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A high-fat diet induces rapid changes in
the mouse hypothalamic proteome
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Abstract

Background: Prolonged over-consumption of a high-fat diet (HFD) commonly leads to obesity and insulin
resistance. However, even 3 days of HFD consumption has been linked to inflammation within the key homeostatic
brain region, the hypothalamus.

Methods: Mice were fed either a low-fat diet (LFD) or HFD containing 10% or 60% (Kcal) respectively from fat for 3
days. Mice were weighed, food intake measured and glucose tolerance calculated using intraperitoneal glucose
tolerance tests (IPGTT). Proteomic analysis was carried out to determine if hypothalamic proteins were changed by
a HFD. The direct effects of dietary fatty acids on mitochondrial morphology and on one of the proteins most
changed by a HFD, dihydropyrimidinase-related protein 2 (DRP-2) a microtubule-associated protein which regulates
microtubule dynamics, were also tested in mHypoE-N42 (N42) neuronal cells challenged with palmitic acid (PA) and
oleic acid (OA).

Results: Mice on the HFD, as expected, showed increased adiposity and glucose intolerance. Hypothalamic
proteomic analysis revealed changes in 104 spots after 3 days on HFD, which, when identified by LC/MS/MS, were
found to represent 78 proteins mainly associated with cytoskeleton and synaptic plasticity, stress response, glucose
metabolism and mitochondrial function. Over half of the changed proteins have also been reported to be changed
in neurodegenerative conditions such as Alzheimer’s disease. Also,in N42 neurons mitochondrial morphology and
DRP-2 levels were altered by PA but not by OA.

Conclusion: These results demonstrate that within 3 days, there is a relatively large effect of HFD on the
hypothalamic proteome indicative of cellular stress, altered synaptic plasticity and mitochondrial function, but not
inflammation. Changes in N42 cells show an effect of PA but not OA on DRP-2 and on mitochondrial morphology
indicating that long-chain saturated fatty acids damage neuronal function.
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Background
Obesity is increasing not only in Western societies but
also in the developing world [1, 2], with obesity related
comorbidities and decreased life expectancy putting
enormous pressure on health care systems [1, 3, 4]. The
overconsumption of energy dense foods, particularly
those high in saturated fat and refined sugar appears to
be a primary driving force behind the obesity epidemic
[5], making it important to understand the mechanisms

linking diet with obesity to enable more effective pre-
ventative measures to be put in place. Dietary interac-
tions with the hypothalamus appear to be key in the
development of obesity. Thus, the aim of this study is to
investigate how short-term exposure to a high-fat diet
(HFD) influences the proteome of the hypothalamus to
better understand how diet interacts with this brain
region.
Energy balance is effectively regulated by a

well-defined and complex hypothalamic system with lep-
tin acting together with insulin in the hypothalamus not
only to inhibit feeding but also to maintain peripheral
glucose homeostasis [6, 7]. Nonetheless, in obesity the
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hypothalamus becomes insensitive to leptin and insulin
signifying dysregulation of hypothalamic energy balance.
A number of studies in rodents on a HFD have shown
inflammation in the hypothalamus, activating both
microglia and astrocytes, via the toll like receptor 4
(TLR4) [8, 9] and IKKB/NFκB inflammatory pathway,
resulting in leptin and insulin insensitivity [10, 11]. The
importance of this pathway is underlined by the fact that
blocking or inhibiting diet-induced hypothalamic inflam-
mation prevents leptin insensitivity, glucose intolerance
and obesity [10, 12, 13]. More recently, however, the role
of TLR4 in this process has been called into question
[14]. HFD-induced mitochondrial dysfunction may be
the origin of hypothalamic dysfunction and inflamma-
tion with excessive dietary intake leading to mitochon-
drial overload and oxidative stress activating the NFκB
inflammatory pathway [15].
Data has emerged which indicates that microglial pro-

liferation is only seen after 8 weeks on HFD despite in-
creased pro-inflammatory gene expression after just 3
days [16]. This indicates that the primary inflammatory
response is independent of hypothalamic immune cells
with neurons being implicated in triggering microgliosis
via advanced glycation end products (AGEs) [17]. In
order to explore the initial mechanisms linking a HFD
to hypothalamic dysfunction we have used a proteomics
approach to identify key proteins changed after just 3
days of a HFD and extended these findings to N42 cells
challenged with PA and OA, representative dietary
long-chain saturated and monounsaturated fatty acids
respectively, and present in large amounts in the HFD,
to look at protein changes together with the shape and
area occupied by mitochondria indicative of mitochon-
drial functionality.

Methods
Animals
Male C57Bl/6 J mice, 10 weeks of age (Harlan, Bicester,
UK), were first habituated to single housing on grid
floors for 1 week then changed from chow and habitu-
ated to a semi-purified low-fat diet (LFD) for a further
week (10% of energy from fat and 3.8 kcal/g) to avoid
any inappetence that may arise in changing directly from
chow to a semi-purified diet. Single housing and grid
floors were utilised to enable accurate measurement of
food intake by weighing unconsumed food, to prevent
coprophagia and stress due to dominance. Animals were
then randomised into two groups. One group remained
on the LFD while the other group were fed a HFD (60%
of energy from fat and 5.2 kcal/g) ad libitum for 3 days
(D12492 and D12450B, respectively; Research Diets, NJ,
US) (see https://researchdiets.com/opensource-diets/dio-
series-diets for complete diet composition details and
Additional file 1: Table S1 for overview). The difference

in fat content is due to increasing the quantity of lard in
the diet. Semi–purified diets in comparison to chows
have defined ingredients allowing precise diet compos-
ition facilitating the replication of experimental condi-
tions. Food intakes and body weights were measured
daily (n = 14 per diet). Water was supplied ad libitum
but intake was not measured. Mice were killed by exsan-
guination under terminal anaesthesia. The brains were
removed and snap-frozen over dry ice and stored at −
80 °C until proteomic studies were carried out.

Glucose tolerance
Intraperitoneal glucose tolerance tests (IPGTTs) were
carried out (n = 8) as a non-recovery procedure after
fasting for 5 h. A blood sample (0 mins) was taken prior
to an intraperitoneal (IP) glucose injection (1.5 mg/g
body weight). Subsequent blood samples were taken
from the tail vein at 15, 30, 60 and 120 mins and mea-
sured using an Accu Chek Aviva blood glucose monitor
(Roche Diagnostics, Burgess Hill, UK). Area under the
curve (AUC) was calculated using the trapezoid rule
[18]. Data from this group of mice was also used as in a
parallel study [19] in accordance with reducing the num-
ber of experimental animals (http://www.understandin-
ganimalresearch.org.uk/animals/three-rs/).

