enhance-
ment, but only when adding a large-scale directional 
structure to the glymphatic circulation.

Methods
In vivo evidence of tracer distribution to the brain
We model the MRI-study of Ringstad et al. [15]. In their 
experiments, 0.5 mL of 1.0 mmol/mL of the contrast 
agent gadobutrol was injected intrathecally, and used as 
CSF tracer in 15 hydrocephalus patients and eight refer-
ence subjects. The localization of the tracer was found 
with MRI at 4 different time periods, at 1, 3, 4.5, and 24 
h following the injection. After 3 h, tracer was localized 
in the ventral region of the cranial SAS, and had started 
to penetrate into the brain parenchyma of the reference 
subjects. The following day it had spread throughout the 
brain tissue. Tracer was found to penetrate along large 
surface arteries in all study subjects, and a low propor-
tion of tracer was found at the dorsal regions of the brain.

Mathematical model for tracer movement in the brain 
parenchyma
We consider the following time-dependent partial differ-
ential equation to model transport of tracer in the brain 
parenchyma: find the tracer concentration c such that

(1)ċ + ∇ · (vc)− ∇ · (D∗ ∇ c)+ rc = 0.

This Eq. (1) is assumed to hold for all times t > 0 and for 
all points in a spatial domain D . The superimposed dot 
represents the time derivative, D∗ is the effective diffu-
sion coefficient of the tracer in the tissue (depending on 
the tracer free diffusion coefficient and the tissue tortu-
osity) [26], v represents a convective fluid velocity and 
r ≥ 0 is a drainage coefficient potentially representing 
e.g.  capillary absorption  [5] or direct outflow to lymph 
nodes  [15]. We assume that the parenchymal domain 
contains no tracer initially: c = 0 at time t = 0.

This model thus requires as input two key physi-
cal parameters: the bulk fluid velocity v and gadobutrol 
diffusivity D∗ everywhere within the parenchyma. To 
investigate and compare different hypotheses for paren-
chymal ISF flow and tracer transport under uncertainty, 
we consider 5 stochastic model variations of Eq. (1). We 
consider two models with a stochastic diffusion coef-
ficient (Models D1 and D2), and three models with sto-
chastic velocity fields (Models V1, V2, and V3). Models 
D1 and D2 assume a negligible fluid velocity in the paren-
chyma ( v = 0 ) and ignore capillary absorption or other 
direct outflow pathways ( r = 0 ). For the velocity models 
(V1, V2 and V3), we consider a non-stochastic diffusion 
coefficient in order to isolate the effects of the stochastic 
velocity fields. An overview of the models is presented in 
Table 1.

Domain and geometry
We define the computational domain D as the union of 
white and gray matter from the generic Colin27 human 
adult brain atlas FEM mesh  [42] version 2 (Fig. 1). This 
domain includes the cerebellum. The levels of the fora-
men magnum, the Sylvian fissure and the precentral sul-
cus are well represented by z-coordinates − 0.1, 0 and 0.1 
m, respectively. The plane z = 0 corresponds approxi-
mately to the level of the lateral ventricles.

Boundary conditions modelling tracer movement in the SAS
Let ∂D be the boundary of D and let ∂D = ∂DS ∪ ∂DV  , 
with ∂DS representing the interface between the brain 

Table 1  Summary of  stochastic model variations 
with  effective diffusion coefficient D∗ , convective fluid 
velocity v, and drainage coefficient r in (1)

Model D
∗ v r

D1 Random variable 0 0

D2 Random field 0 0

V1 Constant Random influx and outflux field 0

V2 Constant Model V1 + additional velocity field 0

V3 Constant Random influx field r > 0

1  A stochastic or random model is a model incorporating one or more ele-
ments of uncertainty or randomness. The opposite of stochastic is referred to 
as non-stochastic, non-random or deterministic.
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parenchyma and the SAS, and ∂DV  representing the 
interface between the brain parenchyma and cerebral 
ventricles, respectively. We consider the following 
boundary conditions for (1):

In particular, we assume that a tracer concentration is 
given at the SAS interface (2) and no ventricular out-
flux (3). The dependence of g on c in (2) is detailed below. 
For clarity in presentation, we here first write c as a field 
depending on space and time only (and not on random 
events).

The boundary condition  (2) models the movement of 
tracer starting from the lower cranial SAS and traveling 
upward in the CSF surrounding the brain as observed in 
the study by Ringstad et al. [15]. In particular, we let

for x = (x1, x2, x3) ∈ D . Here, at time t, cCSF(t) is the 
average tracer concentration in the SAS, while h(t, x) rep-
resents its spatial distribution.

The expression for h is based on the following consid-
erations. We assume that the diffusive and/or convective 
movement of tracer from the spinal to the cranial SAS 
over time is known, and we thus model h(t, x) as a smooth 
step function upwards (in the x3-direction). In  (4), ux3 

(2)c = g(c) on ∂DS ,

(3)D∗ ∇ c · n = 0 on ∂DV .

(4)

g(c)(t, x) = cCSF(t) h(t, x),

h(t, x) =

(

0.5+
1

π
arctan(−a(x3 − z0 − ux3 t))

)

,

represents the speed of tracer movement upwards in 
the SAS, and a reflects the gradient of tracer concentra-
tion from the lower to the upper cranial SAS. Finally, we 
assume that at time t = 0 , the tracer has spread up to a 
relative distance of z0 from the lateral ventricles. This 
specific expression for h(t,  x) and the values of param-
eters a, z0 and ux3 are based on the spread of tracer seen 
in the MR-images in the study by Ringstad et al. [15]. In 
particular, we use a = 20m−1 , ux3 = 1.5× 10−5 m/s and 
z0 = −0.2 m. These parameters were chosen to match 
time to peak in three different regions in the CSF space in 
reference individuals [15].

To derive an expression for cCSF in (4), we consider the 
conservation of tracer. We model the spread of n0 = 0.5 
mmol tracer in the CSF, assuming a volume of VCSF = 140 
mL CSF in the human SAS and ventricles [43]. The aver-
age concentration in the SAS right after injection is thus 
cCSF(0) = 0.5 mmol/140 mL = 3.57 mol/m3 . At any given 
time, we assume that the total amount of tracer in the 
brain and in the SAS plus or minus the tracer absorbed or 
produced stays constant in time, and is equal to the initial 
amount n0 = 0.5 mmol:

By rearranging, we thus obtain an explicit expression 
for cCSF that can be inserted into (4). It should be noted 
that the boundary concentration, as described by Eq. (4), 
depends on the tracer concentration in the brain paren-
chyma itself. Therefore, the boundary concentration will 

(5)

∫

D

c(t, x) dx + cCSF(t)VCSF +

∫ t

0

∫

D

rc(τ , x) dx dτ = n0.

Fig. 1  Computational domain. a The computational domain representing the brain parenchyma including the cerebellum. The interior lateral 
ventricles are marked (light blue) in the central region of the domain. Two smaller regions of interest Sg and Sw , in the gray and white matter 
respectively, are marked in red ( Sw ) and yellow ( Sg ). b Representation of the gray (darker gray) and white matter (lighter gray) in the computational 
domain (axial slice)
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vary from simulation to simulation depending on how 
fast tracer spreads to the parenchyma.

