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Dispersion in porous media in oscillatory 
flow between flat plates: applications 
to intrathecal, periarterial and paraarterial 
solute transport in the central nervous system
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Abstract 

Background:  As an alternative to advection, solute transport by shear-augmented dispersion within oscillatory cer-
ebrospinal fluid flow was investigated in small channels representing the basement membranes located between cer-
ebral arterial smooth muscle cells, the paraarterial space surrounding the vessel wall and in large channels modeling 
the spinal subarachnoid space (SSS).

Methods:  Geometries were modeled as two-dimensional. Fully developed flows in the channels were modeled by 
the Darcy–Brinkman momentum equation and dispersion by the passive transport equation. Scaling of the enhance-
ment of axial dispersion relative to molecular diffusion was developed for regimes of flow including quasi-steady, 
porous and unsteady, and for regimes of dispersion including diffusive and unsteady.

Results:  Maximum enhancement occurs when the characteristic time for lateral dispersion is matched to the cycle 
period. The Darcy–Brinkman model represents the porous media as a continuous flow resistance, and also imposes 
no-slip boundary conditions at the walls of the channel. Consequently, predicted dispersion is always reduced relative 
to that of a channel without porous media, except when the flow and dispersion are both unsteady.

Discussion/conclusions:  In the basement membranes, flow and dispersion are both quasi-steady and enhance-
ment of dispersion is small even if lateral dispersion is reduced by the porous media to achieve maximum enhance-
ment. In the paraarterial space, maximum enhancement Rmax = 73,200 has the potential to be significant. In the SSS, 
the dispersion is unsteady and the flow is in the transition zone between porous and unsteady. Enhancement is 5.8 
times that of molecular diffusion, and grows to a maximum of 1.6E+6 when lateral dispersion is increased. The maxi-
mum enhancement produces rostral transport time in agreement with experiments.

Keywords:  Perivascular flow, Paravascular flow, Paravenous flow, Spinal subarachnoid space, Cerebrospinal fluid, 
Glymphatic system
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Introduction
Motivation
An attractive avenue for drug transport to the brain is the 
spinal subarachnoid space (SSS). Inconsistent results sug-
gest that more complete understanding of solute disper-
sion in the SSS could improve outcomes. Similarly, solute 
transport in the so-called “glymphatic system” has been 
observed and has been hypothesized to be an important 
route for clearing metabolites and regulating immune 
response, but controversy exists over the mechanisms 
of the transport, and even of the existence of net flow in 
the perivascular spaces. A phenomenological feature that 
these two spaces potentially have in common is the pres-
ence of oscillatory flow (zero net flow component). Oscil-
latory flow offers the possibility that at least a portion of 
the observed solute transport may be due to shear-aug-
mented (Taylor) dispersion, rather than bulk flow. This 
paper uses a mathematical model and order-of-magni-
tude estimates to evaluate the plausibility of significant 
Taylor dispersion in the SSS and “glymphatic system” 
spaces and the potential that conditions within the spaces 
might be clinically controlled to optimize transport.

The remainder of this “Introduction” section will first 
describe Taylor dispersion (in “Shear-augmented dis-
persion” section) and then summarize the relatively 
well-known anatomy and flow and transport parameters 
of the SSS (see “Intrathecal flow and transport” sec-
tion), and the same, but so far incompletely understood, 
parameters for the paravascular and perivascular spaces 
(see “Perivascular and paravascular flow and transport” 
section).

Shear‑augmented dispersion
Axial transport of solutes can be reduced or enhanced 
by diffusion across streamlines. For example, in steady, 
purely axial pipe flow, a bolus of a passive species is car-
ried forward faster in the center of the pipe than near the 
walls, creating radial concentration gradients that favor 
diffusion toward the walls of the pipe at the leading edge 
of the bolus and toward the center of the pipe at the trail-
ing edge. The spread of the bolus is, therefore, reduced by 
diffusion from high-velocity to low-velocity streamlines 
on the leading edge, and by diffusion from low- to high-
velocity streamlines on the trailing edge (called Taylor 
dispersion in honor of Taylor [1]). In oscillatory (fluctuat-
ing with zero mean), purely axial flow, net axial transport 
is zero in the absence of diffusion. Transverse diffusion 
similar to the steady case increases axial dispersion by 
leaving some of the tracer behind on streamlines of lower 
velocity as the flow reverses after having been carried 
forward on high-velocity streamlines [2]. Transverse con-
vection can also spread the tracer across axial streamlines 
of different velocities, for instance, by secondary flows 

in a curved pipe [3]. When the time constants for axial 
displacement and transverse mixing are matched, the 
augmentation R of axial dispersion relative to molecular 
diffusion is greatly enhanced, analogous to tiny delivery 
vehicles hauling tracer forward and returning empty with 
each displacement cycle [3, 4].

Perivascular and paravascular flow and transport
Historically, when only the Virchow-Robin space (VRS) 
was recognized, this space was called perivascular. How-
ever, as the potential was found for transport in two dif-
ferent channels around cerebral blood vessels (Fig.  1), a 
different nomenclature has been adopted. First, perivas-
cular refers to the space within the wall of a cerebral 
artery, specifically in the basement membranes (about 
100 nm thickness) between smooth muscle cells (SMC), 
which form rings about 2–6 μm wide that wrap around 
the circumference of the vessel by about 1.5 turns [5, 6]. 
One layer of SMCs is present in the circumference of the 
arterioles, while 4–20 layers are found in larger arteries 
[6]. Observations on human brains with cerebral amy-
loid angiopathy and experimental studies using tracers 
injected into the parenchyma suggests that interstitial 
fluid (ISF) flows out of the brain tissue via the intramu-
ral periarterial drainage (IPAD) pathways in the direction 
opposite that of blood flow within the artery (Fig. 1). This 
direction of IPAD is inferred based on tracers of vari-
ous sizes that were injected into the brain parenchyma 
and found in the basement membranes between SMC’s, 
but not in the 30–40  nm thick basal lamina between 
endothelial cells and SMC’s, nor in the basement mem-
brane outside the outermost layer of SMC’s [7]. Identify-
ing a mechanism for retrograde flow is key to validating 
the IPAD concept (e.g., [8–10]). The tracers eventually 
drain to cervical lymph nodes [11–13]. Failure of this 
process with increasing age and with risk factors for Alz-
heimer’s disease may lead to the accumulation of pro-
teins in the walls of arteries, but not veins, as observed 
in human cases and animal models of cerebral amyloid 
angiopathy [14, 15].