Two-dimensional gel electrophoresis (2-DE)
The hypothalamus was dissected from frozen brains (n
= 6) using the start of the optic chiasma and the end of
the median eminence as the anterior and posterior
markers for the first cuts through the brain. The outer
edges of the hypothalamus were then used as markers
for the side cuts and the top of the third ventricle as a
marker for the top of the hypothalamus for the final cut.
Hypothalamic tissue was homogenised at a 1:4 ratio of
tissue to buffer in 40 mM Tris pH 7.4, 0.1% v/v Triton
X-100 containing Roche complete protease inhibitors
(Sigma-Aldrich, UK) at the manufacturers recommended
concentration. 2-DE was performed essentially as de-
tailed previously with some modifications [20]. Bio-Rad,
17 cm, immobilized pH gradient (IPG) strips (pH 3–10)
were used for the separation of proteins in the first di-
mension. Strips were rehydrated in rehydration buffer (7
M urea; 2M thiourea; 4% w/v CHAPS; 2% w/v Biolyte;
and 50 mM DTT) containing 200 μg of protein sample
in a Bio-Rad IEF cell and then focused.
After the first dimension IPG strips were incubated in

fresh equilibration buffer (6M urea; 2% w/v SDS; 0.375
M Tris-HCl, pH 8.8; 20% v/v glycerol; and 130 mM
DTT) for 10–15min at room temperature before trans-
fer to a second equilibration buffer (6M urea; 2% w/v
SDS; 0.375M Tris-HCl, pH 8.8; 20% v/v glycerol; and
135 mM iodoacetamide) for 10–15min at room
temperature. The strip was then applied to the top of an
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18 × 18 cm gel cassette and 5 μl of All Blue Precision
Protein Standards (Bio-Rad) was loaded in the reference
well. Gels were run at 200 V for 9.5 h or until the bro-
mophenol blue had reached the bottom of the gel. After
the second dimension run, the gels were fixed and
stained with Coomassie Blue. Twelve gels were run in
total each gel representing an individual animal from
each treatment group HFD (n = 6) and LFD (n = 6).

Identification of mouse hypothalamic proteins
2-DE gels were analysed using Progenisis Samespots
software (Nonlinear Dynamics Ltd., UK). Spots which
showed differences in normalised average volume with
P < 0.05 by ANOVA in HFD vs. LFD were cut from
SDS-PAGE gels. Gel plugs were trypsinized using the
MassPrep Station (Waters, Micromass, UK) protocol.
Spot identification was carried out using ‘Ultimate’
nanoLC system (LC Packings, UK) and a Q-Trap (Ap-
plied Biosystems/MDS Sciex, UK) triple quadrupole
mass spectrometer fitted with a nanospray ion source as
described previously [20]. The total ion current (TIC)
data were submitted for database searching using the
MASCOT search engine (Matrix Science, UK) using the
MSDB database.

Cell culture and reagents
The N42 clonal hypothalamic neuronal cell line (mHy-
poE-N42) (Cellution Biosystems Inc. Burlington,
Canada) was cultured in Dulbecco’s modified Eagle’s
medium (DMEM) (Invitrogen Life Technologies, Paisley,
UK), supplemented with 10% fetal bovine serum (FBS)
and 1% penicillin/streptomycin (Invitrogen Life Tech-
nologies, Paisley, UK) and maintained at 37o C under a
5% CO2 atmosphere. This cell line is derived from
mouse hypothalamic primary cultures by retroviral
transfer of SV40 T-Ag and expresses enzymatic markers,
receptors and neuropeptides which makes it a valuable
tool to study hypothalamic metabolic pathways [21]. In-
formation regarding genes expressed in this cell line can
be found at (https://www.cedarlanelabs.com/Products/
Detail/CLU122?lob=Cellutions). The fatty acids PA and
OA and fatty acid free bovine serum albumin (BSA)
were from Sigma Aldrich (St. Louis, MO, USA).

Fatty acid-BSA conjugation
PA and OA were conjugated to fatty acid free BSA as
described previously [22, 23] with some modifications
detailed below. PA and OA were dissolved in 0.1M
NaOH in a shaking water bath and solubilised at 70o C
or 37o C respectively in order to yield a final concentra-
tion of 20 mM. A 0.5 mM fatty acid free BSA solution
was prepared by dissolving BSA in deionised water at
55o C then mixing with PA and OA in order to obtain a
1:4 BSA to fatty acid molar ratio (0.5 mM BSA, 2 mM

fatty acid). The PA- and OA-BSA mixtures were vor-
texed for 10 s followed by 10min incubation at 55 o C or
37o C respectively before being cooled to room
temperature and sterilised by passing through a 0.22 μm
pore size membrane filter and stored at -20o C until use.

Western blotting
Lysates were prepared from N42 neurons after a 6 h incu-
bation with 50 μM BSA, 200 μM OA or 200 μM PA in
serum-free medium. This concentration of fatty acid was
chosen as it does not cause toxicity up to 24 h of treatment
in a neuronal cell line and falls within the range of systemic
concentrations of free fatty acids reported [22, 24].
Cells were then scraped into phosphate-buffered saline

(PBS) and pelleted by centrifugation, M-PER mammalian
protein extraction reagent (Thermo scientific) was added
before sonication using a Sanyo Soniprep 1500 to ensure
complete cell lysis. Protein concentrations were determined
using the Pierce 660 nm protein assay reagent (Thermo Sci-
entific). After addition of 4X Laemmli sample buffer
(Bio-Rad, UK) containing 2-mercaptoethanol the protein
samples were loaded on 10% mini-PROTEANTGX Precast
Gels (Bio-Rad) and separated by electrophoresis and then
transferred onto PVDF membranes.
Immuno-detection used anti- DRP-2 primary antibody

(Rb mAb to CRMP2 ab129082, abcam UK) and peroxid-
ase linked secondary antibody (Goat pAb to Rb IgG
(HRP) ab98467, abcam, UK). The blots were developed
using the Opti4CN substrate kit (Bio-Rad) following the
manufacturer’s recommended protocol and imaged
using a Fujifilm LAS-3000 Imager. After imaging mem-
branes were stripped using Restore™ Western Blot Strip-
ping Buffer (Thermo Scientific) and re-probed using a
primary antibody to beta-actin (Rb pAB to beta-actin
ab8227, abcam UK). Blot images were analysed using
Image-J [25]. For each blot lane DRP-2 bands were nor-
malised to the respective beta-actin loading control band
prior to semi-quantitative analysis where lysates from
cells treated with BSA alone were considered as equiva-
lent to 1 and those from cells treated with PA and OA
scored accordingly (n = 4).

Mitochondrial staining
N42 hypothalamic neurons were cultured on glass cov-
erslips in 24 well plates to 70% confluency. Cells were
challenged with either 50 μM BSA, 200 μM OA or
200 μM PA in serum-free medium for 6 h. Cells were
then stained with 500 nM MitoTracker® Red CMXRos
(Thermo Scientific, UK) for 45 min, washed and fixed
using 4% paraformaldehyde for 20 min on ice. Cover
slips were then mounted on slides using Vectashield
with DAPI (Vector Laboratories, Burlingame, CA, USA).
Images were captured using a Leica DMR microscope
fitted with a QImaging QICAM FAST 1394 digital
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camera. Neuronal mitochondrial content was analysed
using the ImageJ mitophagy macro [26]. The percentage
of the cell area occupied by the mitochondria was used
as a measure of cellular mitochondrial content.

Statistical analysis
Body weight, food intake and IPGTT data are repre-
sented as mean ± SEM and were analysed using GenStat
(GenStat, 10th Edition, VSN International Ltd., Oxford)
by Student’s T tests. Mitochondria neuronal content was
analysed using a one-way analysis of variance (ANOVA)
followed by a Tukey multiple comparison test. P < 0.05
was considered statistically significant.