Modelling uncertainty via random variables and fields
A standard approach to model experimental variability 
or uncertainty in the input parameters is via stochastic 
modelling, and random variables or random fields in par-
ticular, see e.g. [44–46]. For clarity, we give a brief intro-
duction to random variables and fields in this section. For 
further reading, we refer the reader to the books by Bland 
[47] or Jaynes [48]. We further detail the stochastic diffu-
sion and velocity models in the subsequent sections.

We indicate a variable X whose value is subject to error 
or uncertainty (e.g. to reflect patient variability or uncer-
tainty in its value) with X(ω) , where ω is called an event 
and indicates a specific instance of X(ω) , called a sample 
or a realization. Practically speaking, here ω can be seen 
as a given computer simulation. A quantity like X is called 
a random variable as its value X(ω) is not known a priori, 
but is fixed at each event (simulation) ω . The values taken 
by a random variable are not arbitrary, but depend on the 
variable’s probability density function which reflects how 
likely each value is to happen, see e.g.  [47] for further 
reading.

The average value attained by a random variable X 
is called its expected value or expectation and is indi-
cated by E[X] . Conversely, the variance of X is a meas-
ure of how much values X(ω) can differ from the 
average, i.e. the variability of X(ω) across events (simu-
lations). The variance is indicated by V[X] and is given 
by V[X] = E[(X − E[X])2] . The expected value of a ran-
dom variable can be approximated by taking the average 
across many samples of X(ω):

where the sample size N is the number of realizations of 
X(ω) taken. The process of sampling X(ω) and of estimat-
ing E[X] by taking the sample average is the basis of the 
Monte Carlo method (see [49] and the references therein 
for further reading).

Random variables are constant i.e. do not vary in space. 
To represent spatially-varying functions (i.e. fields) with 
uncertain function values, we introduce random fields. 
A random field is a function of space whose value at each 
point x in the (three-dimensional) spatial domain D is given 
by a random variable. We write a random field Y as Y (x,ω) 
for spatial points x and events (simulations) ω , to indicate 
that Y varies both across space and simulations. A sample 
or realization of the random field can then be viewed as a 
function of space Y (·,ω) . The expected value of a random 
field E[Y (x,ω)] = µ(x) , where µ(x) is the mean function 

(6)E[X] ≈
1

N

N
∑

n=1

X(ωn),

(which thus varies in space). The random variables that 
form the field are typically correlated among each other. 
This correlation is quantified by the covariance function 
C(x, y) that gives the covariance between Y (x,ω) and Y (y,ω) 
for two spatial locations x and y for each event ω . Specifi-
cally, C(x, y) = E[(Y (x,ω)− µ(x))(Y (y,ω)− µ(y))].

In this study, we employ Matérn random fields [50] [see 
Additional file 1 (Section A) for more details] for modelling 
spatially varying parameters which are either unknown or 
subject to errors. Our choice is motivated by two primary 
reasons: first, Matérn fields are a standard choice for mod-
elling random spatial variability in spatial statistics [51–53] 
and second, Matérn fields can be sampled much more 
efficiently than other Gaussian fields with general covari-
ances [54]. A Matérn random field is characterized by its 
correlation length � which represents the distance past 
which point values of the field are approximately uncorre-
lated. Informally, this means that in each realization of the 
Matérn field, there are regions of length proportional to � 
within which the values of the field are similar.

In the following, we introduce stochastic representa-
tions of the effective diffusion coefficient D∗ and velocity v. 
We then write D∗(ω) when representing D∗ as a random 
variable, D∗(x,ω) when representing D∗ as a random field, 
and v(x,ω) when representing v as a random field. As a 
consequence, the tracer concentration solution of (1) thus 
depends on time, space and random events and can be 
expressed as c = c(t, x,ω).

Stochastic diffusion modelling
The parenchymal effective diffusion coefficient of a sol-
ute, such as e.g.  gadobutrol, is heterogeneous [55] (varies 
in space) and individual-specific (varies from individual 
to individual). Diffusion tensor imaging [56] provides evi-
dence for such heterogeneity. To investigate the effect of 
uncertainty in the diffusion coefficient, we consider two 
approaches: first, to model the diffusion coefficient as a 
random variable and second, to model the diffusion coeffi-
cient as a random field, thus allowing for tissue heterogene-
ity. Both approaches are described in further detail below.

Effective diffusion coefficient modelled as a random variable
First, we consider the simplifying but common assumption 
that the effective diffusion coefficient is constant in space. 
We account for the uncertainty in its value by modelling it 
as a random variable depending on an event ω:

where D∗
Gad = 1.2× 10−10 m/s2 is a fixed parenchymal 

gadobutrol diffusivity [16] and where D∗
γ is a gamma-

distributed random variable with shape k = 3 and scale 
θ = 0.75× D∗

Gad/k . The choice of shape and scaling 
parameters ensures that (i) the diffusion coefficient is 

(7)D∗(ω) = 0.25D∗
Gad + D∗

γ (ω),
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positive, (ii) its expected value matches reported values of 
parenchymal gadobutrol diffusivity [16], and (iii) its vari-
ability allows for values up to 2–3 times larger or smaller 
than the average with low probability. The last model-
ling choice reflects diffusivity values in the range 1–10 
×10−10 m/s2 in agreement with previous reports  [26]. 
The probability distribution of D∗ is shown in Fig. 2.

Effective diffusion coefficient modelled as a random field
In order to represent spatial heterogeneity in the diffu-
sion coefficient, we next model D∗ as a continuous ran-
dom field. Again, we set

where D∗
f  now is a random field such that for each fixed 

x ∈ D , D∗
f (x, ·) is a gamma-distributed random variable 

with the same parameters as D∗ in (7). We define this 
field with a correlation length of 0.01 m. By construction, 
spatial changes in the diffusivity occur at a length scale 
corresponding to the correlation length. More details are 
provided in Additional file 1.

Stochastic velocity modelling
In what follows we introduce three different mod-
els for the velocity field, each representing a different 

(8)D∗(x,ω) = 0.25× D∗
Gad + D∗

f (x,ω),

hypothesis regarding intraparenchymal ISF/CSF move-
ment. We emphasize that each model represents a 
homogenized velocity field averaged over physiological 
structures.

Glymphatic velocity model: arterial influx and venous efflux
To define a stochastic homogenized velocity model rep-
resenting the glymphatic pathway, we assume that ISF 
follows separate inflow and outflow routes: entering the 
brain along paraarterial spaces and exiting along para-
venous spaces [2]. We further suggest that

1.	 Substantial changes within the velocity field happen 
after a distance proportional to the mean distance 
between arterioles and venules.

2.	 The blood vessel structure is random and independ-
ent from the position within the parenchyma in the 
sense that the presence of paraarterial or paravenous 
spaces are equally likely at any point in space. Math-
ematically, this assumption requires the expected 
value of each of the velocity components to be zero.

3.	 The velocity field varies continuously in space and is 
divergence-free ( ∇ · v = 0 ), i.e. no CSF/ISF leaves the 
system e.g. through the bloodstream.

Fig. 2  Stochastic diffusion coefficient models. a Assumed probability distribution of the homogeneous effective diffusion coefficient D∗ modelled 
as a random variable and used in Model D1. The expected value E[D∗] is 1.2× 10

−10
m

2/s. b Sample of the heterogeneous effective diffusion 
coefficient (sagittal, axial and coronal slices ordered from left to right) modelled as a random field and used in Model D2
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4.	 We set the expected velocity magnitude 
||v|| =

√

v2x + v2y + v2z  to be vavg = 0.17 µm/s and we 
allow for up to two to three times larger and up to ten 
times smaller values with low probability [26].

