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Abstract

Myostatin (MSTN), also referred to as growth and differentiation factor-8, is a protein secreted in muscle tissues.
Researchers believe that its primary function is in negatively regulating muscle because a mutation in its coding
region can lead to the famous double muscle trait in cattle. Muscle and adipose tissue develop from the same
mesenchymal stem cells, and researchers have found that MSTN is expressed in fat tissues and plays a key role in
adipogenesis. Interestingly, MSTN can exert a dual function, either inhibiting or promoting adipogenesis, according
to the situation. Due to its potential function in controlling body fat mass, MSTN has attracted the interest of
researchers. In this review, we explore its function in regulating adipogenesis in mammals, including preadipocytes,
multipotent stem cells and fat mass.
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Background
Adipose tissues, which are mainly composed of adipocytes,
play important roles in storage and metabolism [1, 2]. The
adipocytes in adipose tissues can be derived from mesen-
chymal stem cells with the appropriate stimulation. The
differentiation process involves two phases: determination,
in which multipotent stem cells become adipoblasts, and,
differentiation, in which preadipocytes convert to mature
adipocytes in the adipogenesis-promoting environment [2].
Myostatin (MSTN), a negative regulator of skeletal muscle
growth, can be detected in not only muscle tissues but also
adipose tissues [3]. Evidence has now been obtained dem-
onstrating that MSTN could regulate the adipogenesis of
mesenchymal stem cells in the determination and differen-
tiation phases [4–6]. In this review, we mainly summarize
the structure, tissue distribution, and signal transduction of
MSTN and explore the role of MSTN in the adipogenesis
of preadipocytes, multipotent stem cells and transgenic
animals in mammals.

The identification of MSTN and its inhibitory
effect on muscle differentiation
MSTN, also known as growth and differentiation factor-8,
is mainly expressed in skeletal muscle and is a negative
regulator of skeletal muscle growth in animals. It was
initially identified in 1997 as a member of the transform-
ing growth factor-β superfamily using the degenerate
polymerase chain reaction [3]. In the same year, the
bovine MSTN gene was mapped to the mh locus by
genetic linkage, which strongly suggested that MSTN may
be the gene that causes double muscling in cattle [7]. This
trait is useful in farm animals because it can dramatically
increase muscular mass and improve economic benefits.
Further analysis indicated that an 11-bp deletion in the
coding region of MSTN in Belgian Blue cattle and a G–A
missense mutation in the same region in Piedmontese
cattle could cause the double-muscling trait in cattle [8].
Muscle progenitors and myoblast cells can proliferate

and terminally differentiate into muscle fibers, which
contribute to the growth of muscle mass [9]. The main
functions of MSTN in muscle progenitors and myoblasts
are self-renewal and differentiation inhibition. For example,
in myoblasts, MSTN can inhibit myoblast differentiation
into myotubes by preventing myogenic differentiation fac-
tor (MyoD) activity and expression via Smad 3 [10, 11].
Similar findings have also been reported in mouse skeletal
muscle C2C12 cells, in which MSTN may control muscle
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mass by inhibiting cell proliferation and DNA and protein
synthesis [12]. Further research in satellite cells shows that
MSTN could negatively regulate satellite cell activation
and control the self-renewal process of satellite cells [13].

MSTN structure
All transforming growth factor-β (TGF-β) family members
contain three distinct domains: an N-terminal signal
domain, a propeptide domain and a C-terminal mature
peptide [14, 15]. As a member of the TGF-β superfamily,
MSTN shares the typical characteristics of other TGF-β
superfamily members: 1) a hydrophobic core of amino
acids near the N-terminus; 2) a conserved proteolytic
processing signal of RSRR in the C-terminus; and 3)
cysteine residues in the C-terminal region to facilitate the
formation of a “cysteine knot” structure [16–18]. The
difference between MSTN and other TGF-β superfamily
members is that the nucleotide sequence of the
C-terminus is shorter than those in other members [3].

MSTN tissue expression
MSTN can not only be detected in muscle but can also
exert its function in other tissues. Initial research studies
in 1997 found that MSTN is predominantly expressed in
the muscle tissues of mice and cows [3, 8], but it is also
detected in the adipose tissue [3]. Further research
showed that MSTN could be detected in mammary
glands [19], Purkinje fibers and cardiomyocytes in heart
tissue [20], spleen, lymphocytes [21], placenta [22], and
even in human uterine gland muscle tissue [23]. Those
results indicated that MSTN may exert its function not
only in muscle but also in other tissues.