Results
Body weight and food intake
The body weight of mice fed a HFD were significantly
increased after 2 days (P < 0.05) and continued to in-
crease up to 3 days on diet (P < 0.01) (Fig. 1a). Food in-
take (g) dropped significantly in HFD fed mice at day 1
(P < 0.01) but returned to LFD levels by 2 and 3 days of
diet (Fig. 1b).

Glucose tolerance
Basal glucose levels were higher in HFD fed mice after 3
days on diet (P < 0.05) and circulating glucose levels
were higher at all time points tested after glucose chal-
lenge (IPGTT) (*P < 0.05, **P < 0.01, ***P < 0.001) as was
the total AUC in HFD fed mice (P < 0.001) (Fig. 1c & d).

Hypothalamic proteomics
2-DE analysis of mouse hypothalamic tissue revealed a
total of 104 protein spots, from a total of 1147, that were
significantly changed (P < 0.05) between the LFD and
HFD fed mice after 3 days on diet (Additional file 2: Fig-
ure S1). These were further analysed by LC-MS/MS and
identified as 78 unique proteins (Table 1 and Fig. 2).

Protein analysis according to function
We divided the proteins identified according to function.
The changed proteins were found to be mainly associ-
ated with the cytoskeleton and synaptic plasticity (37
spots corresponding to 25 proteins), cellular stress re-
sponses (32 spots corresponding to 22 proteins), glucose
metabolism (14 spots corresponding to 10 proteins). In
addition, 28 spots corresponding to 26 proteins did not

A B

C D

Fig. 1 a Body weight of HFD mice was significantly higher than that of LFD mice after 2 and 3 days on diet b The intake of the HFD fed mice
decreased after 1 day on diet but returned to LFD levels on days 2 and 3 (n = 6).c IPGTT in LFD and HFD fed mice after 3 days on diet. IPGTT was
carried out as a non-recovery procedure as the effect of fasting and glucose administration can alter proteins for some time afterwards. Glucose
levels at all time points tested was significantly higher in HFD fed mice (n = 8) (● HFD; ● LFD) as was AUC shown in (d). (* P < 0.05,
**P < 0.01, ***P < 0.01)
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belong to any of these three functional categories. There
are 5 proteins which fall into more than one functional
category and these are marked with an asterisk next to
the UniProt identifier and the other functional category
listed. Mitochondrial proteins and those associated with
mitochondrial function (10 proteins) and 3 astrocyte
specific proteins are also identified. Additionally,
many of the proteins changed in the present study
have also been associated with neurodegenerative dis-
eases, particularly Alzheimer’s disease (49 proteins)
(Table 1 and Fig. 2).

Western blotting
Immunoblotting of cell lysates from N42 hypothalamic
neurons revealed that staining of the bands correspond-
ing to DRP-2 protein was lower by ~ 38% (P < 0.05), in
cells challenged with PA whereas those challenged with
OA showed no significant changes in DRP-2 compared
with control cells (Fig. 3a-b).

Mitochondrial morphology and area occupied
Changes in mitochondrial shape were seen in cells chal-
lenged with PA but not after OA challenge.

Fig. 2 Heat map showing fold changes in proteins after 3 days of a HFD. Proteins are shown in multiples reflecting the number of spots which
gave the same protein ID
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Table 1 Protein identification by LC/MS/MS of spots in 2DE gels of 3 day mice hypothalamus which were significantly different in
averaged normalised volume in HFD compared to LFD mice (n = 6). Proteins are arranged into 4 broad categories associated with
specific functions: Proteins Associated with Cytoskeleton and/or Neuronal Plasticity, Proteins Associated with Cellular Stress, Proteins
Associated with Energy Metabolism, all remaining proteins are grouped under Proteins Associated with Other Functions. Proteins
belonging in more than one category are marked with an asterix (*) next to their UniProtKB identifier References for Table 1 can be
found in Additional file 3

Spot
#

Anova
(p)

Fold
Change

Protein Name pI MW Average Normalised
Volumes

Other Functional Categories MASCOT Data UniProtKB

Low Fat High Fat

Proteins Associated with Cytoskeleton and/or Neuronal Plasticity

24 8.14E-
04

1.2 Dihydropyrimidinase-
related protein 2

6.48 71,179 785,600 644,200 ●Alzheimer’s disease/
Neuronal degeneration (s1-
s7)

Score: 56
Matches: 5(3)
Sequences: 5(3)

O08553

33a 1.00E-
03

1.3 6.46 67,358 431,700 342,400 Score: 56
Matches: 5(3)
Sequences: 5(3)

33b
8.00E-
03

1.6 6.38 64,410 41,860 25,450 Score: 56
Matches: 5(3)
Sequences: 5(3)

22 2.00E-
03

1.2 6.07 75,305 345,200 426,100 Score: 54
Matches: 5(2)
Sequences: 5(2)

34 4.00E-
03

1.4 6.58 66,703 130,200 92,110 Score: 96
Matches: 6(2)
Sequences: 6(2)

27 7.00E-
03

1.2 6.72 69,760 1,976,000 1,616,000 Score: 555
Matches: 68(37)
Sequences: 17(13)

90 9.00E-
03

1.2 6.58 70,524 660,200 534,100 Score: 446
Matches: 50(25)
Sequences: 16(14)

25 1.90E-
02

1.5 6.59 74,017 115,700 75,120 Score: 66
Matches: 5(2)
Sequences: 5(2)

23 3.70E-
02

1.4 6.35 72,817 26,820 36,860 Score: 159
Matches: 17(10)
Sequences:12(9)

92 1.50E-
02

1.2 Dihydropyrimidinase-
related protein 1

7.27 67,795 342,400 274,800 Score: 104
Matches: 14(5)
Sequences: 12(5)

P97427

35 3.50E-
02

1.4 Dihydropyrimidinase-
related protein 5

8.18 71,943 553,000 752,200 (s8) Score: 44
Matches: 4(1)
Sequences: 4(1)
emPAI: 0.06

Q9EQF6

37 1.00E-
03

1.5 Fascin 6.65 54,476 202,200 137,500 ●Astrocyte specific
●Alzheimer’s disease/
Neuronal degeneration (s9-
s11)

Score: 51
Matches: 2(1)
Sequences: 2(1)

Q61553

125 4.00E-
03

1.5 6.64 56,114 66,550 44,030 Score: 51
Matches: 2(1)
Sequences: 2(1)

86 1.00E-
03

1.4 Thrombospondin type-
1 domain-containing
protein 1

6.44 89,787 21,030 14,960 ●Cellular stress
●Astrocyte specific
●Alzheimer’s disease/
Neuronal degeneration (s13)

Score: 36
Matches: 3(1)
Sequences: 1(1)

Q9JM61*

17 2.00E-
03

1.4 Contactin-2 6.16 77,287 157,100 214,400 ●Alzheimer’s disease/
Neuronal degeneration (s14)

Score: 35
Matches: 1(1)
Sequences: 1(1)

Q61330

88 3.00E-
03

1.4 Dynamin-1-like protein 6.65 88,262 44,130 31,300 ●Cellular stress
●Mitochondrial (s15,s16)

Score: 56
Matches: 6(4)
Sequences: 6(4)