Second, paravascular flow is hypothesized to occur 
outside the vessel wall, i.e., outside the outermost 
SMCs, but enclosed within the astrocyte end feet form-
ing the glia limitans (Fig.  1). Convective influx of cer-
ebrospinal fluid (CSF) is thought to occur from the 
cortical subarachnoid space (CSS) along these paraar-
terial spaces to combine with ISF as it flows into the 
parenchyma near the capillaries [16, 17]. According to 
the glymphatic hypothesis, ISF is cleared along simi-
lar paravenous channels back to the CSS. The paraar-
terial space has been considered synonymous with the 
Virchow-Robin space (VRS) without a clear description 
of the anatomical structures that form its boundaries 
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[16, 18]. Historically, it was speculated that the VRS 
was bounded on the outside by the pia and freely com-
municated with CSF in the CSS [19, 20]. However, 
electron microscopy revealed that the pial sheath is 
closely associated with the abluminal part of SMC’s 
and blocks such circulation by covering arteries both 
upstream and downstream of the pia mater surround-
ing the brain (see Fig. 1) [21, 22]. Therefore, the inner 
wall of this pathway may be the pia. VRS between the 
pia and glia limitans is found in normal subjects when 
MRI sequences conducive to its detection are used 
[23]. The VRS is therefore a potential space formed 
between the glia limitans and the pial sheath, enlarg-
ing in ageing and cerebral amyloid angiopathy, possibly 
reflecting excess fluid that is unable to be cleared effi-
ciently. A large, empty VRS, as traditionally envisioned 
(Fig.  1), is not universally presented. In these studies, 
the pia mater and glia limitans were separated only by 
their respective basement membranes [24–26]. Further, 
large paraarterial channels may be an artifact of high 
tracer infusion rates that inflate the space [13, 27]. On 
the other hand, fixation has been observed to reduce 
the paravascular cross sectional area by a factor of 10 
[28]. Rather than judge which channel characteristics 
are most physiologically accurate, this paper will ana-
lyze both, with thin pial-glial basement membranes 
being addressed by the periarterial model, and thicker 
VRS channels by the paraarterial model.

The intriguing potential exists for simultaneous flows 
in opposite directions within the two different chan-
nels [29]. It should also be noted that the pial sheath is 
not found around veins in the parenchyma [22] which 
has implications for outflow along veins, as proposed as 
a part of the glymphatic circulation [16]. This outflow, 
if it exists, would have to occur in a different space, for 
instance, the collagen layer between the endothelium and 
the glia limitans [22].

While numerous experiments have documented trans-
port of solutes within these spaces [12, 16], bulk flow of 
fluids has been directly verified only around the middle 
cerebral artery (MCA), in large part due to the difficulty 
of real-time measurements in the extremely small chan-
nels. Around the MCA, a mean velocity of 18.7 μm/s was 
measured by particle tracking [28]. However, this velocity 
corresponds to a flow rate of about 0.00308 μL/min that 
followed an infusion of tracer into the cisterna magna 
of 2  μL/min. The question is raised whether the rela-
tively large infusion (about 2% of brain volume) inflated 
the cistern and caused the roughly 1000-fold smaller 
flow. The mechanism by which bulk flow may be driven 
has not been identified, but was thought to be related to 
the blood pressure pulse, because transport ceases after 
the heart is stopped in mice [12]. However, more recent 
modeling has shown that the stiffness of the middle cer-
ebral artery is too large to allow significant flow to be 
driven by arterial wall motion [30]. The mean pressure 

Fig. 1  Hypothetical perivascular and paravascular flow pathways in an artery. Paravascular flow is hypothesized to move inward to the brain tis-
sue between astrocyte end feet and pia mater. Perivascular flow is hypothesized to move outward from the brain tissue in basement membranes 
between smooth muscle cells. (From [33])
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difference between CSF and the central nervous system 
(CNS) parenchyma is small, about 1  mmHg or less [31, 
32]. Therefore, its contribution to bulk flow may be insig-
nificant. Further, the resistance of the cerebral paraar-
terial tree is too great to support bulk flow [33]. In this 
paper, an alternative hypothesis is evaluated that solute 
transport may occur in the absence of net bulk flow by 
shear-augmented dispersion.

Intrathecal flow and transport
CSF pulsates with each cardiac cycle around the brain 
and spinal cord with nearly zero net flow. Features of the 
CSF system anatomy (Fig.  2) and physiology were 
reviewed by Martin et al. [34]. Total CSF volume ranges 
from 250 to 400 mL in an adult human [35] with ~ 90 mL 
located in the SSS. CSF is a clear fluid having similar 
properties as water at body temperature with density, 
ρ = 993 kg/m3 and kinematic viscosity, ν = 7 × 10−7 m2/s 
at body temperature [36]. Figure  3 indicates hydrody-
namic and geometric characterization of the SSS for a 
healthy adult male subject in terms of key parameters. 
Computational fluid dynamics modeling of CSF flow has 
estimated Reynolds number based on hydraulic diameter 
to be from 150 to 450 within the SSS [37] and 340 within 
the aqueduct of Sylvius [38], which are both in the lami-
nar range. Studies have indicated that jets and possible 

flow instabilities may be present [39]. The Womersley 
number1 in the SSS has been estimated to range from ~ 5 
to 15 [40], which is unsteady.

The SSS can be considered to be a porous medium 
as described previously by Gupta et  al. [41] and others. 
This is because the SSS is bounded by the pia-arach-
noid complex [42], a fluid space that contains numerous 
microscopic structures including arachnoid trabeculae, 
arachnoid “sheets” with holes [43], and blood vessels. The 
porosity of the human SSS is not known precisely. Thus, 
our approach estimated a range of plausible values based 
on known anatomic dimensions.

Since CSF pulsates around the entire brain and spine, it 
can be leveraged as a conduit to deliver therapies to the 
brain and spinal cord. While CSF-based delivery of drugs 
and biologics to the CNS is promising, there is relatively 
little information about the physics of CSF flow and sol-
ute transport, which has, in turn, slowed therapeutic 
development. At present, targeting and optimizing the 
delivery of these therapies is problematic because virtu-
ally nothing is known about CSF dynamics in many CNS 
diseases. A better understanding of CSF flow and trans-
port could help to optimize delivery parameters and/or 
system design to ensure that the drug reaches targeted 
CNS tissue regions [44]. This was accented in a recent 
study that concluded, “Assessment of biomarkers that 
report the kinetics of CSF flux in prospective gene ther-
apy patients might inform variable treatment outcomes 
and guide future clinical trial design” [45].

To the extent that flows through the ultrastructures 
within the spinal subarachnoid space and in the perivas-
cular and paravascular channels may be driven by oscil-
latory pressure gradients, and that longitudinal transport 
may be enhanced by the resulting velocity gradients, 
a mathematical model is developed to quantify the 
enhancement.

Objectives
The plausibility of significant shear-augmented disper-
sion in the SSS and in the paravascular and perivascular 
spaces will be evaluated by two methods. First, an ana-
lytical model of transport in oscillatory flow through a 
simplified channel filled with (Darcy–Brinkman) porous 
media representing the CNS spaces is used to calculate 
a low estimate of the enhancement of dispersion. Model 
results are presented over a wide range of parameters, 
as well as for parameter sets for each space that yield the 
largest plausible enhancement with the Darcy–Brink-
man model, which neglects the transverse mixing that 
can occur in porous media. Second, order-of-magnitude 

1  The Womersley number has the same form as the earlier-defined Stokes 
number used in this paper (see definition after Eq. 2).

Fig. 2  Anatomic diagram of the CSF system including spinal suba-
rachnoid space (SSS) and cortical subarachnoid space (CSS) with 
ventricles and cisterns of the brain
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analysis is used to estimate the maximum enhancement 
associated with a match between the transverse mix-
ing time and the cycle period of the oscillatory flow. 
Together, these lower and upper bounds test whether 
Taylor dispersion may be significant in these spaces and 
demonstrate the potential for improvement in transport 
by clinical manipulation of the parameters.

Methods
Mathematical model
Flows in the channels are simplified to be that between 
flat plates. (Validity of this and other simplifications are 
discussed in “Values of parameters” section). No-slip 
and no-flux boundary conditions are applied at the walls. 