The function of MSTN in fat formation in mammals
The results of many past studies have indicated that
MSTN plays key roles in not only myogenesis but also
adipogenesis. The function of MSTN in adipogenesis is
controversial. In preadipocytes, MSTN mainly inhibits
adipogenesis, whereas it can promote the adipogenesis
of pluripotent stem cells. MSTN deletion and inhibition
in animals mainly lead to increased muscle mass and
reduced fat mass. Specific inhibition of MSTN in muscle
but not adipose tissue inhibits fat mass. Specific overex-
pression of MSTN in adipose tissue increases the meta-
bolic rate and resistance to diet-induced obesity. In the
following section, we will explore the role of MSTN in
fat formation in mammals.

Differentiation is inhibited by MSTN in
preadipocytes
In different species of preadipocytes, MSTN mainly
inhibits cell differentiation. For example, in 3T3-L1 pre-
adipocytes treated with MSTN during differentiation,
adipogenesis was significantly inhibited through the

regulation of CCAAT/enhancer binding protein (C/EBP)
β and peroxisome proliferator-activated receptor γ
(PPARγ) [24]. In addition, another adipogenesis tran-
scription factor, C/EBPɑ, and lipid metabolism-related
genes such as glycerol-3-phosphate dehydrogenase
(GPDH), diacylglycerol O-acyltransferase (DGAT), acyl-
CoA synthetase long-chain family member1 (ACS1), adi-
pose triglyceride lipase (ATGL), and hormone-sensitive
lipase (HSL) are inhibited by MSTN in 3T3-L1 preadipo-
cyte adipose differentiation [25]. Moreover, the adipo-
genesis of primary preadipocytes isolated from bovine,
porcine fat tissue and intramuscular preadipocytes
isolated from porcine longissimus dorsi muscles is
also inhibited by treatment with adipogenesis medium
plus MSTN [6, 26, 27].

The inhibition of brown adipogenesis by MSTN
White and brown adipocytes are two types of distinct
adipocytes in mammals. White adipocytes mainly store
excess energy in large lipid droplet, whereas brown
adipocytes contain numerous smaller droplets and burn
energy by non-shivering thermogenesis [2, 28]. Research
initially focused on the inhibition of adipogenesis by
MSTN in white adipocytes. More recent research has
revealed that MSTN can also inhibit the differentiation
of brown preadipocytes. This process involves TGF-β/
Smad3 signaling [29] and Smad3-mediated β-catenin
stabilization [30].
Mouse embryonic fibroblasts can differentiate into

brown adipose-like cells under specialized adipogenic
conditions. Primary mouse embryonic fibroblasts
isolated from MSTN-deficient mice exhibit brown
adipose-like differentiation and increased lipid metabolism
and energy expenditure under specialized brown adipo-
genic conditions [31]. MSTN treatment in differentiating
MSTN-deficient MEF can inhibit key BAT markers
(Uncoupling Protein 1 (Ucp1) and PR domain containing
16 (Prdm16)) expression [32, 33]. These results indicate
that MSTN can influence brown adipogenesis in mouse
embryonic fibroblasts.

The adipogenesis of pluripotent stem cells is
promoted by MSTN
C3H10T(1/2) cells, a mesenchymal fibroblast-like cell
line of embryonic origin, have the capacity to undergo
differentiation into multiple cell lineages, such as myo-
blasts, chondrocytes, and adipocytes, after being incubated
in different media in vitro [4, 34, 35]. The potential for
myogenic differentiation could be inhibited by MSTN, and
MSTN can promote the commitment and differentiation of
mesenchymal cells into the adipogenic lineages [34].
The function of MSTN in C3H10T(1/2) cell adipogenesis

appears to involve driving the cells into a particular
state. When cells are induced into adipocytes, DIM,