Q8K1M6*
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Table 1 Protein identification by LC/MS/MS of spots in 2DE gels of 3 day mice hypothalamus which were significantly different in
averaged normalised volume in HFD compared to LFD mice (n = 6). Proteins are arranged into 4 broad categories associated with
specific functions: Proteins Associated with Cytoskeleton and/or Neuronal Plasticity, Proteins Associated with Cellular Stress, Proteins
Associated with Energy Metabolism, all remaining proteins are grouped under Proteins Associated with Other Functions. Proteins
belonging in more than one category are marked with an asterix (*) next to their UniProtKB identifier References for Table 1 can be
found in Additional file 3 (Continued)

Spot
#

Anova
(p)

Fold
Change

Protein Name pI MW Average Normalised
Volumes

Other Functional Categories MASCOT Data UniProtKB

Low Fat High Fat

87 1.90E-
02

1.4 6.52 88,872 44,600 32,400 Score: 37
Matches: 2(1)
Sequences: 2(1)

85 1.90E-
02

1.3 7.21 91,921 31,110 24,030 Score: 53
Matches: 4(2)
Sequences: 4(2)

52 4.00E-
03

1.7 F-actin-capping
protein subunit alpha-
1

6.06 35,065 33,650 55,680 ●Alzheimer’s disease/
Neuronal degeneration
(s17, s18)

Score: 82
Matches: 1(1)
Sequences: 1(1) e

P47753

58 1.00E-
02

1.2 F-actin-capping
protein subunit β

6 29,413 633,600 780,600 Score: 80
Matches: 6(2)
Sequences: 6(2)

P47757

124 4.00E-
03

1.3 Fatty acid-binding pro-
tein, brain

5.69 12,708 329,600 413,500 ●Cellular stress
●Astrocyte specific
●Alzheimer’s disease/
Neuronal degeneration
(s19-s21)

Score: 47
Matches: 2(1)
Sequences: 2(1)

P51880*

99 4.00E-
03

1.3 Dual specificity
mitogen-activated pro-
tein kinase kinase 1

6.78 45,886 588,200 453,000 ●Alzheimer’s disease/
Neuronal degeneration
(s22-s24)

Score: 100
Matches: 7(4)
Sequences: 6(4)

P31938

82 5.00E-
03

2 Profilin-1 9.98 12,625 23,210 47,490 ●Alzheimer’s disease/
Neuronal degeneration
(s25-s28)

Score: 73
Matches: 5(2)
Sequences: 3(2)

P62962

122 7.00E-
03

1.5 Profilin-2 5.65 13,875 115,800 171,500 Score: 62
Matches: 2(2)
Sequences: 2(2)

Q9JJV2

96 8.00E-
03

1.5 Actin-related protein 3 6.18 50,983 31,780 47,350 ●Alzheimer’s disease/
Neuronal degeneration (s29)

Score: 47
Matches: 4(1)
Sequences: 4(1)

Q99JY9

93 1.20E-
02

1.5 Plastin-3 6.09 68,341 25,000 36,730 ●Alzheimer’s disease/
Neuronal degeneration (s30)

Score: 65
Matches: 5(3)
Sequences: 5(3)

Q99K51

76 1.50E-
02

1.4 Nucleoside
diRAphosphate kinase
A

7.14 15,333 279,200 205,400 ●Alzheimer’s disease/
Neuronal degeneration
(s31, s32)

Score: 101
Matches: 15(8)
Sequences: 6(4)
emPAI: 1.23

P15532

116 1.70E-
02

1.3 GTP-binding nuclear
protein Ran

7.61 24,820 524,100 398,300 ●Alzheimer’s disease/
Neuronal degeneration
(s33, s34)

Score: 131
Matches: 11(5)
Sequences: 6(4)

P62827

26 2.10E-
02

1.3 WD repeat-containing
protein 1

6.89 73,690 146,600 116,800 (s35, s36) W Score: 65
Matches: 11(3)
Sequences: 8(3)

O88342

55 2.30E-
02

1.2 T Tropomyosin alpha-1
chain

4.72 30,497 340,400 407,500 ●Alzheimer’s disease/
Neuronal degeneration
(s37, s38)

Score: 70
Matches: 3(3)
Sequences: 3(3)

P58771

89 2.10E-
02

1.2 6.47 87,348 30,950 25,160 Score: 119
Matches: 9(3)
Sequences: 9(3)

69 2.60E-
02

1.2 Stathmin 6.07 16,606 642,900 761,200 ●Alzheimer’s disease/
Neuronal degeneration
(s39, s40)

Score: 36
Matches: 2(1)
Sequences: 2(1)

P54227
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Table 1 Protein identification by LC/MS/MS of spots in 2DE gels of 3 day mice hypothalamus which were significantly different in
averaged normalised volume in HFD compared to LFD mice (n = 6). Proteins are arranged into 4 broad categories associated with
specific functions: Proteins Associated with Cytoskeleton and/or Neuronal Plasticity, Proteins Associated with Cellular Stress, Proteins
Associated with Energy Metabolism, all remaining proteins are grouped under Proteins Associated with Other Functions. Proteins
belonging in more than one category are marked with an asterix (*) next to their UniProtKB identifier References for Table 1 can be
found in Additional file 3 (Continued)

Spot
#

Anova
(p)

Fold
Change

Protein Name pI MW Average Normalised
Volumes

Other Functional Categories MASCOT Data UniProtKB

Low Fat High Fat

60 2.60E-
02

1.3 Talin-2 6.66 31,968 63,640 47,710 (s41) Score: 34
Matches: 2(1)
Sequences: 2(1)

Q71LX4

63 2.70E-
02

1.4 Sepiapterin reductase 6.05 26,394 111,900 157,000 ●Alzheimer’s disease/
Neuronal degeneration (s42)

Score: 34
Matches: 2(1)
Sequences: 2(1)

Q64105

74 3.10E-
02

1.2 Spastin 4.91 15,061 311,900 375,100 ●Alzheimer’s disease/
Neuronal degeneration
(s43-s45)

Score: 34
Matches: 1(1)
Sequences: 1(1)

Q9QYY8

71 4.80E-
02

1.1 Peptidyl-prolyl cis-trans
isomerase A

7.33 16,394 173,900 153,400 ●Alzheimer’s disease/
Neuronal degeneration
(s46-s48)

Score: 53
Matches: 4(2)
Sequences: 4(2)

P17742

67 3.80E-
02

1.1 Beta-synuclein 4.13 17,576 1,879,000 2,051,000 ●Alzheimer’s disease/
Neuronal degeneration
(s49, s50)

Score: 57
Matches: 2(1)
Sequences: 1(1)

Q91ZZ3

Proteins Associated with Cellular Stress

20a 1.00E-
03

1.6 Heat shock 70 kDa
protein 12A

6.68 79,878 61,440 39,140 ●Alzheimer’s disease/
Neuronal degeneration
(s51, s52)

Score: 69
Matches: 4(2)
Sequences: 4(2)

Q8K0U4

20b
3.00E-
03

1.5 6.71 83,079 95,300 64,690 Score: 69
Matches: 4(2)
Sequences: 4(2)

20c 1.50E-
02

1.3 6.75 80,640 119,400 88,760 Score: 69
Matches: 4(2)
Sequences: 4(2)