The Darcy–Brinkman model is used to approximate the 
resistance to flow of the structures within the channels. 
This model smooths the local heterogeneities of flow 
through the porous material to a purely axial superficial 
velocity, which is the mean velocity of a hypothetical 
continuum fluid filling the channel. This approximation 
allows an analytical solution, but has potential implica-
tions for transport that are estimated by order-of-magni-
tude analysis in “Regimes of dispersion” section. For these 
conditions, the dimensional unsteady Darcy–Brinkman 
equation describes the fluid flow

(1)
∂ũs

∂ t̃
= −

1

ρ

∂ p̃

∂ x̃
+ νe

∂2ũs

∂ ỹ2
−

ν

k
ũs,

Fig. 3  Example of geometric and hydrodynamic characterization of the SSS for a healthy adult male subject based on subject specific MRI meas-
urements and engineering post-processing techniques described by Sass et al. [35]. Axial distribution of dura, spinal cord and SSS (dura + spinal 
cord) perimeter (a), dura, spinal cord and SSS area (b), hydraulic diameter (c), Reynolds and Womersley number (d), peak CSF flow rate at systole and 
diastole (e), mean CSF flow velocity at systole and diastole (f). Systolic flow is directed towards the feet
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where k is permeability, p̃ is pressure, t̃ is time, ũs is 
superficial axial velocity, x̃ is the axial coordinate, ỹ is the 
transverse coordinate, ν is the kinematic viscosity of the 
fluid, νe is the effective kinematic viscosity for flow in the 
porous medium, and ρ is the fluid density. The last term 
on the right-hand side, called the Darcy term, is an addi-
tion compared to the Navier–Stokes equation for flow 
without porous media. This term is significant for porous 
flow. k → ∞ and νe → ν for nonporous flow.

Equation 1 is nondimensionalized as

where p = p̃
ρωνe

 is pressure, ω is frequency, t = ωt̃ is time, 
u = ũs/hω is the superficial velocity, x = x̃/h is the axial 
coordinate, y = ỹ/h is the transverse coordinate, h is the 
channel half height, α2 = h2ω

νe
 is the square of the Stokes 

(Womersley) number and Da2 = h2ν
kνe

 is the square of the 
Darcy number ( Da → 0 for nonporous flow [2]).

Inserting a complex oscillatory pressure gradient 
∂p
∂x = −Peit , where P = ∂ p̃/∂ x̃

ρωνe/h
 , the oscillatory velocity can 

be described as the real component of separable spatial 
and temporal parts u = Re

[

f
(

y
)

eit
]

 . By inserting these 
pressure and velocity relationships into Eq. 2, the spatial 
part of the equation of motion is

where d2 ≡ M + iN = Da2 + iα2 and the real and imagi-
nary parts m and n of d are defined by d ≡ m+ in =
1√
2

√√
Da4 + α4 + Da2 + i

1√
2

√√
Da4 + α4 − Da2 . (Note 

that d2 = iα2 for nonporous flow [2]). Equation 3 has the 
solution

where

Dimensional longitudinal dispersion is described by

where c is concentration of a passive tracer and κ is its 
molecular diffusivity, which can be nondimensionalized 
as

where θ = c
c0

 , where c0 is a characteristic concentration, 
β2 = h2ω

κ
= α2Sc is the oscillatory Peclet number (here-

after simplified to the Peclet number) and Sc = ν/κ is the 

(2)α2 ∂u

∂t
= −

∂p

∂x
+

∂2u

∂y2
− Da2u,

(3)∇2f − d2f = −P,

(4)f =
P

d2
(1− F),

(5)F = cosh dy

cosh d
.

(6)
∂c

∂ t̃
+ ũs

∂c

∂ x̃
= κ∇̃2c,

(7)∇2θ − β2 ∂θ

∂t
= β2u

∂θ

∂x
,

Schmidt number. Equation  7 is the same as the nonpo-
rous case [2], but u is now a function of Da, which leads 
to a Da dependence for θ.

From Eqs.  2 & 7, dimensional analysis reduces the 
number of variables to

Inserting the velocity solution f and a separable concen-
tration profile θ = −γ x + Re

[

γ g
(

y
)

eit
]

 that includes 
an oscillatory component that is independent of axial 
location and steady state longitudinal concentra-
tion gradient that is uniform across the cross section 
γ = −∂θ/∂x = const , gives

which has the solution

where A = P
d2i

 , B = Pβ2

d2(d2−r2) cosh d
 , C = −Bd sinh d

r sinh r
 , 

r2 = ih2ω
κ

= iβ2 , r =
√

iβ2 = r̄(1+ i) and r̄ = β/
√
2 . The 

flux of tracer per unit depth is

which in dimensionless form becomes

Using complex conjugates (desig-
nated by an overbar), velocity becomes 
u = Re

[

f
(

y
)

eit
]

= 1
2

(

feit + f̄ e−it
)

 and concentration 
θ = −γ x + Re

[

γ g
(

y
)

eit
]

= −γ x + γ
2

(

geit + ḡe−it
)

.
The product of velocity and concentration is then 

uθ = 1

2

(

feit + f̄ e−it
)

[

−γ x + γ
2

(

geit + ḡe−it
)]

= − γ x
2

  
(

feit + f̄ e−it
)

+ γ
4

(

fgei2t + f ḡe0 + f̄ ge0 + f̄ ḡ ei2t
)

 .
Neglecting the oscillatory terms in the product, which 

do not contribute to flux over times long compared to the 
oscillatory period, the flux becomes

The effective diffusivity is defined (following Watson [2]) 
as

where the enhancement of transport by shear is

(8)u, θ = u, θ
(

P, t, x, y,α,Da, Sc
)

.

(9)∇2g − iβ2g = −β2f ,

(10)g = A+ B cosh dy+ C cosh ry,

(11)j̃ =
∫ h

0

(

ũc − κ
∂c

∂ x̃

)

dỹ,

(12)j ≡
j̃

hω
=

∫ 1

0

(

uθ −
κ

h2ω

∂θ

∂x

)

dy =
∫ 1

0

uθdy+
γ

β2
.

(13)j =
γ

4

∫ 1

0

(

f ḡ + f̄ g
)

dy+
γ

β2
.

(14)Deff ≡
j̃

∂c/∂x
= κ(1+ R),

(15)R = 1

4

1
∫

0

(

f ḡ + f̄ g
)

dy.
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Equation 15 is similar to the Watson [2] case, but here f 
and g depend on Da. Having integrated over y and t, the 
remaining independent variables for determining R are

Details of the solution for R are given in Additional file 1: 
Appendix. For validation, this solution reduces to that for 
a channel without porous media [2] for Da → 0.

Values of parameters
Results were obtained for the case of periarterial base-
ment membranes and the paraarterial (Virchow-Robin) 
space within the brain, and for the SSS. For basement 
membranes, the gap height was taken as 100 nm, which 
is 75 times smaller than the radius of the smallest arteries 
(precapillaries ~ 7.5 μm radius), thus the flat plate channel 
model is justified even for the smallest vessels. The cross 
section of the basement membrane may be irregular, thus 
the simplified flat plate channel represents a baseline 
model from which solutions for more complex geome-
tries may be extended. Molecular diffusivity was taken to 
be that for amyloid-β, κ = 5 × 10−11 m2/s [46]. This value 
is for monomers of amyloid-β, which have a size of about 
1 nm and thus satisfy the continuum assumption within 
the channel (oligomers and aggregates of amyloid-β, may 
be as large as 100 nm, which would violate the continuum 
model). The density and kinematic viscosity of the sus-
pending fluid taken to be that of water at body tempera-
ture, ρ = 993  kg/m3 and ν = 7 × 10−7 m2/s. The Schmidt 
number becomes Sc = 14,000. The oscillatory frequency 
was taken as that for the heartbeat, ω = 2π rad/s. The 
Womersley number becomes α2 = 2.24E−8 and the Peclet 
number β2 = 0.000314.