Although ISF/CSF velocities in paravascular regions may 
be higher  [13] than what we propose, the velocity field 
here models an averaged bulk flow over a larger area 
(comprised of e.g.  PVS and adjacent tissue). Bulk flow 
velocity magnitudes in rats have been reported to be in 
the range of approximately 0.1–0.24  µm/s [26, 57].

To address these stipulations, we define the stochastic 
glymphatic circulation velocity field

where η is a scaling constant chosen such that the mag-
nitude of v satisfies E[||v||2]1/2 = vavg , E(ω) is an expo-
nentially distributed random variable with mean 0.2 and 
X(x,ω) , Y (x,ω) and Z(x,ω) are standard independent 
identically distributed (i.i.d) Matérn fields with correla-
tion length � = 1020 µm. For more details, we refer the 
reader to Additional file 1 (Section A.3). A sample of the 

(9)v(x,ω) = vavg · η 10−E(ω)



∇ ×





X(x,ω)
Y (x,ω)
Z(x,ω)







,

glymphatic circulation velocity field together with the 
velocity magnitude distribution is shown in Fig. 3a–b.

Glymphatic velocity model with additional directional 
velocity field
Above we assumed that the blood vessel distribution was 
independent of the spatial position within the paren-
chyma and that bulk flow from arterial to venous PVS 
occurs on a small length scale proportional to the mean 
distance between arterioles and venules. However, trans-
port of tracer might also happen on a larger length scale 
along larger vascular structures present in given physi-
cal regions (such as e.g.  the Circle of Willis). As CSF is 
hypothesized to enter the brain along penetrating arter-
ies, the direction of cardiac pulse propagation may 
induce an additional large-scale directionality of the 
glymphatic circulation as well. The cardiac pulse follows 
the vessel paths of larger arteries entering the brain from 
below, and from there spreads out almost uniformly [58, 
59]. The pulses also seem to traverse deep gray matter 
structures on the way up towards the ventricles.

To model such behavior, we introduce an additional 
large-scale directional velocity field vdir , with character-
istics qualitatively similar to what is described in the lit-
erature [58, 59]:,

Fig. 3  Stochastic aspects of the glymphatic circulation velocity fields (Models V1 and V2). a Probability density of the glymphatic circulation velocity 
magnitude ‖v‖ cf. (9). b Streamlines of a corresponding velocity field sample. c Velocity magnitude and streamlines for the directional velocity field 
vdir as given by (10). The flow field is assumed to follow cardiovascular pulses upwards along the brain stem. After entering the deeper parts of the 
brain, the bulk flow spreads out at reduced velocity magnitude. From left to right: sagittal, coronal and transverse view



Page 8 of 21Croci et al. Fluids Barriers CNS           (2019) 16:32 

where vf = 2× 10−6 m/s. For a plot of vdir , see Fig.  3c. 
The velocity field vdir induces a net flow out of the paren-
chyma at the very low rate of 0.007 mL/min. We super-
impose this deterministic directional velocity field onto 
the stochastic glymphatic circulation velocity field to 
define the stochastic glymphatic directional velocity field:

where vV1 is given by (9). This velocity model thus takes 
into account both the “randomness” of small arteries 
(small-scale directionality), but also the “deterministic” 
presence of large arteries and possibly other structures 
(large-scale directionality) of blood flow propagation [58, 
59] .

Capillary filtration model V3: arterial inflow 
with a homogeneous sink throughout the brain
Several independent studies demonstrate that CSF may 
enter the brain parenchyma along spaces surrounding 
penetrating arteries  [2, 4, 13, 27]. However, the glym-
phatic efflux concept of a bulk flow of CSF through the 
ECS and recirculation into the SAS through paravenous 
spaces has been severely questioned [4, 7, 31, 60]. As a 
variation, we here therefore also consider a stochastic 
velocity model representing paraarterial influx with-
out a direct return route to the CSF. Instead, we assume 
that ISF/CSF is drained inside the brain parenchyma 
along some alternative efflux pathway. This pathway may 
include the capillaries or separate spaces along the PVS 
directly into cervical lymph nodes.

In light of this, we consider the following alternative 
velocity assumptions. (1) There is a net flow of CSF into 
the brain and (2) ISF is cleared within the parenchyma via 
some, here unspecified, route. For instance, it has been 
proposed that production and absorption is present all 
over the CSF system and that capillaries and ISF continu-
ously exchanges water molecules [61]. However, drainage 
of large molecules through this route is unlikely as cap-
illary endothelial cells are connected by tight junctions 
[7]. It has also been reported that lymph vessels may be 
capable of also draining larger molecules from brain tis-
sue into deep cervical lymph nodes, possibly through 
paravenous spaces [62]. In addition, other outflow routes 
may exist, including clearance by degradation or menin-
geal lymphatic vessels [63].

To address these assumptions, we define a stochastic 
arterial inflow velocity field as a radially symmetric field 

(10)vdir(x) = −vf







arctan(15x1)(|x1| − 0.1)
arctan(15x2)(|x2| − 0.1)

−0.9x3 + 0.06−

�

x21 + x22






,

(11)v(x,ω) = vV1(x,ω)+ vdir(x),

pointing inwards from the SAS interface to the brain region 
around the lateral ventricle. This central region is modelled 
in what follows as a sphere of radius R = 8 cm and center 
given by xc in the lateral ventricles. Mathematical experi-
mentation lead to the following ansatz for such velocity:

where v̄(ω) is a gamma random variable chosen such that 
the probability distribution of the velocity magnitude is 
comparable to that of the glymphatic circulation velocity 
defined by (9). The shape parameter k = 2 and the scale 
parameter is set such that again E[||v||2]1/2 = vavg . Note 
that in this case, the expected value of the velocity com-
ponents are non-zero. To satisfy (2), we model the drain-
age of tracer by setting r = 1× 10−5 s−1 , which typically 
results in 40% drainage of the injected tracer over 48 h. 
An example of the velocity field given by (12) is shown in 
Fig. 4.

Quantities of interest, random sampling and uncertainty 
analysis
Quantities of interest
To evaluate the speed and characteristics of tracer move-
ment into and in the brain parenchyma, we consider a set 
of output quantities of interest. Each quantity of interest 
Q = Q(ω) depends on the event ω via c(·, ·,ω) as defined 
by (1).

To quantify the overall spread of tracer in the gray and 
white matter, we consider the (integrated) amount of tracer 
in the gray matter Qg and in the white matter Qw at time 
points τ:

We pay particular attention to the times τ ∈ {3, 5, 8, 24} 
h. To further differentiate, we also defined two localized 
quantities of interest at each time τ : the average tracer 
concentration qg in a small subregion of the gray matter 
Sg and analogously qw for a small subregion of the white 
matter qw:

where Vg and Vw is the volume of the gray and white mat-
ter subregions, respectively. The size and relative location 
of the subregions Sg and Sw within the computational 
domain are illustrated in Fig.  1. To further quantify the 
speed of propagation, we define the white matter activa-
tion time Fw:

(12)

v(x,ω) = v̄(ω) exp

(

−
3(R− ||x − xc||)

2

R2 − (R− ||x − xc||)2

)

(xc − x),

(13)

Qg (ω) =

∫

Dg

c(τ , x,ω) dx, Qw(ω) =

∫

Dw

c(τ , x,ω) dx.