79 8.00E-
03

1.5 10 kDa heat shock
protein, mitochondrial

7.29 10,958 645,800 427,900 ●Mitochondrial (s53) Score: 47
Matches: 3(1)
Sequences: 3(1)

Q64433

31 2.50E-
02

1.2 60 kDa heat shock
protein, mitochondrial

5.79 63,646 1,008,000 1,245,000 ●Mitochondrial
●Alzheimer’s disease/
Neuronal degeneration (s54)

Score: 604
Matches: 70(41)
Sequences: 18(15)

P63038

21 2.90E-
02

1.2 Heat shock cognate
71 kDa protein

5.73 75,915 4,300,000 5,025,000 ●Alzheimer’s disease/
Neuronal degeneration (s2)

Score: 51
Matches: 7(2)
Sequences: 7(2)

P63017

42 2.90E-
02

1.3 8.07 48,958 1,434,000 1,799,000 Score: 183
Matches: 10(7)
Sequences: 8(6)

19 9.00E-
03

1.3 Heat shock protein
105 kDa

6.72 88,567 67,300 50,100 (s55) Score: 35
Matches: 1(1)
Sequences: 1(1)

Q61699

114 1.00E-
03

1.4 PITH domain-
containing protein 1

5.95 25,039 52,050 73,410 Score: 66
Matches: 6(3)
Sequences: 6(3)

Q8BWR2

45 2.00E-
03

1.5 Elongation factor Tu,
mitochondrial

7 46,325 170,000 110,000 ●Mitochondrial
●Alzheimer’s disease/
Neuronal degeneration s56)

Score: 66
Matches: 6(4)
Sequences: 6(4)

Q8BFR5

165 2.00E-
03

1.3 Amyloid beta A4
precursor protein-
binding family B mem-
ber 3

6.16 23,597 101,500 135,700 ●Alzheimer’s disease/
Neuronal degeneration (s57)

Score: 44
Matches: 7(1)
Sequences: 1(1)

Q8R1C9

15 1.70E- 1.3 6.05 88,110 31,970 40,700 Score: 51
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Table 1 Protein identification by LC/MS/MS of spots in 2DE gels of 3 day mice hypothalamus which were significantly different in
averaged normalised volume in HFD compared to LFD mice (n = 6). Proteins are arranged into 4 broad categories associated with
specific functions: Proteins Associated with Cytoskeleton and/or Neuronal Plasticity, Proteins Associated with Cellular Stress, Proteins
Associated with Energy Metabolism, all remaining proteins are grouped under Proteins Associated with Other Functions. Proteins
belonging in more than one category are marked with an asterix (*) next to their UniProtKB identifier References for Table 1 can be
found in Additional file 3 (Continued)

Spot
#

Anova
(p)

Fold
Change

Protein Name pI MW Average Normalised
Volumes

Other Functional Categories MASCOT Data UniProtKB

Low Fat High Fat

02 Matches: 8(3)
Sequences: 1(1)

38 3.80E-
02

1.4 7.25 55,131 165,400 114,700 Score: 49
Matches: 10(5)
Sequences: 3(1)

48 8.00E-
03

1.3 6.83 41,004 128,000 95,720 Score: 55
Matches: 8(3)
Sequences: 1(1)

2 6.00E-
03

1.4 5.91 211,272 47,200 66,770 Score: 48
Matches: 11(3)
Sequences: 1(1)

8 4.00E-
03

1.4 Lon protease
homolog,
mitochondria

6.78 143,046 95,550 66,140 ●Mitochondrial (s58) Score: 50
Matches: 4(2)
Sequences: 4(2)

Q8CGK3

112 5.00E-
03

1.3 Biliverdin reductase 7.26 32,355 306,500 241,400 ●Alzheimer’s disease/
Neuronal degeneration (s59)

Score: 49
Matches: 5(2)
Sequences: 5(2)

Q9CY64

106 6.00E-
03

1.3 Pyridoxal kinase 6.12 37,439 541,300 681,500 ●Alzheimer’s disease/
Neuronal degeneration
(s60, s61)

Score: 142
Matches: 11(8)
Sequences: 8(7)

Q8K183

47 9.00E-
03

1.2 Serine/threonine-
protein phosphatase
2A activator

6.5 40,401 325,700 261,300 ●Alzheimer’s disease/
Neuronal degeneration (s62)

Score: 55
Matches: 4(1)
Sequences: 4(1)

P58389

113 1.00E-
02

1.5 Purine nucleoside
phosphorylase

6.15 29,645 60,300 89,000 ●Alzheimer’s disease/
Neuronal degeneration
(s63, s64)

Score: 56
Matches: 6(2)
Sequences: 6(2) e

P23492

77 1.30E-
02

2 Peroxiredoxin-5 8.69 15,091 208,000 409,900 ●Mitochondrial
●Alzheimer’s disease/
Neuronal degeneration
(s65, s66)

Mass: 22226
Score: 181
Matches: 14(9)
Sequences: 8(6)

P99029

78 3.20E-
02

1.9 9.13 15,121 155,800 83,470 Score: 84
Matches: 9(4)
Sequences: 6(4)
emPAI: 0.88

94 1.70E-
02

1.4 Alpha-aminoadipic
semialdehyde
dehydrogenase

6.57 59,170 56,390 41,730 (67) Score: 110
Matches: 6(4)
Sequences: 6(4)

Q9DBF1

49 4.00E-
02

1.7 Fructose-bisphosphate
aldolase C

8 40,291 67,960 114,800 ●Glucose metabolism
●Mitochondrial
●Alzheimer’s disease/
Neuronal degeneration
(s68-s70)

Score: 143
Matches: 8(5)
Sequences: 8(5)

P05063*

95 4.20E-
02

1.3 Aldehyde
dehydrogenase,
mitochondrial

6.79 54,367 713,100 564,900 ●Mitochondrial
●Alzheimer’s disease/
Neuronal degeneration
(s71, s72)

Score: 160
Matches: 14(10)
Sequences: 11(9)

P47738

101 4.40E-
02

1.4 DNA fragmentation
factor subunit alpha

6.93 43,473 200,500 147,500 ●Alzheimer’s disease/
Neuronal degeneration
(s73, 7 s4)

Score: 42
Matches: 1(1)
Sequences: 1(1)

O54786

Proteins Associated with Energy Metabolism

13 5.09E- 1.2 Aconitate hydratase, 7.99 93,902 617,800 528,900 ●Cellular stress Score: 159 Q99KI0*
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Table 1 Protein identification by LC/MS/MS of spots in 2DE gels of 3 day mice hypothalamus which were significantly different in
averaged normalised volume in HFD compared to LFD mice (n = 6). Proteins are arranged into 4 broad categories associated with
specific functions: Proteins Associated with Cytoskeleton and/or Neuronal Plasticity, Proteins Associated with Cellular Stress, Proteins
Associated with Energy Metabolism, all remaining proteins are grouped under Proteins Associated with Other Functions. Proteins
belonging in more than one category are marked with an asterix (*) next to their UniProtKB identifier References for Table 1 can be
found in Additional file 3 (Continued)

Spot
#

Anova
(p)

Fold
Change

Protein Name pI MW Average Normalised
Volumes

Other Functional Categories MASCOT Data UniProtKB

Low Fat High Fat

04 mitochondrial ●Mitochondrial
●Alzheimer’s disease/
Neuronal degeneration(s9,
s75)