The pressure gradient driving flow in the basement 
membrane has not been measured and would be difficult 
to obtain, given the small sizes involved. Therefore, the 
approach taken here was to test the ultimate feasibility 
of transport by oscillatory shear-augmented dispersion 
by using the largest possible pressure gradient, charac-
terized by cerebral arterial pulse pressure, approximated 
as 100  mmHg = 13.33  kPa, and a longitudinal distance. 
This pressure would prevail if the hydraulic resistance 
(or compliance) across the endothelial layer is small com-
pared to that between the basement membrane and the 
parenchyma, which near the capillaries comprises peri-
cytes and astrocyte feet. It should be noted that while 
the intramural pulse pressure in the capillaries has con-
ventionally been thought to be greatly attenuated by flow 
through the arterioles, evidence suggests that high pres-
sure may persist to the capillaries [47], thus a substan-
tial part of the full pulse pressure may apply to channels 
beginning at the arteriole/capillary junctions. The pulse 
pressure in veins is low, thus the potential for driving 

(16)R = R(P,α,Da, Sc).

flow along perivenous channels by venous intramural 
pressure pulsations is less. Flow might alternatively be 
driven by pulsations in pressure within the parenchyma 
if the hydraulic resistance (or compliance) between the 
intramural space of the vessel (whether artery or vein) 
and the basement membrane is large compared to that 
between the basement membrane and the parenchyma. 
This pulse pressure can be estimated to be that in the 
CSF, for instance, as measured in the ventricles by a num-
ber of investigators (see the following discussion of the 
SSS). Finally, a longitudinal distance of 0.1 m character-
izing the length of cranial vessels gives a maximum non-
dimensional pressure gradient amplitude of P = 1.526.

Permeability of SMC basement membranes has been 
estimated as 1.432E−18 m2 in a rabbit thoracic aorta [48, 
49]. Whether cerebral arterial SMC or pial-glial basement 
membranes are more or less permeable is unknown. 
Using this value for the current problem makes the Darcy 
number Da2 = 1750.

The characteristic thickness of the larger paraarte-
rial space was taken as 10 μm [50, 51]. Taking a cortical 
arteriole with radius of 11.5 μm [51] as the characteristic 
vessel size, the gap-to-radius ratio is near unity, thus the 
flat plate model is a simplification. Again using amyloid-β 
as the solute, the Schmidt number is Sc = 14,000. Using 
the same heart beat frequency, the Womersley number is 
α = 0.000224 and the Peclet number β2 = 3.14. The driv-
ing pressure gradient was assumed the same as for base-
ment membranes, which results in P = 152.6. Using a 
thicker 25 μm channel and a smaller 2.4 Pa/m peak pres-
sure gradient, Bilston et al. [52] nonetheless arrived at a 
comparable value (P = 67) for the paraarterial space of 
arteries entering the spine. Permeability of the paraarte-
rial space has been estimated as 1.8E−14 m2 [53], which 
makes the Darcy number Da2 = 1390. If the paraarterial 
gap is instead comprised by the smaller 100  nm thick 
pial-gial basement membrane [13, 27], then the param-
eter values are the same as for the periarterial space.

For the SSS, the gap height was taken as 3 mm (Fig. 3) 
[34]. This gap prevails along much of the spine, but is 
considerably larger near the foramen magnum. The 
perimeter of the SSS (Fig. 3) is only about three times the 
gap height, thus a flat plate channel model is a simplifi-
cation. The molecular diffusivity was taken to be that for 
methotrexate, κ = 5.26E−10  m2/s ([54] in [55]) (an anti-
metabolite injected intrathecally to treat cancer), thus 
the Schmidt number becomes Sc = 1330. Using the same 
heart beat frequency, the Womersley number is α2 = 20.2 
and the Peclet number β2 = 26,900. A pressure gradient 
amplitude of 453  Pa/m was estimated by dividing the 
pulse pressure of 45.3 Pa [32] by a representative 0.1 m 
longitudinal distance along the SSS. (A similar pulse 
pressure (40  Pa) was found in the fourth ventricle in 
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computational fluid dynamics (CFD) simulations of the 
CSS [38], and this pressure gradient value is comparable 
to the 525 Pa/m calculated in CFD simulations of flow in 
the SSS [55, 56]. Other investigations have found higher 
values, for instance, Williams [57] (pulse pressures of 
572 Pa measured in the ventricle and 548 Pa in the lum-
bar spine in seated subjects) and Heiss et al. [58] (133 Pa 
in the lumbar spine and 213 Pa in the cervical spine). Dif-
ferential ventricular to lumbar pulse pressure from Wil-
liams [57] (609 Pa), divided by an estimated 61 cm height 
difference between the two measurement sites gives 
1000 Pa/m, roughly double that used in this study.) The 
nondimensional pressure gradient amplitude becomes 
P = 155.7.

Permeability for the SSS has not been measured, how-
ever, permeability in the CSS has been estimated as 
2.36 × 10−8 m2 and porosity as 0.99 [41]. While it could 
be argued that k in the SSS is larger, in the absence of 
data, this value is used with a channel half-height of 
1.5 mm to calculate Da2 ~ 95.3.

Given the uncertainties regarding permeability 
throughout the brain and spine, results are presented for 
several values of Da2.

Regimes of flow
Before the results of the analytical solution are shown, 
an order-of-magnitude analysis of the expected regimes 
of flow and dispersion is presented in this section. From 
Eq.  2, the parameters controlling the flow are evident. 
The pressure gradient drives the flow, and the charac-
ter of the flow depends on which of the other terms (the 
unsteady, viscous and Darcy terms) balance it. The coef-
ficient of the viscous term having been normalized to 
unity and where νe ~ ν, the ratio of the unsteady term to 
the viscous term is α2 = h2ω

ν
 and the ratio of the Darcy 

term to the viscous term is Da2 = h2

k
 . These parameters 

define the following asymptotic regimes of flow: 1. Vis-
cous (Poiseuille) when α2 ≪ 1 and Da2 ≪ 1, 2. Unsteady 
when α2 ≫ 1 and Da2/α2 ≪ 1, and 3. Porous (Darcy) when 
Da 2 ≫ 1 and Da2/α2 ≫ 1. The viscous velocity profile is 
parabolic, with shear from the wall to the center of the 
channel. For unsteady flow, shear is limited to a boundary 
layer of dimension δ ≈

√
νT  , where T is the cycle period. 

For porous media flow, while shear exists within the 
media, it is not represented by the continuum model of 
the Darcy term. In the case of large Da2, shear is limited 
to a boundary layer near the wall of thickness 

√
k .

Regimes of dispersion
These flow regimes impact axial transport by affecting 
the fraction of the cross section over which displace-
ment gradients create transverse concentration gradi-
ents across which diffusion increases axial spread of the 

molecules. In viscous-dominated oscillatory flow, the 
Poiseuille velocity profile dictates that the entire cross 
section participates in enhancing transport. For unsteady 
flow, the region of transport enhancement is limited to 
the viscous boundary layer. For porous media flow as 
modeled by the Darcy term, transport is enhanced only 
in the Brinkman boundary layer. The effect of transverse 
diffusion on the enhancement of axial dispersion is influ-
enced in each of these flow regimes by the Peclet number 
β2 = h2ω

κ
 , which represents the ratio of the time constant 

for diffusion across the channel to the cycle period. Low 
β2 corresponds to diffusive transport in which transverse 
concentration gradients are small throughout the cycle in 
spite of axial flow, and high β2 corresponds to unsteady 
dispersion in which transverse diffusion is slow enough 
that significant transverse concentration gradients are 
caused by the axial velocity gradients.