Deng et al. Nutrition & Metabolism  (2017) 14:29 Page 2 of 6



which includes dexamethasone, insulin and isobutyl-
1-methylxanthine (IBMX), is always used to trigger
adipogenesis [4]. The key component of adipogenesis-
inducing medium, dexamethasone, could induce
MSTN expression [4, 36]. Pantoja et al. [37] demonstrated
that treating C3H10T(1/2) cells with dexamethasone for
48 h followed by IBMX treatment for 48 h was sufficient
for adipogenesis, significant differentiation did not occur
when C3H10T(1/2) cells were treated with IBMX followed
by dexamethasone. Moreover, recombinant MSTN could
substitute dexamethasone in the DIM mixture to induce
significant levels of adipogenesis in C3H10T(1/2) cells,
but not in 3T3-L1 cells (a preadipocyte cell line) [4].
Together, these data show that MSTN may induce adipo-
genesis in very-early-stage mesenchymal stem cells [4].
This special early stage needs to be clearly confirmed in
further studies.

MSTN deletion mainly leads to increased muscle
mass, reduced fat mass and resistance to
diet-induced obesity
Muscle and adipose tissue develop from the same
mesenchymal stem cells [2]. MSTN gene function seems
to control the switch between adipogenesis and myogen-
esis. In a mouse model, Lin et al. [38] showed that
MSTN knockout (KO) led to reduced adipogenesis and
consequently decreased leptin secretion, which is associ-
ated with increased muscle development. Guo et al. [39]
also showed that MSTN KO mice exhibited a dramatic
increase in muscle mass and reduced fat mass but no
changes in the whole-body lipid oxidation rate. By con-
trast, glucose utilization and insulin sensitivity increased
in MSTN KO mice. In aging mice, the body fat percent-
age was also lower in MSTN KO compared with WT
[40]. Decreased fat accumulation and increased muscle
mass were also observed in MSTN KO rats [41] and pigs
compared with wild type animals [42]. Previous research
indicated that adipocytes and myocytes are both derived
from the same mesodermal precursor [2]. The diminished
fat mass and enhanced muscle in MSTN KO mice may be
due to rapid depletion of the pool of stem, transit amplify-
ing and progenitor (STP) cells in white adipose tissue
(WAT) and brown adipose tissue (BAT) [43].
In addition, the MSTN KO mice also exhibited resist-

ance to diet-induced obesity [39]. This resistance pheno-
type may be due to the transformation of white adipocytes
to brown adipocytes. Zhang et al. [44] demonstrated that
MSTN KO mice are resistant to high-fat diet-induced
obesity via an increase in fatty acid oxidation in peripheral
tissues and enhanced brown adipose formation in white
adipose tissue. Further research indicated that MSTN KO
mice can drive white adipose tissue into brown adipose
tissue with the expression of BAT signature genes, includ-
ing Ucp1 and peroxisomal proliferator-activated receptor

coactivator 1 (Pgc1), and the beige adipocyte markers
transmembrane protein 26 (Tmem26) and tumor necrosis
factor receptor superfamily member 9 (TNFRSF9, CD137)
by activating the AMPK-PGC1-Fndc5 pathway in muscle
[32]. miR-34a is also involved in regulating fibronectin
type III domain-containing protein (Fndc5) expression in
active browning of white adipocytes [45].

MSTN inhibition also leads to decreased fat tissue
in mammals
MSTN inhibition in animals has been investigated and
could lead to decreased amounts of fat tissue. When
MSTN was suppressed by a propeptide cDNA sequence
in transgenic mice, the fat masses in the subcutaneous,
epididymal and retroperitoneal areas were significantly
less than in WT mice [46]. Similarly, visceral fat was
decreased in adult mice upon knockdown of MSTN by
siRNA [47]. McPherron et al. [48] found that MSTN
inhibition may be more efficacious in reducing adipose
weight gain rather than in causing weight loss when
MSTN is inhibited by treatment with a soluble MSTN
receptor derived from the activin receptor type IIB
extracellular domain in high-fat diet-induced mice.
Furthermore, the diet-induced obese rats showed re-
duced body and fat weight using a prepared polyclonal
antibody for MSTN [49] and the myostatin antagonist
sActRIIB [44]. Dong et al. [50] demonstrated that white
adipose tissue is converted to brown adipose tissue and
fatty acid oxidation and energy expenditure are pro-
moted when myostatin is inhibited by an anti-myostatin
peptibody in HFD-fed mice. This related mechanism is
due to muscle-to-fat cross talk by Fndc5 (irisin).