Matches: 16(6)
Sequences: 13(6)

53 9.00E-
03

1.5 Malate
dehydrogenase,
cytoplasmic

6.07 34,445 68,430 104,200 ●Alzheimer’s disease/
Neuronal degeneration (s9)

Score: 65
Matches: 4(1)
Sequences: 4(1)
emPAI: 0.11

P14152

108 1.50E-
02

1.2 6.46 37,603 129,700 104,000 Score: 62
Matches: 2(1)
Sequences: 2(1)

109 7.00E-
03

1.2 6.53 34,252 3,506,000 2,996,000 Score: 435
Matches: 39(24)
Sequences: 10(7)

104 7.00E-
03

1.3 Isocitrate
dehydrogenase [NAD]
subunit alpha,
mitochondrial

6.06 41,608 130,800 164,600 ●Mitochondrial
●Alzheimer’s disease/
Neuronal degeneration
(s76, s77)

Score: 73
Matches: 6(3)
Sequences: 6(3)

Q9D6R2

105 7.00E-
03

1.2 6.04 40,456 647,600 774,800 Score: 205
Matches: 21(12)
Sequences: 13(8)

117 9.00E-
03

1.9 Triosephosphate
isomerase

8.56 26,200 94,250 178,000 ●Alzheimer’s disease/
Neuronal degeneration
(s78, s79)

Score: 128
Matches: 13(7)
Sequences: 6(5)

P17751

41 1.00E-
02

1.2 Alpha-enolase 6.89 48,793 3,024,000 2,527,000 ●Alzheimer’s disease/
Neuronal degeneration
(s75, s80)

Score: 310
Matches: 55(26)
Sequences: 15(12)

P17182

40 1.70E-
02

1.3 6.66 49,013 1,724,000 1,284,000 Score: 125
Matches: 17(9)
Sequences: 11(7)

97 1.20E-
02

2.5 Pyruvate kinase 8.82 48,848 47,750 117,800 ●Alzheimer’s disease/
Neuronal degeneration (s81)

Score: 121
Matches: 14(8)
Sequences: 10(7)

P52480

49 2.60E-
02

1.2 Phosphoglucomutase-
1

7.02 67,904 384,900 309,800 ●Alzheimer’s disease/
Neuronal degeneration
(s82, s83)

Score: 349
Matches: 28(18)
Sequences: 20(17)

Q9D0F9

110 2.70E-
02

1.4 Glycerol-3-phosphate
dehydrogenase 1-like
protein

7 39,084 138,600 99,230 ●Alzheimer’s disease/
Neuronal degeneration (s84)

Score: 160
Matches: 12(7)
Sequences: 11(7)

Q3ULJ0

49 4.00E-
02

1.7 Fructose-bisphosphate
aldolase C

8 40,291 67,960 114,800 ●Cellular stress
●Mitochondrial
●Alzheimer’s disease/
Neuronal degeneration
(s68-s71)

Score: 143
Matches: 8(5)
Sequences: 8(5)

P05063*

64 4.30E-
02

1.2 Phosphoglycerate
mutase 1

7.32 27,981 999,700 830,600 ●Alzheimer’s disease/
Neuronal degeneration(s85)

Score: 127
Matches: 12(5)
Sequences: 6(4)

Q9DBJ1

Protein Associated with Other Functions

107 5.94E-
04

1.4 Glycine--tRNA ligase 6.47 81,250 112,900 79,050 Protein synthesis
●Alzheimer’s disease/
Neuronal degeneration (s86)

Score: 82
Matches: 10(4)
Sequences: 9(4)

Q9CZD3

98 8.10E- 1.5 RNA polymerase II- 6.49 44,734 131,600 88,860 Regulation of transcription, Score: 39 Q8K2T8
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Table 1 Protein identification by LC/MS/MS of spots in 2DE gels of 3 day mice hypothalamus which were significantly different in
averaged normalised volume in HFD compared to LFD mice (n = 6). Proteins are arranged into 4 broad categories associated with
specific functions: Proteins Associated with Cytoskeleton and/or Neuronal Plasticity, Proteins Associated with Cellular Stress, Proteins
Associated with Energy Metabolism, all remaining proteins are grouped under Proteins Associated with Other Functions. Proteins
belonging in more than one category are marked with an asterix (*) next to their UniProtKB identifier References for Table 1 can be
found in Additional file 3 (Continued)

Spot
#

Anova
(p)

Fold
Change

Protein Name pI MW Average Normalised
Volumes

Other Functional Categories MASCOT Data UniProtKB

Low Fat High Fat

04 associated factor 1
homolog

Wnt signaling pathway
●Alzheimer’s disease/
Neuronal degeneration (s87)

Matches: 2(1)
Sequences: 2(1)

16 8.11E-
04

1.4 Ski oncogene 6.15 88,567 83,770 115,100 Signalling, Inhibits TGF beta
signalling

Score: 37
Matches: 3(1)
Sequences: 1(1)

Q60698

9 1.70E-
02

1.6 6.82 119,868 157,100 99,730 Score: 34
Matches: 1(1)
Sequences: 1(1)

36 4.00E-
03

1.6 Histidine--tRNA ligase,
cytoplasmic

6.16 55,349 88,260 144,700 Protein synthesis
●Alzheimer’s disease/
Neuronal degeneration (s88)

Score: 136
Matches: 10(6)
Sequences: 9(6)

Q61035

7a 4.00E-
03

1.4 Putative helicase
Mov10l1

6.14 123,179 29,440 42,400 Negative regulation of cell
cycle

Score: 43
Matches: 1(1)
Sequences: 1(1)

Q99MV5

7b 6.00E-
03

1.5 6.19 121,854 32,970 49,230 Score: 43
Matches: 1(1)
Sequences: 1(1)

44 5.00E-
03

1.3 Rab GDP dissociation
inhibitor beta

6.65 47,312 412,900 311,300 Signalling, Positive regulation
of GTPase activity
●Alzheimer’s disease/
Neuronal degeneration (s89)

Score: 104
Matches: 9(4)
Sequences: 8(4)

Q61598

84 6.00E-
03

1.6 Transcription
termination factor 1

6.12 99,390 8292.349 13,440 Regulation of transcription Score: 36
Matches: 2(1)
Sequences: 2(1)

Q62187

32 7.00E-
03

1.5 HMG box-containing
protein

6.12 64,083 137,800 200,000 Regulation of transcription,
Wnt signaling

Score: 40
Matches: 1(1)
Sequences: 1(1)

Q8R316

118 8.00E-
03

1.4 UMP-CMP kinase 6.16 22,194 133,000 187,600 Pyrimidine biosynthesis Score: 91
Matches: 6(4)
Sequences: 6(4)

Q9DBP5

100 9.00E-
03

1.4 Paraspeckle
component 1

6.86 46,160 178,800 126,900 Control of transcription
Circadian rhythms

Score: 37
Matches: 3(0)
Sequences: 3(0)

Q8R326

43 1.07E-
02

1.3 Ornithine
aminotransferase,
mitochondrial

6.42 46,949 495,800 385,200 Amino acid metabolism
●Mitochondrial

Score: 90
Matches: 7(5)
Sequences: 7(5)