(14)

qg =
1

Vg

∫

Sg

c(τ , x,ω) dx, qw =
1

Vw

∫

Sw

c(τ , x,ω) dx,
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where n0 is the total amount of tracer injected into the 
SAS (0.5 mmol) and X is a given percentage. Given the 
time course of the expected tracer distribution to the 
white matter [16], we here chose X = 10% . Finally, we 
also define the analogous regional (white matter) activa-
tion time

where Y = 10−3 mol/m3

For plotting the boundary tracer concentration over 
time, we define three axial planes along the z-axis 
( z = −0.1, 0, 0.1 m) to represent the level of the fora-
men magnum, Sylvian fissure and precentral sulcus, 
respectively.

Random sampling and uncertainty analysis
We consider the six output quantities of interest: the 
amounts of tracer in gray and white matter at given 
times  (13), the average tracer concentrations in sub-
regions of gray and white matter  (14), the white matter 
activation time (15), and the white regional activation 
time (16) for all 5 stochastic model variations.

To sample a quantity of interest from its distribution, 
we first compute a sample of each of the random coef-
ficients in (1) from their distribution, second, solve (1) 
for c with the given coefficient sample, and third, evalu-
ate the quantity of interest with the computed solution. 
The random diffusion and velocity coefficient fields were 
sampled using the sampling technique as described in 
e.g [54]. We used the standard Monte Carlo approxima-
tion cf.  (6) to compute an estimate Q̂ of each expected 
quantity of interest value E[Q] using N = 3200 samples. 
The statistical error introduced by this approximation 

(15)Fw(ω) =

{

min t |

∫

�w

c(t, x,ω) dx/n0 > X

}

,

(16)fw(ω) =

{

min t |
1

Vw

∫

Sw

c(t, x,ω) dx > Y

}

,

decreases with O(N−1/2) . The choice N = 3200 ensures 
that 3(V̂ /N )1/2 < 0.01Q̂ , where V̂  is the sample variance 
of Q̂ . For each output quantity of interest, we also esti-
mate its probability distribution, from which we com-
pute 99.73% prediction intervals for each Q̂ . A prediction 
interval is a statistical term that roughly indicates that if 
we were to take a new sample (i.e. a new simulation) of 
Q, there would be a 99.73% chance for this sample to fall 
within the interval.

Numerical methods and implementation
The diffusion–convection Eq. (1) was solved numerically 
using a finite element method with continuous piece-
wise linear finite elements in space, and an implicit mid-
point finite difference discretization time with time step 
�t = 15 min, combined with mass lumping  [64]. The 
finite element mesh Th was an adaptively refined ver-
sion of the gray and white matter of the Colin27 human 
adult brain atlas mesh [42] version 2 with 1,875,249 ver-
tices and 9,742,384 cells. An outer box of dimensions 
0.16× 0.21× 0.17 ( m3 ) with mesh size 0.0023 m was 
used for the sampling of the Gaussian fields.

For the models with non-zero velocity (Models V1, V2, 
V3), (1) was typically mildly convection-dominated with 
an upper estimate of the Péclet number of

where L ≈ 0.084 m is half the diameter of the computa-
tional domain, vavg = 0.17 µm/s, and D∗

Gad = 1.2× 10−10 
m/s2 . The boundary condition (5) was discretized explic-
itly in time using the trapezoidal rule, making the overall 
scheme first-order in time and second order-in space. For 
more details, we refer to Additional file 1 (Section B).

The numerical solver was implemented in Python using 
the FEniCS finite element software  [65] and previously 
verified in-house parallel Monte Carlo routines  [54]. 

(17)Pe ≈
9Lvavg

D∗
Gad

≈ O(103),

Fig. 4  Sample Model V3 velocity field. Velocity magnitude and streamlines for the velocity field as given by (12). Flow is assumed to occur from the 
cortex towards the ventricles with reduced velocity magnitude along the way due to clearance. From left to right: sagittal, coronal and transverse 
view
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The extended box mesh was created using the Gmsh 
software  [66]. The linear system was solved using the 
PETSc  [67] implementation of the GMRES algorithm 
preconditioned with the BoomerAMG algebraic mul-
tigrid algorithm from Hypre [68]. The numerical solver 
was verified using a convergence test comparing differ-
ent mesh refinements, time steps, and stabilization tech-
niques, including SUPG  [69], for a set of deterministic 
numerically worst-case models (with large velocities and 
small diffusion coefficients) [see Additional file  1 (Sec-
tion C)]. We used Matplotlib (version 2.1.1) and Paraview 
(version 5.4.1) for visualization.

Results
Non‑random diffusion as a baseline for parenchymal solute 
transport
To establish a baseline for parenchymal solute transport, 
we first simulated the evolution of a tracer spreading in 
the SAS and in the parenchyma via diffusion only, using 
a constant (i.e.  non-random) effective diffusion coeffi-
cient for gadobutrol ( D∗ = 1.2× 10−10 m2/s). The result-
ing parenchymal tracer spread over 24 h is shown in 
Fig. 5. The tracer concentration increases first in inferior 
regions and in the gray matter. Tracer does not penetrate 

deep into white matter regions within this time frame. 
Slower penetration into white matter is expected as the 
white matter is located further from the outer brain sur-
face. In the sagittal plane (top), tracer enhancement is 
more prominent than in the other two plane as the sag-
ittal plane shown is close to the CSF-filled longitudinal 
fissure.

Figure  6a shows the boundary tracer concentration 
(concentration in the SAS) over time at the levels of the 
foramen magnum ( z = −0.1 m), Sylvian fissure ( z = 0 
m) and precentral sulcus ( z = 0.1 m). During the first 
few hours, boundary tracer concentration at the level of 
the foramen magnum increases rapidly, and peaks at 3 
h reaching approximately 2.0 mol/m3 . Boundary tracer 
concentrations close to the Sylvian fissure and precentral 
sulcus are lower, and the time to reach peak concentra-
tions is longer. For the Sylvian fissure, peak concentra-
tion in the CSF is 1.4 mol/m3 , at 5 h, while the precentral 
sulcus concentration reaches 1.1 mol/m3 at 7 h. We note 
that as the boundary condition depends on the paren-
chymal tracer concentration itself [cf.  (5)], the bound-
ary tracer concentration will differ slightly in subsequent 
simulation setups.

Fig. 5  Baseline tracer evolution. Parenchymal tracer concentration after (from left to right) 1, 3, 8 and 24 h of diffusion in (from top to bottom) 
sagittal, transverse and coronal planes. Initially, most of the tracer is found in inferior regions. At 24 h, tracer has penetrated substantially into the 
gray matter, but not into the deep, central regions
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In Fig.  6b, concentration profiles are shown for three 
interior points at different distances from the brain sur-
face. The points were chosen along a line from the brain 
surface towards the ventricles at the height of the Sylvian 
fissure (z = 0). The tracer concentration at these points 
stays low for the first few hours before steadily increas-
ing. For the point closest to the SAS ( x2 ), the concen-
tration rises faster than for the other two points, and is 
almost equal to the SAS concentration at 24 h (0.4 vs 0.5 
mol/m3 ). In the middle point ( x1 ), tracer concentration 
starts increasing after 6–7 h and reaches approximately 
0.15 mol/m3 after 24 h. For the most interior point ( x0 ), 
tracer concentration starts and stays low throughout the 
24 h time span. At 24 h, the tracer concentration in all 
three points is still increasing.