Shear-augmented axial transport relative to the maxi-
mum advective transport is scaled as [3, 4] 

where wrel is the characteristic axial velocity of diffusing 
molecules relative to the average, tc is the time during 
which the velocity of the molecules remains correlated 
and FA is the fraction of the cross section over which 
molecules experience relative motion. w0 is the veloc-
ity amplitude of the bulk flow, the cyle period scales as 
T ~ 1/ω and augmented transport is considered to be 
additive to molecular diffusion. Maximum axial trans-
port occurs when wrel = w0, tc = T, and FA = 1, thus D = 1 . 
The augmentation relative to molecular diffusion is found 
by renormalization

The maximum augmentation, which occurs for D = 1 , 
is Rmax = w2

0T/κ . The possible regimes of transport are 
outlined in the following subsections.

Viscous flow (α2 ≪ 1 and Da2 ≪ 1) and diffusive disper-
sion (β2 ≪ 1)—For this case, the relative velocity scales 
with that of the bulk flow wrel ~ w0, the correlation time 
scales with the time for diffusion across the cross section 
tc ~ h2/κ, and the whole cross section is involved FA ~ 1, 
thus

To estimate R, the characteristic velocity scales as 
w0 ∼ hωP , thus

D =
w2
rel

w2
0

tc

T
FA,

R =
w2
0T

κ
D

D ∼ β2.

R∼P2β4.



Page 9 of 17Keith Sharp et al. Fluids Barriers CNS           (2019) 16:13 

Maximum enhancement is achieved by reducing lateral 
dispersion such that tc = T

Viscous flow (α2 ≪ 1 and Da2/α2 ≪ 1) and unsteady dis-
persion (β2 ≫ 1)—For this case, the relative velocity is 
limited to the velocity difference across a characteristic 
diffusion distance wrel ∼ w0

√
κT/h , the correlation time 

is limited to the cycle period tc ~ T, while the whole cross 
section is still involved FA ~ 1, thus

Since Rmax always requires tc ~ T and FA ~ 1, it depends 
only on w0, and thus on the type of flow. For this case, 
Rmax is achieved by increasing lateral dispersion such that 
wrel = w0

Unsteady flow (α2 ≫ 1 and Da2/α2 ≪ 1) and unsteady 
dispersion (β2 ≫ 1)—For large Schmidt number, the 
molecular diffusion distance is smaller than the viscous 
diffusion distance. The relative velocity occurs over 
the smaller distance, while the maximum velocity dif-
ference in exhibited across the viscous boundary layer 
wrel ∼ w0

√
κT/

√
νT  . The correlation time is limited 

to the cycle period tc ~ T, and the fraction of the cross 
section with velocity gradients is that of the oscillatory 
boundary layer FA ∼

√
νT/h , thus

The characteristic velocity scales as w0 ∼ ν
h
P , thus

Maximum enhancement is reached by increasing lateral 
dispersion such that wrel = w0 and adding velocity gradi-
ents in the core flow such that FA = 1

For small Schmidt number (which is not characteristic of 
the problems addressed in this paper), the molecular dif-
fusion distance is larger than viscous diffusion distance. 
The relative velocity is, therefore, that over the whole vis-
cous boundary layer, making wrel ∼ w0 . The correlation 
time scales with the time for diffusion across the viscous 
boundary layer tc ~ νT/κ, and the fraction of the cross 
section with velocity gradients is that of the oscillatory 
boundary layer FA ∼

√
νT/h , thus

Maximum enhancement is achieved by decreasing lateral 
dispersion such that tc = T and adding velocity gradients 
in the core flow such that FA = 1

Rmax∼P2β2.

D ∼ β−2 and R ≈ P2.

Rmax∼P2β2.

D ∼ β−1Sc−1/2.

R∼P2α−3.

Rmax∼P2α−2Sc.

D ∼ α−1Sc and R ∼ P2α−3Sc2.

Rmax∼P2α−2Sc.

Porous flow (Da2 ≫ 1 and Da2/α2 ≫ 1) and diffusive dis-
persion (Da2/β2 ≫ 1)—For large Da

2

α2
= ν

kω
 , the Brinkman 

layer is smaller than the unsteady viscous boundary layer, 
thus FA ~ 

√
k/h . For large Da

2

β2 = κ
kω , the molecular diffu-

sion distance during one cycle is greater than the Brink-
man layer. The relative velocity is, therefore, that over the 
whole Brinkman layer wrel ∼ w0 . The correlation time is 
the time for diffusion across the Brinkman layer tc ~ k/κ, 
so

The characteristic velocity scales as w0 ∼ kω
h
P , thus

Maximum enhancement is achieved by decreasing lateral 
dispersion such that tc = T and adding velocity gradients 
in the core flow such that FA = 1

Porous flow (Da2 ≫ 1 and Da2/α2 ≫ 1) and unsteady dis-
persion (Da2/β2 ≪ 1)—For small Da

2

β2 = κ
kω , the molecu-

lar diffusion distance during one cycle is smaller than 
the Brinkman layer. The relative velocity occurs over the 
smaller distance, so wrel ∼ w0

√
κT/

√
k  . The correlation 

time is the cycle period tc ~ T, and

Maximum enhancement is achieved by increasing lateral 
dispersion such that wrel = w0 and adding velocity gradi-
ents in the core flow such that FA = 1

Results
Velocity
Characteristic velocity profiles from the analytical solu-
tion for the three cases are shown in Fig.  4a. When the 
viscous term dominates, the profile is parabolic (Poi-
seuille) and the peak velocity is 1.5 times the average. For 
unsteady, inertia-dominated flow, a core of uniform veloc-
ity develops, with a surrounding intermediate layer that 
can have higher velocity as shown in Fig. 4a, and a viscous 
boundary layer near the wall (shown for α2 = 100). Due to 
the fluid inertia, the velocities of the core and intermedi-
ate layer respond out of phase to the pressure gradient, 
with the lag being greatest for the core and least near the 
wall, which creates the inflection in the velocity profile. 
When the flow is dominated by resistance through the 
porous media, the core has a constant velocity, but a no-
slip boundary condition still applies at the wall (shown 
for Da2 = 200). The resistance effect dominates that of 
fluid inertia, thus velocity across the whole cross section 
responds in phase with pressure and no inflection occurs.

D ∼ β2Da−3.

R∼P2β4Da−7.

Rmax∼P2β2Da−2.

D ∼ β−2Da and R ∼ P2Da−3.

Rmax∼P2β2Da−2.
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Concentration
Although there are six regimes of dispersion, two (dif-
fusive and unsteady) for each of the three flow regimes, 
only four unique concentration profiles occur. When the 
transport is diffusive, regardless of the velocity regime, 
rapid diffusion across the cross section causes the con-
centration to be uniform (Fig.  4b). The three remaining 

regimes are unsteady dispersion in viscous, unsteady and 
porous flow. For each of these regimes, diffusion is weak, 
thus the concentration profile is driven by the velocity 
gradients. The concentration profiles mirror the velocity 
profiles (Fig. 4a) except near the wall, where the no-flux 
boundary condition for concentration dictates a concen-
tration gradient of zero.