P29758

61 1.10E-
02

1.2 Omega-amidase NIT2 6.88 30,652 104,200 87,480 Amino acid metabolism Score: 45
Matches: 3(1)
Sequences: 3(1)

Q9JHW2

121 1.30E-
02

1.5 Cytidine deaminase 5.63 15,212 32,230 47,840 Pyrimidine metabolism,
Negative regulation of cell
growth

Score: 34
Matches: 1(1)
Sequences: 1(1)

P56389

59 1.70E-
02

1.3 Haloacid
dehalogenase-like
hydrolase domain-
containing protein 2

6.16 30,652 216,800 280,000 Metabolism,
Dephosphorylation

Score: 50
Matches: 5(2)
Sequences: 2(1)

Q3UGR5

120 1.80E-
02

1.4 Sec1 family domain-
containing protein 1

4.66 13,958 79,910 109,000 Cell morphogenesis, protein
transport

Score: 48
Matches: 3(1)
Sequences: 1(1)

Q8BRF7

103 1.80E- 1.3 Ras-like protein family 6.07 43,143 78,700 105,900 Signaling Score: 39 Q5SSG5
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Mitochondria in PA challenged cells appeared rounded
and isolated compared to control or OA challenged
mitochondria which had an elongated and branched ap-
pearance (Fig. 3a-c). The percentage of the cell area oc-
cupied by mitochondria was significantly decreased
when N42 hypothalamic neurons were challenged with
PA (P < 0.05). The area occupied by mitochondria was
increased when cells were challenged with OA relative
to control cells (P < 0.01) (Fig. 3d).

Discussion
C57Bl/6 J mice fed a semi-purified diet have been widely
used in diet-induced obesity studies [20, 27] and in the
present study HFD fed mice gained weight and

developed glucose intolerance within 3 days as reported
previously [20] confirming the reproducibility of the
model and implying impaired hypothalamic function.
Interestingly, in that study blood triglyceride levels were
unchanged after 3 days on a HFD [20]. Evidence exists
for the rapid, within 3 days, induction of hypothalamic
insulin and leptin insensitivity [11, 28] by a HFD
coupled with hypothalamic inflammation [8], endoplas-
mic reticulum (ER) stress [29, 30] and mitochondrial
dysfunction [31].
In the present study, proteomic analysis of the hypo-

thalamus confirmed the rapidity of HFD-induced
changes and secondly demonstrated the large number of
hypothalamic proteins (104 spots corresponding to 78

Table 1 Protein identification by LC/MS/MS of spots in 2DE gels of 3 day mice hypothalamus which were significantly different in
averaged normalised volume in HFD compared to LFD mice (n = 6). Proteins are arranged into 4 broad categories associated with
specific functions: Proteins Associated with Cytoskeleton and/or Neuronal Plasticity, Proteins Associated with Cellular Stress, Proteins
Associated with Energy Metabolism, all remaining proteins are grouped under Proteins Associated with Other Functions. Proteins
belonging in more than one category are marked with an asterix (*) next to their UniProtKB identifier References for Table 1 can be
found in Additional file 3 (Continued)

Spot
#

Anova
(p)

Fold
Change

Protein Name pI MW Average Normalised
Volumes

Other Functional Categories MASCOT Data UniProtKB

Low Fat High Fat

02 member 10B Matches: 1(1)
Sequences: 1(1)

5 1.90E-
02

1.5 Neutral alpha-
glucosidase AB

6.13 146,358 32,530 47,230 Glycoprotein syntheses,
Glycan metabolism

Score: 40
Matches: 3(1)
Sequences: 3(1)

Q8BHN3

119 2.00E-
02

1.4 Acylamino-acid-
releasing enzyme

6.99 19,848 113,700 83,510 Beta amyloid processes,
Proteolysis ●Alzheimer’s
disease/Neuronal
degeneration (s90)

Score: 39
Matches: 5(1)
Sequences: 2(1)

Q8R146

111 2.10E-
02

1.2 Phosphatidylinositol
transfer protein alpha
isoform

6.68 33,206 394,200 338,000 Transport of PtdIns and
phosphatidylcholine,
Axonogenesis

Score: 51
Matches: 11(1)
Sequences: 7(1)

P53810

83 2.20E-
02

1.3 Solute carrier family 12
member 1

4.62 98,323 38,480 51,740 Regulation of ionic balance
and cell volume

Score: 39
Matches: 3(1)
Sequences: 3(1)

P55014

14 2.30E-
02

1.2 RalBP1-associated Eps
domain-containing
protein 2

5.21 83,232 525,500 609,200 Growth factor signaling, Cell
migration

Score: 36
Matches: 1(1)
Sequences: 1(1)

Q80XA6

115 2.40E-
02

1.3 Isopentenyl-
diphosphate delta-
isomerase 2

6.13 25,465 19,710 26,100 Cholesterol metabolism Score: 39
Matches: 1(1)
Sequences: 1(1)

Q8BFZ6

102 2.50E-
02

1.2 Glutamine synthetase 7.25 45,228 1,248,000 1,016,000 Positive regulation of
synaptic transmission,
Cellular response to
starvation
●Alzheimer’s disease/
Neuronal degeneration (s91)

Score: 160
Matches: 32(9)
Sequences: 10(7)

P15105

70 2.70E-
02

1.2 Glycolipid transfer
protein

7.25 20,036 113,000 92,910 Glycolipid transport,
Glucoceramide transport

Score: 36
Matches: 2(1)
Sequences: 2(1)

Q9JL62

123 3.20E-
02

1.2 Cystatin-B 7.14 12,833 63,610 52,090 Protease inhibitor, Negative
regulation of proteolysis
●Alzheimer’s disease/
Neuronal degeneration (s92)

Mass: 11153
Score: 45
Matches: 1(1)
Sequences: 1(1)

Q62426
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proteins) changed in response to a HFD. The validity of
using a proteomics approach to interrogate hypothal-
amic changes is reinforced by the fact that as highly
polarised cells, neurons, the major cell type present in
the brain, are more likely to demonstrate translational
modification of proteins at sites distant from the cell
body to rapidly respond to stimuli rather than transcrip-
tional changes and the subsequent transport of proteins
from the cell body.
Unsurprisingly proteins involved in energy metabolism

were altered in HFD. These include phosphoglucomutase-1
(PGM1), reported to sustain cell growth during nutritional
changes by regulating the balance between
glucose-1-phosphate and glucose-6-phosphate [32] and is
differentially expressed in the brains of patients with

Alzheimer’s disease [33]. A reduction of glucose utilisation is
one of the earliest signs of Alzheimer’s disease with glucose
metabolism adapting to oxidative stress by lowering levels of
glycolysis and oxidative phosphorylation and increasing the
generation of reducing factors such as nicotinamide adenine
dinucleotide phosphate (NADPH) through the pentose
phosphate pathway [34]. Two other enzymes altered by
HFD are triosephosphate isomerase and phosphoglycerate
mutase 1 both involved with the regulation of the glycolytic
pathway. Mitochondrial aconitate hydratase, which catalyses
the conversion of citrate to isocitrate in the tricarboxylic acid
cycle showed the most significant change in HFD fed mice.
It is linked to Alzheimer’s disease demonstrating lower activ-
ity in response to oxidative stress [34, 35] and loss of func-
tion due to oxidative damage in aging rat brain [36].