Quantifying the effect of uncertainty in effective diffusion 
magnitude
We first aimed to quantify the effect of uncertainty in 
the magnitude of the effective diffusion coefficient on 
the time evolution of tracer in the gray and white mat-
ter. In particular, we computed the tracer concentration, 
together with auxiliary output quantities, evolving via 
diffusion only with a gamma-distributed random variable 
diffusion coefficient (Model D1).

The amount of tracer found in the gray and white 
matter differ both in magnitude and variation (Fig. 7a–
c). The expected amount of tracer in the gray matter 
increases rapidly, and doubles from 1 to 2 h (0.065 to 

0.13 mmol), and again from 2 to 4 h (0.13 mmol to 0.25 
mmol). The gray matter reaches a peak after approxi-
mately 15 h, while the white matter did not reach 
steady steady within 24 h. There is substantial variation 
in the amount of tracer in gray matter throughout the 
24 h time span. The variation is at its largest between 
2 and 8 h where the length of the 99.73%-intervals 
range from 0.064 mmol to 0.11 mmol corresponding to 
13–22% of the total tracer injection of 0.5 mmol. Ulti-
mately, the amount of tracer will reach a steady-state 
solution, constant in space and time, independently of 
the diffusion coefficient. Therefore, after a certain point 
in time, variation decreases as all solutions converge 
towards the same steady state. The changes in vari-
ation of tracer found in the gray matter over the 24 h 
are also illustrated by the change in the estimated prob-
ability density function (PDF) of the total amount of 
tracer at a given time (Fig. 7c). After 3 and 5 h (blue and 
orange curve) the PDFs are symmetric, and with more 
spread for the later time point. As time evolves, the 
PDFs become more left skewed (green and red curve), 
as in almost all cases, the concentration approaches but 
never surpasses the steady state value.

The amount of tracer in the white matter changes 
slowly for the first 2 h, before starting to increase after 
3–4 h (Fig. 7b). After 4 h, the expected amount of tracer 
in the white matter is only 0.0048 mmol, increasing to 
0.022 mmol after 8 h, and 0.056 mmol after 16 h. The var-
iation is substantial and increasing with time: the length 

Fig. 6  Tracer concentrations. a Tracer concentration in the SAS ( cCSF ) used as boundary conditions at the brain surface at the level of the foramen 
magnum (FM), Sylvian fissure (SF) and the precentral sulcus (PS). At the lower level of the SAS, tracer concentration peaks at around 3 h, while at the 
upper levels, peak concentration occurs later. Following peak values, the concentration in the SAS decreases as tracer enters the parenchyma. The 
SAS concentration is modeled by (4). b Tracer concentration over time in three different points at a given distance from the brain surface. The points 
were chosen along a line directly from the cortex towards the ventricles at the level of the Sylvian fissure
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of the 99.73%-interval is 0.022 mmol at 4 h, 0.065 mmol 
at 8 h and 0.10 at 16 h. At 24 h, the uncertainty in diffu-
sion coefficient may explain a factor of approximately 5 
in deviation from the lowest (0.027 mmol) to the high-
est (0.14 mmol) predicted amount of tracer in the white 
matter.

The estimated PDF and cumulative density function 
(CDF) for the white matter activation time (i.e.  time 
for 10% of tracer to reach the white matter) is shown in 
Fig.  7d. We observe that the most likely white matter 
activation time is approximately 14 h. The white matter 
activation time is less (than 10%) likely to be less than 9.5 
h, but (more than 90%) likely to be less than 24.5 h. The 
activation time may exceed 24 h, but is highly unlikely to 
go beyond 40 h (CDF > 0.998). The white matter activa-
tion threshold was reached in all samples within the sim-
ulation time span.

Quantifying the effect of uncertainty in diffusion 
heterogeneity
Brain tissue is heterogeneous [55], varies from individual 
to individual, and is clearly not accurately represented 
by a single diffusion constant. To further investigate the 
effect of uncertainty in the diffusion coefficient and in 
particular to study the effect of spatial heterogeneity, we 

modelled the diffusion coefficient as a spatially-varying 
random field (Model D2).

The amounts of tracer found in gray and white mat-
ter for Model D2 are nearly identical to those resulting 
from Model D1 in terms of expected value (data shown 
later cf. Fig. 10), but with substantially less variability. The 
length of the 99.73% prediction interval for amount of 
tracer in gray matter ( Qg ) is less than 0.0071 mmol for all 
times after the first half hour, corresponding to a relative 
variability (compared to the expected value) of between 
2.2 and 10.9% throughout the 24 h time span. For white 
matter, the length of the 99.73% prediction interval is 
increasing with time, with the relative variability at 24 h 
at 7.9%.

When considering the average concentration of tracer 
in two smaller regions of interest [cf. (14)], variability in 
model D2 increases drastically (Fig. 8). In the gray mat-
ter region (Fig.  8a), the expected average tracer con-
centration increases steadily to 0.11 mol/m3 after 4 h, 
0.23 mol/m3 after 8 h, 0.35 mol/m3 after 16 h and is still 
increasing after 24 h. The variability is moderate after 
3 h (Fig.  8c), but increases thereafter. The length of the 
99.73% prediction interval peaks at 0.39 mol/m3 after 11 
h before decreasing moderately for later times.

The expected average tracer concentration in the white 
matter is low, lower than in the gray matter (Fig. 8b) by 

Fig. 7  Uncertainty quantification for Model D1. The integrated amount of tracer in the a gray matter Qg and b white matter Qw over time; Qg and 
Qw as defined by (13). The blue curves show the expected value. The light blue vertical bars indicate the variability: 99.73% of the samples fall within 
the plotted range (with 0.135% of the samples above and 0.135% below). c The probability density functions (PDFs) corresponding to Qg at 3, 5, 
8 and 24 h after tracer injection. d Histogram of white matter activation time Fw as defined by (15) (bars), corresponding estimated PDF (orange 
curve), and corresponding cumulative density function (CDF). Uncertainty in the magnitude of the effective diffusion coefficients substantially 
impact the amount of tracer found in the gray and white matter and the white matter activation time
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a factor of at least 40, and starts increasing only after 
approximately 14 h. For the samples in the lower range of 
the 99.73% interval (thus with the lower effective diffusiv-
ity), the concentration in the white matter region remains 
close to zero after 24 h. For the white region activation 
time, we observe some variability (Fig. 8d): the peak like-
lihood is after 14–15 h, less (than 10%) likely to be less 
than 12 h, and (more than 90%) likely to be less than 19 h. 
The white subregion activation threshold was reached in 
all samples within the simulation time span.

Quantifying the effect of glymphatic circulation
In light of the substantial uncertainty surrounding ISF/
CSF flow in paravascular/perivascular spaces and poten-
tial ISF flow in extracellular spaces, we now turn to study 
the effect of uncertain velocity fields. To investigate the 
effect of uncertainty in a glymphatic velocity model, we 
defined a random velocity field with correlation length 
corresponding to the typical distance between parenchy-
mal arterioles and venules (Model V1).