Enhancement of axial dispersion
For Sc = 1330 and P = 155.7, characteristic of methotrex-
ate in the SSS, enhancement of axial dispersion R reaches 
a maximum of about 3500 over a range of α2 from 0.0001 
to 100, which corresponds to β2 from 0.133 to 1.33E+5 
(Fig. 5a). The regimes of flow and dispersion are evident 
from the curves. For low Da2, R increases with increas-
ing β2 in the viscous flow/diffusive dispersion regime 
to a level of R ~ 3000 at which the dispersion begins to 
transition to unsteady at around β2 ~ 1. R then increases 
slightly with increasing β2 in the viscous flow/unsteady 
dispersion regime to another transition at about α2 ~ 1 
(β2 = 1330). Beyond this transition, the flow becomes 
unsteady while the dispersion remains unsteady, and R 
decreases. The porous media decreases R beginning at 
about Da2 = 1, and also softens the transition between 
steady and unsteady dispersion, as well as between steady 
and unsteady flow (most evident in the Da2 = 100 curve), 
because both the viscous and unsteady boundary layers 
are both small. As predicted by the order of magnitude 
scaling, R increases proportional to β4 for diffusive dis-
persion, is relatively insensitive to β for viscous flow/
unsteady dispersion and for porous flow/unsteady dis-
persion, and decreases proportional to β−3 for unsteady 
flow/unsteady dispersion. (The curve for Da2 = 100 
does not transition to unsteady flow, which requires 
Da2/α2 ≪ 1, within the bounds of the plot. This param-
eter only reaches Da2/α2= 1 for the maximum value of 
β2 = 1.33E+5.) The nearly identical curves for Da2 = 0.1 
and the non-porous case Watson [2] show that the effect 
of the porous media is small for values of Da2 ≤ 0.1 . 
The convergence of all the curves for large β2 regardless 
of Da2 indicates transition to the unsteady flow regime, 
where the viscous boundary layer is smaller than the 
Brinkman layer.

For Sc = 14,000 and P = 1.526, characteristic of 
amyloid-β in cerebrovascular basement membranes, 
enhancement of axial dispersion R is minimal, rising only 
to about 0.3 over a range of α2 from 1E−8 to 10, which 
with the higher Sc corresponds to β2 from 0.00014 to 
1.4E+5 (Fig.  5b). The dispersion transitions from diffu-
sive to unsteady at the same β2 ~ 1, however the peak R 
is much lower. The flow again transitions from viscous to 
unsteady around α2 ~ 1, though due to the higher Sc, this 
transition appears in Fig. 5b at β2 ~ 14,000. The same flow 

a

b

Fig. 4  a Characteristic dimensionless velocity (relative to the mean 
velocity) profiles versus dimensionless distance from the center of the 
channel (relative to the channel half height) for the three regimes of 
flow. The viscous profile is parabolic (Poiseuille). The porous profile 
is flattened by the resistance to flow through the porous media. The 
unsteady profile exhibits a peak between the core and the boundary 
layer due to fluid inertia. b Characteristic dimensionless concentra-
tion profiles versus dimensionless distance from the center of the 
channel for the regimes of dispersion. The profiles mirror those of 
velocity, except for the no-flux boundary condition at the wall. In the 
legend, the flow regime is given before the slash and the dispersion 
regime after the slash. The unsteady curves are shown for Womersley 
number α2 = 100, and the porous curves are shown for Darcy number 
Da2 = 200
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and dispersion-dependent rates of increase and decrease 
of R are exhibited, and increasing Da2 decreases trans-
port and softens the transitions. Similar agreement of the 
behavior of R with the scaling predicted by order of mag-
nitude analysis is evident.

For Sc = 14,000 and P = 152.6, characteristic of 
amyloid-β in the larger (10  μm) paraarterial space, 
enhancement of axial dispersion R of nearly 4000 is pos-
sible over a range of α2 from 0.0001 to 1E+5, which cor-
responds to β2 from 1.4 to 1.4E+9 (Fig.  5c). Over this 

range, the flow and dispersion are both mostly unsteady, 
with the transition to diffusive to unsteady dispersion 
beginning immediately at the low β2 end of the curves 
for low Da2. The flow again transitions from viscous to 
unsteady at β2 ~ 14,000 (α2 ~ 1).

Having solved the general problem, we turn to the esti-
mated conditions specific to dispersion in the spine and 
in cerebrovascular basement membranes. For the SSS, 
the Womersley, Peclet and Darcy numbers are α2 ~ 20.2, 
β2 ~ 26,900 and Da2 ~ 95.3, respectively. The resulting 

a
b

c

Fig. 5  a Dispersion enhancement R for Schmidt number Sc = 1330 and dimensionless pressure gradient P = 155.7. Enhancement is significant 
(> 1) in the SSS, the conditions for which are estimated by the large dot (Peclet number β2 = 26,900 and Darcy number Da2 = 95.3). b Dispersion 
enhancement for Sc = 14,000 and P = 1.526. Enhancement is very small for cerebrovascular basement membranes, as shown by the large dot 
(β2 = 0.00314 and Da2 = 1390). c Dispersion enhancement for Sc = 14,000 and P = 152.6. Enhancement is small in the larger paraarterial space, as 
shown by the large dot (β2 = 3.14 and Da2 = 1750)
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dispersion enhancement is R = 5.80 (Fig.  5a). It can be 
seen in Fig. 5a that if the permeability were large enough 
that the effect of the porous media were insignificant 
(Da2 = 0), the enhancement would be R = 91.8.

For cerebrovascular basement membranes, the 
Womersley and Peclet numbers are α2 ~ 2.24E−8 and 
β2 ~ 0.000314, respectively. For an estimated Darcy 
number of Da2 = 1750, dispersion enhancement is 
R = 6.38E−18 (Fig. 5b). For a nonporous media, enhance-
ment increases to R = 2.42E−10.

For the 100 times larger version of the paraarterial 
space, the Womersley and Peclet numbers increase to 
α2 ~ 0.000224 and β2 ~ 3.14, respectively. For an estimated 
Darcy number of Da2 = 1390, dispersion enhancement is 
R = 1.178E−5 (Fig.  5c). For nonporous media, enhance-
ment increases to R = 220.

Discussion
Using the continuum model of oscillatory flow in 
porous media, shear-augmented dispersion has a sig-
nificant effect on transport of methotrexate in the SSS, 
but amyloid-β is about eighteen orders of magnitude 
away from significance for cerebrovascular basement 
membranes and five orders of magnitude for the larger 
pararterial space. The order of magnitude estimate of 
maximum transport enhancement (“Regimes of disper-
sion” section), however, implicitly incorporates phenom-
ena that alter transverse mixing without changing the 
oscillatory longitudinal velocity amplitude and zero mean 
flow. Two such effects, local effects on axial velocity and 
secondary transverse flow, are discussed in the following 
subsections.

Local velocity fluctuations
The no-slip boundary condition brings axial velocity to 
zero where the fluid contacts the media, and axial veloc-
ity is locally accelerated in passages through the solid 
material. Both of these effects increase shear and con-
centration gradients locally, which can be expected to 
increase axial dispersion. An example superficial veloc-
ity profile is shown in Fig. 6, in which spatial fluctuations 
in velocity remain downstream of a square array of cyl-
inders between flat plates. The fluid in the high velocity 
regions between cylinders carries molecules forward, 
creating local transverse concentration gradients that 
do not exist in the Darcy model of porous media flow. If 
the regime of transport is not already diffusive, then the 
added transverse transport increases axial dispersion.