A B

C D

E F

Fig. 3 a Representative immunoblots showing changes in DRP-2 and beta-actin protein expression in response to fatty acid free BSA, PA and OA
challenge in N42 cells b Quantification of DRP-2 bands normalised to beta-actin (n = 4 plates) BSA - bovine serum albumin, DRP-2 -
dihydropyrimidinase-related protein 2, PA - palmitic acid, OA - oleic acid (* P < 0.05). c-e Representative fluorescence microscopy images of N42
hypothalamic neuronal mitochondria using MitoTracker® Red CMXRos. The red colour corresponds to mitochondria. Cells were challenged with, c
fatty acid free BSA, d 200 μM PA and e 200 μM OA (Bar = 10 μm. Magnification = X100). f The percentage (%) area of the cell occupied by
mitochondria after challenge. BSA - bovine serum albumin, PA - palmitic acid, OA - oleic acid (*P < 0.05, **P < 0.01, ***P < 0.001)
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Isocitrate dehydrogenase which showed changes in two
spots in HFD fed mice is also down-regulated in Alzheimer’s
disease [37].Changes in these enzymes in response to HFD
point to adaptations in metabolic pathways to overcome oxi-
dative stress similar to those observed in the early stages of
Alzheimer’s disease.
Glucose metabolism in the hypothalamus is likely im-

pacted by the increase in circulating glucose seen on a
HFD after 3 days. The entry of glucose into the brain is
mediated by the non-insulin dependent glucose trans-
porter, GLUT1 with brain glucose levels rising in parallel
to circulating glucose concentrations. Excess glucose is
neurotoxic via the polyol pathway, changing intracellular
tonicity and increasing toxic AGEs which in combin-
ation with a HFD promote microglial reactivity [17].
Other protein changes are in pathways not previously

thought to be part of the hypothalamic response to a
HFD. These include 25 proteins associated with neuro-
genesis, synaptogenesis, neurite outgrowth and axonal
and dendritic cytoskeletal proteins, implying that neur-
onal remodelling and changes in synaptic connectivity
are changed and may be compromised. Notable amongst
these are the collapsin response mediator family of proteins
(CRMPS - also known as dihydropyrimidinase-related pro-
teins - DPYL and DRPs), consisting of five closely sequence
related, phosphoproteins. Single spots representing DRP-1
and 5 are changed together with 9 separate spots corre-
sponding to DRP-2 demonstrating a large number of
post-translational changes induced by a HFD. DRP-2 regu-
lates microtubule dynamics and promotes the differenti-
ation of axons from neurites by binding to tubulin dimers.
This promotes microtubule assembly and stability [38]
which in turn promotes axon elongation. Phosphorylation
of DRP-2 lowers its binding affinity to tubulin and is key in
the regulation of dendritic spine formation [39]. Because of
this DRP-2 was selected to further study the effect of
fatty acids in N42 hypothalamic cells where PA chal-
lenge altered expression of DRP-2 immunoreactive
bands while OA had no effect supporting the conten-
tion that long-chain saturated fatty acids damage
hypothalamic neuronal function [40].
Dendritic spines are small, highly dynamic, protrusions

on the surface of dendrites, which form the postsynaptic
component of excitatory synapses [41] and their forma-
tion in the hypothalamus is necessary for the activation
of agouti-related peptide (AgRP) neurons by fasting [42].
Formation is dependent on cytoskeletal remodelling of
actin [43] the most prominent cytoskeletal protein at
synapses. Indeed a large number of proteins identified as
changed by a HFD are associated with actin organisa-
tion, including F-actin-capping protein subunits alpha 1
and beta, profilin-1, profilin-2, plastin-3 and tropomy-
osin alpha-1 chain. Profilin-1 and 2 bind actin at synap-
ses where they act both as stable structural components

and as regulators of actin filament branching providing a
modulatory component for the efficacy of pre- and
post-synaptic terminals with actin being most enriched
in dendritic spines [44, 45]. Also changed on a HFD was
actin related protein 3 which functions as ATP-binding
component of the Arp2/3 complex involved in regula-
tion of actin polymerization important in dendritic spine
formation [46]. Fascin appears twice on the list of pro-
teins changed by a HFD and is important in the
cross-linking of filamentous actin into ordered bundles
present in cytoskeletal processes and in the function and
architecture of cell protrusions again indicating changes
in neuronal plasticity in response to a HFD.
Ornithine aminotransferase is also changed, and in the

brain is involved in the synthesis of glutamate and
gamma-aminobutyric acid GABA [47], two important
neurotransmitters localised to synaptosomes [48], again
indicating that communication between neurons is
altered by a HFD.
Thus, a HFD has a rapid and profound effect on the

hypothalamus, altering proteins involved in glucose me-
tabolism linked to oxidative stress and other
stress-related proteins. Unexpectedly a large number of
cytoskeletal proteins involved in neuronal remodeling
and synaptic plasticity were also changed indicating that
this area of the brain was undergoing rapid structural
changes in response to a HFD. Previously, it has been
shown that in rodents susceptible to a HFD that synap-
ses were lost from pro-opiomelanocortin (POMC) neu-
rons which became sheathed in glia after 3 months on
the diet [49].
Many of the proteins that were changed are also re-

ported as altered in neurodegenerative diseases particu-
larly Alzheimer’s disease (44 proteins). This may be due
to the fact that both a HFD and Alzheimer’s disease are
associated with neuro-inflammation and these changes
are secondary to the pro-inflammatory condition or
there may be a link between the neuronal effects of a
HFD which leads to an Alzheimer’s type pathology as is
borne out by the well documented connection between
obesity, type 2 diabetes, cognitive decline and Alzhei-
mer’s disease [50, 51]. Nonetheless, proteins which are
associated with inflammation were not detected as chan-
ged by HFD in the present study and only 3 astrocyte
specific proteins were identified.
The brain utilises high levels of energy compared to

other organs and also contains elevated concentrations
of lipids which are susceptible to peroxidation by react-
ive oxygen species (ROS) produced as a by-product of
oxidative metabolism [52]. HFD-induced obesity is asso-
ciated with oxidative stress and mitochondrial dysfunc-
tion, which are linked to neurodegeneration [53]. The
effect of the long-chain saturated fatty acid, PA but not
the monounsaturated fatty acid, OA, on mitochondrial
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function in neuronal cells is shown by distinct changes
in mitochondrial morphology and area which are poten-
tially indicative of fragmentation and loss of
functionality.

Conclusions
In conclusion, changes to synaptic plasticity and neur-
onal function appear to precede HFD-induced inflam-
mation in the hypothalamus. Indeed at 3 days on a HFD
no changes in any protein specifically related to inflam-
mation were seen. Nonetheless, many proteins associ-
ated with cellular stress (22 proteins) were found to be
changed in response to the diet indicating that oxidative
stress in neurons may precede, and thus be, causative in
hypothalamic inflammation. Further, experiments on
N42 cells using the representative long-chain saturated
fatty acid, PA, and the monounsaturated fatty acid, OA,
confirm that the long-chain saturated fatty acids, rather
than lipids per se, are causative in the changes seen with
a HFD as shown by changes in mitochondrial morph-
ology and immunoreactive DRP-2 levels.
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