The expected amounts of tracer found in the whole gray 
and whole white matter for Model V1 are nearly identi-
cal to those found for Model D2 and Model D1, while 
the variability is minimal (data shown later cf. Fig. 10). In 
response, additional Monte Carlo simulations using up to 

three times higher values of the velocity magnitude aver-
age were performed, which did not change the expected 
value (data not shown). The only difference was a slight 
increase in variability. Thus, on average, small random 
variations in fluid velocity did not increase (or decrease) 
the tracer distribution into the parenchyma on a global 
scale. This observation can be interpreted in the light 
of the small correlation length of the velocity field com-
pared to the size of the whole gray and white matter.

The expected average tracer concentration in the gray 
subregion qg reaches 0.2 mol/m3 in 7 h (Fig. 9a). This is a 
considerable amount of time, given that the initial aver-
age SAS concentration is 3.57 mol/m3 . The expected 
average tracer concentration in the white subregion qw is 
lower, and only reaches 7.3 mmol/m3 in 24 h (Fig. 9b). We 
observe that the expected qg increases marginally faster 
with the glymphatic velocity model than for pure diffu-
sion: at 24 h, qg is 2.5% higher for V1 (0.40 mol/m3 ) than 
for D1 (0.39 mol/m3 ). On the other hand, the expected qw 
increases faster with pure diffusion than with the glym-
phatic velocity model: at 24 h, qw is 34% lower for V1 
(0.0073 mol/m3 ) than for D1 (0.011 mol/m3 ). The peak 
relative difference between pure diffusion and the upper 
limit of the 99.73% interval of model V1 is high after 1 
h, due to low tracer concentration overall. The next peak 

Fig. 8  Uncertainty quantification for Model D2. The average tracer concentration in a subregion of a gray matter qg and b white matter qw as 
defined by (14). The blue curves show the expected value. The light blue vertical bars indicate the variability: 99.73% of the samples fall within the 
plotted range (with 0.135% of the samples above and 0.135% below). The dashed orange lines in a and b indicate the analogous expected value 
curve resulting from Model D1 (constant diffusion only), for comparison. c The probability density functions (PDFs) corresponding to qg at 3, 5, 8 and 
24 h after tracer injection. d Histogram of white subregion activation time fw as defined by (16) (bars), corresponding estimated PDF (orange curve), 
and corresponding cumulative density function (CDF). Uncertainty in the heterogeneity of the diffusion coefficient leads to a wide range of likely 
average tracer concentrations in the white matter throughout the time span
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Fig. 9  Uncertainty quantification for Model V1. The average tracer concentration in a subregion of a gray matter qg and b white matter qw as 
defined by (14). The blue curves show the expected value. The light blue vertical bars indicate the variability: 99.73% of the samples fall within the 
plotted range (with 0.135% of the samples above and 0.135% below). The dashed orange lines in a and b indicate the analogous expected value 
curve resulting from Model D1 (constant diffusion only), for comparison. Expected values for qg are nearly identical as for Model D1 and D2, but 
variation is much lower. Expected values for qw are lower than for Model D1 and variation is much lower (c). The probability density functions (PDFs) 
corresponding to qg at 3, 5, 8 and 24 h after tracer injection. The PDFs show very low variation. Variation increases slightly over time. d Histogram of 
white subregion activation time fw as defined by (16) (bars), corresponding estimated PDF (orange curve), and corresponding cumulative density 
function (CDF)

Fig. 10  Uncertainty quantification for Model V2. Model V2 (red) in comparison with Models D1 (orange) and V1 (blue). The integrated amount of 
tracer in the a gray matter Qg and b white matter Qw , as defined by (13), over time. The average tracer concentration in a subregion of c gray matter 
qg and d white matter qw , as defined by (14), over time. The curves show the expected values while vertical bars indicate the 99.73% prediction 
intervals of the different models
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occurs after 8 h where the relative difference is 13% 
between the two.

However, the variation in both gray and white local 
average tracer concentration is small. For early time 
points (up to 3–4 h), nearly no variation is evident in the 
average tracer concentration of the local regions (Fig. 9a–
c). The peak length of the 99.73% interval for qg is 0.035 
mol/m3 (at 9 h), and the relative variability ranges from 
6–19% in the 24 h time span. Moreover, the activation 
time fw shows low variability: all simulations resulted in 
an activation time of 15.5–16 h (Fig.  9d). The substan-
tially reduced variability for V1 compared to e.g. D2 com-
bined with the comparable expected values yields much 
larger likely sample ranges for D2 than for V1.

Quantifying the effect of glymphatic directionality
The cardiovascular pulse propagates along the larger 
arteries entering the brain from below before spread-
ing outwards [58, 59]. To assess whether and how such a 
directionality in the glymphatic system affects parenchy-
mal tracer distribution, we added a net flow field to the 
random velocity field representing the glymphatic circu-
lation (Model V2).

With more fluid entering the brain from below, as illus-
trated by the streamlines of Fig.  3c, the total parenchy-
mal amount of tracer increases. For the expected amount 
of tracer in gray matter, however, Model V2 was in very 
good agreement with Models D1 and V1 (Fig.  10a). 
After 13 h, the amount of tracer found in the gray mat-
ter is higher for Model D1 than for Model V2. In Model 
V2, more of the tracer is found deeper in the gray matter 
and eventually moves to the white matter. We note that 
the uncertainty associated with the velocity fields barely 
affects the amount of tracer in the gray and white matter, 
as demonstrated by the nearly vanishing variation associ-
ated with Qg and Qw for Model V2 (and V1) (Fig. 10a, b).

The expected amount of tracer in the white matter Qw 
increases substantially by the introduction of the direc-
tional velocity field (Fig. 10b). The expected value curve 
starts deviating from the other models after 4–5 h, and 
the difference increases with time. At 24 h, the expected 
amount of tracer found in the white matter Qw is 50% 
larger for Model V1 (0.12 mmol) as for Model D1 (0.08 
mmol). However, in view of the large variability associ-
ated with Qw for Model D1 and the nearly vanishing vari-
ability associated with Model V2, the expected amount 
of white matter tracer for Model V2 falls well within the 
99.73% prediction interval for Model D1.

The directional velocity field also induces an increase 
in the expected average tracer concentration in the 
gray subregion qg (0.45 mol/m3 vs 0.40 for V1 and 0.39 
mmol/m3 for D1 at 24 h, Fig.  10c). In contrast to for 
Qg and Qw , this quantity of interest also displays some 

variability, with a peak variability (0.031 mol/m3 i.e. 10%) 
at 8–10 h after injection. Notably, after 21–22 h, the aver-
age tracer concentration in gray matter is larger than 
for pure diffusion (and for no net flow) also in terms of 
99.73% prediction intervals. For qw , Model V1 and V2 are 
in close agreement, both with distinctly less variability 
than Model D1 (Fig. 10d).

Quantifying the effect of paraarterial influx with drainage
A number of open questions remain in the context of 
glymphatic and paravascular efflux routes. To further 
investigate potential pathways, we also considered a 
model representing paraarterial influx combined with 
parenchymal ISF drainage (Model V3).