Secondary flow
Transverse flow in porous media is characterized by tor-
tuosity, which is a ratio of the distance along a stream-
line to the distance between its end points. The effect of 

tortuosity on dispersion may be minimal if the tortuous 
channels do not communicate with adjacent channels. 
However, if mixing occurs between channels with differ-
ent concentration, then the impact on axial dispersion 
can be large in regimes of dispersion in which transverse 
diffusion is weak. Simulations of flow and dispersion in 
unit cells representing regular, periodic geometries of 
simplified porous media have demonstrated enhance-
ments of longitudinal dispersion by as much as four 
orders of magnitude (in a two-dimensional, hexagonal 
array of circular cylinders [59]).

Oscillatory annular (nonporous) flow with axial veloc-
ity that has phase differences (axial velocity is forward 
for half the annulus while the other half is reverse) and 
transverse secondary flow also provides a model of this 
effect [4]. Axial dispersion in this model parallels that in 
flows without secondary flow in that a peak in enhance-
ment occurs in the transition between regimes of low and 
high transverse transport. In this case, transverse trans-
port occurs not only by diffusion, but also by advection. 
The peak occurs were ts/T ~ 1, where ts is the secondary 
flow time. Axial dispersion increases as ts/T approaches 
unity from either side, but in addition, convective reso-
nance occurs at ts/T ~ 1, where secondary flow carries 
molecules a half circuit around the annulus in half a cycle 
(from a region of forward velocity to a region that a half 
cycle later also has forward velocity). This keeps the mol-
ecule advecting in a consistent direction, in spite of the 

Fig. 6  Example superficial velocity ũ profile within a square array of 
cylinders. Position is from a flat wall on the left to the center of the 
channel on the right. 2l is the spacing between cylinders. The velocity 
gradients created by the high velocity in the gap between cylinders 
and the low velocity downstream of cylinders provides the potential 
for enhanced dispersion. (From [77])
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reversal of axial flow, increasing axial dispersion by up 
to an additional two orders of magnitude. Similar, but 
weaker, resonance occurs when the secondary displace-
ment during a cycle is an integer multiple of the annulus 
circumference.

Maximum enhancement
As outlined in “Regimes of dispersion” section, maximum 
enhancement Rmax = w2

0T/κ occurs when the relative 
velocity of particles scales with the characteristic velocity 
of the fluid, the particles move with that relative velocity 
for a whole cycle and the entire cross section is involved. 
For the unsteady dispersion in the SSS, increased lateral 
mixing, for instance by local velocity fluctuations or sec-
ondary flow (“Local velocity fluctuations and second-
ary flow” sections), is required to achieve this condition, 
and enhancement could be increased from R = 5.80 to 
Rmax = 1.60E+6. The model predicts that the characteris-
tic time t ∼ L2/[κ(1+ R)] for methotrexate to be trans-
ported along a L = 0.7 m long spinal canal decreases from 
4.3 year to 9.7 min, which is clinically useful. The corre-
sponding characteristic transport speed v ∼ [κ(1+ R)]/L 
increases from 5.1E−6 mm/s to 1.2 mm/s.

For basement membranes, reduced lateral disper-
sion increases enhancement from R = 6.38E−18 to 
Rmax = 0.000730. Characteristic transport time for 
amyloid-β on a 0.1 m long path along the cerebral arterial 
tree is about 6.3 year in either case. This time is much too 
long to explain observed transport of solutes [12], there-
fore, some other mechanism must be responsible.

For a 10  μm paraarterial space, reduced lateral dis-
persion increases enhancement from R = 1.178E−5 to 
Rmax = 73,200, which produces a characteristic trans-
port time for amyloid-β along the cerebral arterial tree 
of 45 min. While promising, this time may be deceiving, 
because the gap is thought to be much smaller around 
precapillaries, which would lead to enhancement there 
that is more similar to that of basement membranes.

Comparison with previous work
The only previous model of perivascular or paravascular 
transport of which we are aware is that of Asgari et  al. 
[51]. Their model is very different, representing a 10 μm 
thick paravascular space filled with porous media sur-
rounding short (150–250 μm) sections of cortical arteri-
oles (23 μm diameter). Pulsatile motion of the inner wall 
of the space was imposed, while zero pressure, uniform 
velocity and constant concentration boundary conditions 
were set at the ends of the segment. The resulting pul-
satile, squeeze flow and unsteady dispersion produced 
R ~ 1. This enhancement is greater than that found here 
for the Darcy–Brinkman result (R = 1.178E−5), which 
may be attributable to the greater transverse flow, but 

still produces a long characteristic time of t ~ 3  year for 
transport of a solute with κ = 5E−11 m2/s along a 0.1 m 
path.

Stockman [60] modeled the SSS as an elliptical annulus 
and compared axial transport for a non-porous channel 
and a channel with nerve bundles converging at the dural 
surface and trabeculae with random orientation. Lat-
tice-Boltzmann simulations with α = 11 (larger than the 
α = 4.49 assumed in this paper) and 10 < Sc < 100 (smaller 
than the Sc = 1330 for methotrexate used in this paper) 
predicted enhancements of approximately 0.5 for the 
non-porous channel and 2.5 for the channel with nerve 
bundles and trabeculae. The differences in parameter val-
ues from the present work notwithstanding, the roughly 
5-fold increase in effective diffusivity by porous media 
found by Stockman demonstrates its potential to increase 
transverse mixing and, therefore, longitudinal transport.

A fivefold transport enhancement by pulsatile flow was 
reported in a simplified model of the SSS without porous 
media [61]. This value is lower than the 11-fold value cal-
culated using the parameters of these experiments for the 
Watson limit of the Darcy–Brinkman model. One differ-
ence between their experiments and the Watson model 
is that the annular channel height to outer radius ratio 
was perhaps too large at 0.12 to fit the flat plate channel 
assumption of the Watson solution. In addition, the pul-
satile flow waveform was more complex than the simple 
oscillatory flow of the Watson solution.

A greater reduction in peak drug concentration was 
found due to doubling the tidal volume than by doubling 
the frequency in a patient-specific geometry without 
porous media [62]. This result is in qualitative agreement 
with the Watson solution, which predicts that R is pro-
portional to the square of tidal volume and, in the limit of 
large Womersley number, is approximately proportional 
to frequency.

While Tangen et al. [63] did not quantify effective dif-
fusivity, they reported more rapid spread of drugs caused 
by local mixing around nerve roots and trabeculae. Inter-
estingly, dispersion was not significantly influenced by 
molecular diffusivity for variations around a baseline of 
2.1E−10 m2/s for bupivacaine. This finding suggests R in 
their simulations was roughly proportional to β−2 (since 
molecular diffusivity is in the denominator of β2). While 
the molecular diffusivity for bupivacaine is lower than 
for the methotrexate used in this paper, the flow and dis-
persion both remain unsteady. In Fig. 5a, it is evident for 
the Darcy–Brinkman model that the enhancement in the 
unsteady flow/unsteady dispersion regime transitions 
from R α β−3 to R ~ constant in the range 1 < Da2 < 100, 
suggesting that the effective Darcy number of their flow 
was in this range.
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Tangen et  al. [64] studied a number of parameters 
associated with drug injection, pulsatility and drug reac-
tion rate in two subject-specific geometries with nerve 
roots. While again not quantifying effective diffusivity, 
they noted transport speed for an injection into the lum-
bar spine in in  vitro and computer models in the range 
of 0.013 mm/s. Pizzichelli et al. [65] and Haga et al. [66] 
investigated the effect of catheter position and orienta-
tion on intrathecal isobaric drug dispersion within the 
cervical spine with anatomically realistic nerve roots. In 
both of these studies they found local solute dispersion 
to be sensitive to catheter position, orientation and anat-
omy (nerve roots). However, the highly computationally 
expensive simulations were carried out for a relatively 
short time scale and therefore it was not possible to draw 
conclusions about global solute distribution times.