Tissue-specific MSTN inhibition and over-expression
in mice
The inhibition of myostatin signaling in adipose tissue
had no effect on body composition in mice fed a stand-
ard diet or high-fat diet. By contrast, the inhibition of
MSTN signaling in skeletal muscle increased lean mass
and decreased fat mass on standard and high-fat diets,
as well as resistance to diet-induced obesity [39]. The
results indicated that specific inhibition of MSTN in
skeletal muscle but not fat tissues can increase resistance
to diet-induced obesity.
Adipose tissue-specific MSTN overexpression also

increases resistance to diet-induced obesity. Feldman et al.
[4] generated aP2-MSTN transgenic mice that express
MSTN in fat tissue under the control of the aP2 promoter.
The aP2-MSTN transgenic mice exhibited an increased
metabolic rate and were resistant to diet-induced obesity.
In addition, adipocytes induced by MSTN in both
C3h10T1/2 cells and transgenic mice were small and
expressed markers characteristic of immature adipocytes.
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MSTN signal transduction in adipogenesis
MSTN, a secreted protein, needs to transmit its signaling
into the nucleus via a series cascade reaction to exert its
function. Rebbapragada et al. [51] found that MSTN could
first bind the type II Ser/Thr kinase receptor (ActRIIB)
and then partner with a type I receptor, either activin
receptor-like kinase 4 (ALK4 or ActRIB) or ALK5 (TβRI),
to induce Smad2/3 phosphorylation to inhibit the
adipogenesis of C3H10T1/2 cells. Further research
indicated that MSTN can activate Smad3 and the cross-
communication of the TGF-β/Smad signal to the Wnt/β-
catenin/TCF4 pathway to down-regulate PPARγ, leading
to the inhibition of adipogenesis in human bone marrow-
derived mesenchymal stem cells and preadipocytes [52].
Recent research indicated that MSTN could regulate
MyoD expression to influence PPARγ to exert its function
in adipogenesis [53, 54].

The regulation of MSTN gene expression
As an important regulatory element in 5′ upstream re-
gions of genes, the promoter can be bound by transcrip-
tion factors to regulate gene expression. The analysis of
the MSTN promoter shows that it can be regulated by
many transcriptional factors. Li indicated that MSTN
promoter activity is regulated by myocyte enhancer
factor 2 in pigs [55]. In cattle and sheep, MSTN is
regulated by the muscle-related transcription factor
myogenic factor 5 (Myf5), myocyte enhancer factor-2
(MEF2) and MyoD [18, 56]. Deng et al. [27] showed that
porcine MSTN could be upregulated by IBMX, MyoD
and PPARγ but down-regulated by C/EBPα and C/EBPβ
by analyzing the promoter of the porcine MSTN gene.
In addition, MSTN could be induced by dexametha-
sone [4, 27]. Those studies indicated that MSTN can
be regulated not only by myogenesis-related factors
but also by adipogenesis factors.

Conclusion
As a factor involved in muscle and fat regulation, the
function of MSTN in muscle has been widely investi-
gated. In addition, its role in regulating fat mass has also
attracted researchers’ interest. It is clear that MSTN has
positive and negative effects on adipogenesis depending
on the situation. In preadipocytes, MSTN mainly in-
hibits adipogenesis [23, 26], while it promotes adipogen-
esis in pluripotent stem cells [4, 37]. Further studies
utilizing MSTN transgenic animal models indicated that
it mainly promotes fat mass accumulation. For example,
MSTN gene knockout in animals mainly leads to re-
duced fat mass and resistance to diet-induced obesity
[39, 41]. MSTN inhibition in animals leads to reductions
in fat tissues [46, 48, 49]. However, myostatin inhibition
in muscle but not adipose tissue inhibits fat mass and
improves insulin sensitivity [39]. Adipose tissue-specific

MSTN overexpression increases the metabolic rate and
resistance to diet-induced obesity [4].
Although many reports show that MSTN participates

in the regulation of adipogenesis, more details remain to
be elucidated: 1) How does MSTN play different roles in
preadipocytes and pluripotent stem cells? 2) To which
cellular state does MSTN drive cells? 3) How does MSTN
cross-communicate with other adipogenesis-related
signaling factors, such as the Wnt signaling pathway?
A better understanding of MSTN in adipogenes is

likely to be a novel and promising area for better clinical
applications for controlling body and fat weight and
animal production.
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