Paraarterial inflow with drainage increases the amount 
of tracer found in the parenchyma for the early time 
points (Fig. 11). After 4 h, with the lowest velocities, the 
amount of tracer in the gray matter is equal to models 
with only diffusion (0.25 mmol). With higher velocities, 
however, the amount of tracer found in the gray mat-
ter increases by 32% to reach 0.33 mmol. After a peak at 
6–8 h, drainage and transport into white matter cause 
a decrease in the expected amount of tracer in the gray 
matter, while its variation stays more or less constant 
(0.11–0.12 mmol). The PDFs of the amount of tracer 
found in the gray matter thus have different characteris-
tics than the two previous models, in particular the red 
curve (24 h) shows lower amounts of tracer than at the 
two previous time points.

For the white matter, the expected amount of tracer 
increases with time, rapidly in comparison with pure dif-
fusion, and seems to peak at approximately 0.097 mmol 
(at 19–22 h) before slowly decreasing. Variation, on the 
other hand, is substantial and in some cases the amount 
of tracer found in the white matter reaches 0.2 mmol, 
which higher than what is seen in any previous model. 
This is visible by a peak of the maximum values within 
the 99.73% interval after 11–12 h. In Model V3, tracer is 
drained out of the system and the amount of tracer in the 
white matter is similar as for the previous models at 24 h.

The white matter activation time is likely lower for 
Model V3 compared to previous models, and the vari-
ation is substantial (Fig.  11d). The white matter activa-
tion time is less (than 10%) likely to be less than 6 h, but 
(more than 90%) likely to be less than 16.5 h. Note that 
the white matter activation threshold was not reached in 
3% of the samples.

Discussion
In this study, we have investigated the variability in paren-
chymal tracer enhancement resulting from uncertainty in 
diffusion and convection parameters. We designed five 
computational models representing different diffusion 
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and convection regimes and used stochastic analysis to 
rigorously evaluate the resulting probability distributions.

In all models, 10% of the tracer reached the white 
matter within 40 h, with more variability in activation 
time for diffusion models and less variability for mod-
els including a convective velocity. Indeed, uncertainty 
in the diffusion parameters had a substantial impact on 
the amount of tracer in gray and white matter, and on 
the average tracer concentration in gray and white sub-
regions. Overall, diffusion was not sufficient, with high 
likelihood, to transport tracer deep into the parenchyma.

A stochastic velocity field representing the glymphatic 
theory (with small-scale directionality only) did not 
increase transport into any of the regions considered, 
unless augmented with an additional net flow with a pre-
scribed large-scale directionality. In the latter case, trans-
port was increased with overwhelming likelihood: for 
model V2, the entire 99.73% prediction interval for the 
gray subregion average tracer concentration was higher 
than for model D1. Models including parenchymal drain-
age displayed substantial variability, and reached peak 
values for the expected amount of tracer both in gray and 
white matter within 24 h.

Comparison with previous work
Our models mimic the experimental set-up of an MRI 
study of parenchymal tracer distribution after intrathe-
cal gadobutrol injection [15]. In our simulations, as in the 
MRI study, the tracer first spreads to inferior regions of 
the parenchyma closer to the (modelled) injection site. 
Modelling a healthy patient, we assumed that the tracer 
concentration in the ventricular CSF was low  [15, 16]. 
Thus, no tracer spreads to the parenchyma from the ven-
tricles directly. In models with diffusion only, the amount 
of tracer in the gray matter peaks at approximately 15 
h. In the MRI study, the time to peak enhancement in 
selected regions of interest was between 12 and 24 h [15]. 
In a more recent study, time to peak values were consid-
erably longer, up to 48 h, for some regions [16]. However, 
in the latter study, the time to peak enhancement was 
shorter for the white matter than for the gray matter in 
healthy subjects. This observation is not consistent with 
the results from either of our computational models.

Most of the reported time to peak values in the two 
human MRI-studies [15, 16] are within the 99.73% pre-
diction interval of the random homogeneous diffusion 
model (Model D1). However, even for the upper range 
of the prediction interval, the time to peak/steady state 
value for the white matter exceeds 24 h in our model. 

Fig. 11  Uncertainty quantification for Model V3. The integrated amount of tracer in the a gray matter Qg and b white matter Qw over time; Qg and 
Qw as defined by (13). The blue curves show the expected value. The light blue vertical bars indicate the variability: 99.73% of the samples fall within 
the plotted range (with 0.135% of the samples above and 0.135% below). The dashed orange lines in a and b indicate the analogous expected 
value curve resulting from Model D1 (constant diffusion only), for comparison. Large variations in the white matter is found depending on the 
inflow velocity. c The probability density functions (PDFs) corresponding to Qg at 3, 5, 8 and 24 h after tracer injection. d Histogram of white matter 
activation time Fw as defined by (15) (bars), corresponding estimated PDF (orange curve), and corresponding cumulative density function (CDF). We 
note that the CDF peaks at 0.96 (< 1.0) as some samples never reached the white region activation threshold
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The uncertainty in the diffusion coefficient may explain 
a fourfold difference in the amount of tracer found in 
the white matter at 24 h. Despite this large variation, 
the discrepancy between simulations and experiments 
in white matter could not be explained by uncertainty 
in the diffusion parameter. This may suggest other 
mechanisms in addition to diffusion for tracer trans-
port into deeper regions of the brain. According to par-
aarterial influx theories in general and the glymphatic 
theory in particular, tracer flows rapidly along and into 
the parenchymal PVS  [1] distributing tracer to the 
gray matter. Hence, one may expect diffusion models 
to underestimate the amount of tracer in gray matter 
at a given time. However, is worth noting that we do 
not observe such an underestimation in our diffusion 
model, when compared to the experimental values [15]. 
In contrast, we do observe a delayed distribution of 
tracer in white matter.

Brain tissue is known to be both anisotropic and heter-
ogeneous [26, 70, 71]. We found the variation due to spa-
tial heterogeneity in the diffusion coefficient to be low. As 
the correlation length was small compared to the size of 
the the gray and white matter, a lack to tracer concentra-
tion in one local region was balanced by enhancement in 
a different local region. In addition, we note that repre-
senting the diffusion coefficient as a random variable or a 
random field yields the same expected value. Tracer dis-
tribution to large brain regions can thus be well approxi-
mated using an average diffusion constant if the spatial 
heterogeneity is present on a shorter length scale.

In models with convection, given a homogenized 
velocity of average magnitude 0.17  µm/s, tracer distribu-
tion depends on the characteristics of the velocity field. 
In the glymphatic theory, CSF enters the brain along 
arteries and re-enters the SAS along a paravenous out-
flow pathway [1, 2]. In our glymphatic circulation model, 
the stochastic velocity field, representing homogenized 
paraarterial and paravenous flow, did not increase tracer 
distribution to the brain. An increase in the amount of 
tracer surrounding paraarterial spaces was balanced by a 
lower distribution around paravenous spaces. However, 
when local regions are addressed, tracer concentration 
may increase by up to 13% compared to diffusion alone, 
depending on the surrounding velocity field and region of 
interest. As we consider a homogenized representation of 
the PVS, this change reflects an increase in regions sur-
rounding arterial PVS (not only inside the PVS). Iliff et al. 
[12] reported a twofold increase in tracer intensity in PVS 
in normal mice compared to mice with internal carotid 
artery ligation. The increase in the surrounding paren-
chyma was lower, approximately 30–40%, which com-
pares more naturally with our estimate of 13%. It should 
be noted however, that our region of interest was deeper 

into the parenchyma (extending from 0.6 to 4 mm depth) 
than the region of interest (at 100  µm) used by Iliff et al. 
[12]. Moreover, our model parameters reflect a different 
species (man versus mouse), and the tracer spread takes 
place at a longer time scale.