Limitations
The 2D channel approximation is appropriate for base-
ment membranes, but dura-radius-to-gap ratio for the 
SSS is only about 3 (“Values of parameters” section), mak-
ing the 2D analytical solution questionable. The order-of-
magnitude scaling for maximum enhancement, however, 
depends on channel shape only through the character-
istic velocity w0. For Poiseuille flow, the ratio of peak 
velocity in an annulus to that in a 2D channel scales with 
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[

1− �
2
(

1− ln �2
)]

 , where �2 =
(

1− K 2
)

/[2 ln (1/K )] 
and K = 2/3 for the SSS, which results in a velocity in 
the annulus that is 1.004 times larger and enhancement 
Rmax ∝ w2

0 that is 1.009 larger. Therefore, this limitation 
is not very significant.

In addition to lacking local effects (“Local velocity fluc-
tuations” section) and secondary flow (“Secondary flow” 
section), the analytical solution does not apply for short 
times after injection of a bolus. Consideration of short 
times may result in other opportunities for improving 
rostral transport, for instance, by injecting at a particu-
lar time during the cycle (i.e., during maximum caudal 
displacement of the CSF fluid), by the orientation of the 
injection catheter, by the velocity of the injection and by 
following the injection with a bolus of clear fluid to push 
the solute upward.

Periodic motion of the channel walls, as well as geom-
etries more complex than the planar walls of the current 
model, also promote transverse flows that may enhance 
transverse mixing and axial transport. In particular, 
streaming effects (reviewed by Riley [67]) can occur 
in flows with relevance to the SSS, for instance, in the 
entrance region of oscillatory flow in a rigid tube [68], 
in a long, but finite, parallel-plate channel with oscillat-
ing walls [69], in an elastic tube [70], in a tapered channel 
[71], in an elliptical tube with oscillating walls [72], and in 

a closed-end, compliant, eccentric circular annulus [73] 
and an elliptical annulus [74] modeling the SSS. In both 
models of the SSS, streaming velocities of 0.1–0.3 mm/s 
were obtained, which provide characteristic transport 
times for a 0.7 m spinal canal of 0.7–2 h.

Conclusions
The Darcy–Brinkman model, which represents the 
porous media flow as a continuum, predicts a decrease 
in axial dispersion as the Darcy term increases, across all 
regimes of viscous and porous-media flow and diffusive 
and unsteady dispersion, but not for unsteady flow and 
unsteady dispersion. For CSF flow in the SSS, which is 
estimated to be in the transition zone between porous-
media and unsteady flow, the Darcy–Brinkman model 
predicts substantial increases in axial transport due to 
shear-augmented dispersion, so long as the effect of the 
continuum porous media is not too great. However, for 
cerebrovascular basement membranes, which is esti-
mated to exhibit quasi-steady flow and dispersion, aug-
mentation is minimal regardless of whether the porous 
media is included or not.

Order of magnitude estimates with altered trans-
verse dispersion due to local effects of the porous media 
predict greater enhancement of transport. In the SSS, 
increased lateral transport leads to an enhancement by 
as much as six orders of magnitude and a characteristic 
transport time along the spinal canal of about 10 min and 
characteristic transport speed of 1.2 mm/s. This time is 
2–6 times faster than observed in in  vitro experiments, 
suggesting that dispersion might be improved through 
optimal selection of operating parameters. This speed is 
4–12 times faster than simulations excluding diffusion 
[73, 74], suggesting that shear-augmented dispersion 
might have therapeutic value for increasing transport 
rates.

According to the relationship R ∼ P2Da−3 for porous 
flow and unsteady dispersion (see “Regimes of disper-
sion” section), greater transport approaching Rmax in 
the SSS could be promoted by increasing P, for instance, 
by increasing the pressure gradient amplitude. R is also 
increased by decreasing frequency, since P2 ∝ ω−2 . Res-
piration has been shown to affect SSS flow [75], so deep 
inspiration and expiration may be effective in providing 
an elevated pressure gradient at low frequency. While 
the fluid properties may be unalterable, the spine is flex-
ible. Thus, increased curvature of the SSS might increase 
secondary flow and transverse mixing, thereby shifting 
enhancement of longitudinal transport toward Rmax.

In a 10  μm paraarterial space, enhancement has the 
potential to be significant, thus glymphatic transport 
to the parenchyma is not disproven. However, the low 
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pulse pressure in veins makes glymphatic transport out 
of the parenchyma via paravenous spaces unlikely. In 
cerebrovascular basement membranes, the small esti-
mated amplitude of motion limits the enhancement 
of transport. Even with lateral dispersion reduced to 
match it to the cycle period, maximum enhancement is 
insignificant.

The lack of significant shear-augmented dispersion 
in basement membranes means that within the bounds 
of the channel flow model, tracer transport must be 
explained by bulk flow, since this is the only other avail-
able mechanism in this simplified model. Peristalsis is a 
plausible cause of forward flow in periarterial and paraar-
terial channels, but perhaps not in perivenous channels 
since blood pressure pulsations are low in veins. Three 
potential mechanisms for retrograde flow in periarterial 
basement membranes have been described (see “Perivas-
cular and paravascular flow and transport” section), but 
not verified. Therefore, further work remains to test these 
hypotheses and to explain the mechanisms of solute 
movement in these channels.

Finally, an overarching need is to reduce uncertainty 
regarding the anatomy and fluid dynamic parameters 
characterizing the perivascular and paravascular spaces, 
which may vary among species and between genders [76].

List of symbols
c: concentration; c0: characteristic concentration; 
Da2 = h2ν

kνe
 : square of the Darcy number; h: channel half 

height; k: permeability; p̃ : pressure; p = p̃
ρωνe

 dimen-
sionless pressure; P = ∂ p̃/∂ x̃

ρωνe/h
 : dimensionless pressure 

gradient; R: dispersion enhancement relative to molecu-
lar diffusion; Rmax: maximum dispersion enhancement; 
Sc = ν/κ : Schmidt number; t̃ : time; t = ωt̃ : dimension-
less time; ũs : superficial axial velocity; u = ũs/hω : dimen-
sionless superficial velocity.

Variables
x̃ : axial coordinate; x = x̃/h : dimensionless axial coor-
dinate; ỹ : transverse coordinate; y = ỹ/h dimensionless 
transverse coordinate.

Greek symbols
α2 = h2ω

νe
 : square of the Stokes (Womersley) number; 

β2 = h2ω
κ

= α2Sc : oscillatory Peclet number; θ = c
c0

 : 
dimensionless concentration; κ: molecular diffusivity; ν: 
kinematic viscosity of the fluid; νe: effective kinematic vis-
cosity for flow in the porous medium; ρ: fluid density; ω: 
frequency.
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