When modelling paraarterial influx combined with 
parenchymal drainage (Model V3), the time to peak was 
reduced to 6–8 h in the gray matter. Although lacking 
quantitative drainage parameters, we observe that sub-
stantial clearance would reduce both the time to peak 
and relative tracer enhancement in the brain compared 
to diffusion alone. In the glymphatic directionality model 
(Model V2), guided by [59], the presence of a paravascu-
lar directional velocity also decreases the expected time 
to peak tracer enhancement in gray matter, down to 11 h 
(compared to 15 h for pure diffusion). Thus, when experi-
mental data suggests a time to peak enhancement shorter 
than for diffusion alone, it is not clear whether this is due 
to increased glymphatic function or increased clearance 
by parenchymal drainage.

In our models, the white matter (and subregions) is 
where the effect of a convective velocity becomes most 
prominent. The only model modification causing an 
expected time to peak enhancement in white matter 
of approximately 24 h is with a paraarterial inflow and 
drainage (Model V3). In this model, the upper limit of 
the 99.73% prediction interval peaks at approximately 
12 h, which is more comparable to the rapid tracer 
enhancement observed in the white matter of healthy 
subjects [16].

Although diffusion may act as the main transport 
mechanism in the parenchyma [9, 31], we here show that 
convective velocities of magnitude less than 1 µm/s may 
play an important role for transport. This result holds 
when there is a structure of the glymphatic circulation as 
used in Model V2 or possibly a net inflow as in Model 
V3. It should be noted that this directional velocity field, 
in which pulsations propagate upwards from the brain 
stem  [58, 59], favors inflow when tracer is injected in 
lower CSF regions such as e.g. in the spinal canal.

Limitations
In the present study, we have used a continuous and 
homogenized model of the brain parenchyma allow-
ing only for an averaged representation of paravascular 
spaces on the scale of micrometers. To remedy this limi-
tation, combined with restrictions placed by mesh reso-
lution, we used lower velocities acting over larger areas to 
model paravascular flows. Clearly, the components of the 
brain parenchyma, including the vasculature, paravascu-
lar, extracellular and cellular spaces have dissimilar prop-
erties, and thus a homogenized model can only capture 
larger-scale features. At the same time, homogenized 
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models are well-established for modelling fluid flow and 
transport in biological and geological porous media, see 
e.g. [72].

Further, we did not distinguish between white and gray 
matter in terms of the fluid velocity or in the diffusivity, 
although white matter is assumed to be more permeable 
[73]. However, in the absence of substantial drainage, net 
movement of fluid (in gray matter and PVS vs white mat-
ter) should on average be equal in the two regions by con-
servation of mass. Therefore, we used maximal velocity 
magnitudes of approximately 0.5   µm/s, which is similar 
to what has been reported in white matter [57], but not as 
high as has been reported in local regions in the PVS [13, 
27]. While we used qualitative measurements [58, 59] to 
suggest a directionality in the glymphatic circulation, we 
predict that more detailed measurements of glymphatic 
function in different brain regions would be important 
for tracer enhancement and clearance.

The boundary concentration in our model was assumed 
to spread in a manner similar to what was seen from the 
signal intensity in the MRI study by Ringstad et al.  [15]. 
A more detailed analysis of the spread of tracer in the 
CSF could be based on at least solving the Navier–Stokes 
equations in the SAS. In addition, our model ignores 
other efflux pathways directly from the SAS, such as 
e.g.  arachnoid granulations  [74], dural lymphatics  [75, 
76], and nasal lymphatics  [77], although CSF drainage 
through the cribriform plate and other perineural routes 
eventually reaching the lymphatic system has recently 
been proposed to dominate glymphatic clearance [78]. 
By ignoring other efflux pathways over a time span of 24 
h, we assume a relatively long terminal phase half-life of 
gadobutrol in the SAS. To the authors’ knowledge, this 
value is not well known. However, the data available sug-
gest high concentrations of gadobutrol within the brain 
even after 24 h [15, 16], suggesting a half-life longer than 
our simulation time.

In the experiments by Ringstad et  al. [15, 16], tracer 
distribution within the parenchyma varied considerably 
from patient to patient. In our analysis, we did not con-
sider patient-specific meshes, but rather one representa-
tive mesh. Patient-specific meshes would add additional 
dimensions to the space of uncertainty, possibly giving 
different distributions in output in each of the patients.

The MRI-studies [15, 16] only provide quantitative val-
ues of tracer enhancement signal intensity, and not tracer 
concentrations. As the relation between signal intensity 
and concentration is nonlinear [79], we have not made a 
direct comparison between these two quantities. How-
ever, we have assumed that a peak in signal intensity cor-
responds to a peak in tracer concentration, thus allowing 
for a comparison of time-to-peak between the model 
results and experiments.

In our study, we assumed the probability distributions 
of the velocity and diffusivity coefficients to be known. In 
theory, it would be ideal to identify or learn these distri-
butions from patients’ data via e.g. a Bayesian approach. 
Techniques for (infinite-dimensional) Bayesian inference 
[80, 81] have successfully been applied to fluid dynamics 
problems [82] and to brain imaging [83]. However, these 
methods require suitable quantitative data which are 
generally not available. In particular, we note that MRI 
only gives values of tracer enhancement signal intensity 
directly, and not tracer concentration or fluid velocities.

In this study, we considered a linear reaction–con-
vection–diffusion equation as a standard and classical 
model for the evolution of a solute concentration. At the 
same time, we introduced a set of modelling assump-
tions for the velocity and diffusivity fields. An alternative 
approach could be to identify the mathematical model 
via inverse modelling, model adaptivity or learning 
based approaches. Given suitable data and a set of fea-
sible models, it could be possible to identify or learn the 
models and/or model parameters that best represent the 
in vivo observations.

Conclusions
The results from this study show that uncertainty in the 
diffusion parameters substantially impact the amount of 
tracer in gray and white matter, and the average tracer 
concentration in gray and white subregions. However, 
even with an uncertainty in the diffusion coefficient of a 
factor three, and a resulting fourfold variation in white 
matter tracer enhancement, discrepancies between simu-
lations of diffusion and experimental data are too large to 
be attributed to uncertainties in the diffusion coefficient 
alone.

A convective velocity field modelling the glymphatic 
theory, with arterioles and venules placed at random, 
did not increase tracer enhancement in the brain paren-
chyma compared to pure diffusion. However, when a 
large-scale directional structure was added to this glym-
phatic velocity field, tracer inflow increased.

Diffusion alone was able to mimic behaviour in MR-
studies in specific regions. However, this result does not 
imply lack of glymphatic circulation as the gray mat-
ter tracer enhancement was equal for the glymphatic 
model with directionality and for diffusion alone. On the 
other hand, the white matter concentration was greatly 
increased in the former model. Thus measuring glym-
phatic function requires detailed experimental data and 
analysis of the whole brain.
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