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Abstract

Background: Metabolic abnormalities are more associated with central obesity than peripheral obesity, but the
underlying mechanisms are largely unknown. The present study was to identify serum metabolic biomarkers which
distinguish metabolically unhealthy centrally obese (MUCO) from metabolically healthy peripherally obese (MHPO)
individuals.

Methods: A two-stage case–control study design was employed. In the discovery stage, 20 individuals (10 MHPO
and 10 MUCO) were included and in the following validation stage, 79 individuals (20 normal weight (NW), 30 MHPO,
29 MUCO) were utilized. Study groups were matched for age, sex, physical activity and total dietary calorie intake
with MHPO and MUCO additionally matched for BMI. Metabolic abnormality was defined as: 1) HOMA-IR > 4.27
(90th percentile), 2) high-density lipoprotein cholesterol < 1.03 mmol/L in men and < 1.30 mmol/L in women, 3)
fasting blood glucose ≥ 5.6 mmol/L, and 4) waist circumference > 102 cm in men and > 88 cm in women. MUCO
individuals had all of these abnormalities whereas MHPO and NW individuals had none of them. A targeted
metabolomics approach was performed on fasting serum samples, which can simultaneously identify and quantify
186 metabolites.

Results: In the discovery stage, serum leucine, isoleucine, tyrosine, valine, phenylalanine, alpha-aminoadipic acid,
methioninesulfoxide and propionylcarnitine were found to be significantly higher in MUCO, compared with MHPO
group after multiple testing adjustment. Significant changes of five metabolites (leucine, isoleucine, valine,
alpha-aminoadipic acid, propionylcarnitine) were confirmed in the validation stage.

Conclusions: Significantly higher levels of serum leucine, isoleucine, valine, alpha-aminoadipic acid,
propionylcarnitine are characteristic of metabolically unhealthy centrally obese patients. The finding provides
novel insights into the pathogenesis of metabolic abnormalities in obesity.
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Background
Over the past 30 years, the prevalence of obesity has been
increasing worldwide across all gender and age groups
and has reached epidemic proportions in both developed
and developing countries [1]. Obesity represents a major
public health concern and is associated with increased risk
of developing co-morbidities including metabolic syndrome

(MS), type 2 diabetes mellitus (T2DM), cardiovascular dis-
ease (CVD) and at least a dozen types of cancer [2–5].
Numerous genetic, metabolic and environmental factors
alone or more likely in combination lead to the excessive
accumulation of body fat, which defines obesity. However,
the clinical manifestations of obesity are not homogeneous
and accumulating evidence suggests that not all obese in-
dividuals necessarily develop metabolic disorders. A sub
group of obese people, reported as 6–40 %, are absent of
metabolic abnormalities like dyslipidemia, insulin resist-
ance (IR), hypertension and inflammatory profile [6–12],
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suggesting that a “metabolically healthy obese” phenotype
exists. Although, the mechanisms responsible for the ex-
istence of metabolically healthy and unhealthy obese phe-
notypes are not yet clear, body fat distribution is currently
the primary candidate due to its crucial role in metabolic
health [10, 12]. Visceral fat accumulation or central obes-
ity (apple-shaped individuals) appears to be a more critical
factor that linking obesity with the increased risk of devel-
oping MS and diabetes than the amount of total body fat
or peripheral fat [6, 10–12]. At present, very little is
known about the metabolic characteristics of metabolically
healthy and unhealthy obesity. Using a more comprehen-
sive screening tool is essential to explore and understand
the metabolic profiles of different obesity phenotypes.
Metabolomics is defined as an “omics” technology

characteristic of the high-throughput identification and
quantification of small molecule (<1500 Da) metabolites
in cell, tissue, blood or organism [13]. Previously, meta-
bolomics has been identified as a promising and effective
technique to help elucidate the etiology of diseases, such
as obesity [14], diabetes [15, 16] and CVDs [17], and as-
sess the effects of natural health products on certain
pathological issues [18]. The currently evolving metabo-
lomic techniques brings a wealth of opportunities to
seek out, and hopefully develop new biomarkers that
may become important tools for identifying diseases,
predicting their progression, and determining the effect-
iveness of therapeutic interventions [19].
To date, only three investigations have implemented

metabolomics technology to differentiate the metabolic-
ally unhealthy and healthy obese individuals. A study on
overweight/obese women with and without MS in
Finland found that serum branched-chain amino acids
(BCAAs), aromatic amino acids and orosomucoid were
associated with all risk factors of MS, with the definition
of MS by the presence of any three of the five criteria
[20]. Another study in Germany reported that changes
of arachidonic acid, glutamine, histidine, spermidine and
PC aa C32:3 in cultured human adipocytes distinguish
metabolically healthy and unhealthy obese individuals
[21]. This study mainly focused on adipocytes and the
criteria used to distinguish metabolically healthy from
unhealthy obesity was IR alone. A recent study in China
found the levels of serum L-kynurenine, glyceropho-
sphocholine, glycerol 1-phosphate, glycolic acid, taga-
tose, methyl palmitate, and uric acid were significantly
different between metabolic healthy (MHO) and abnor-
mal obesity (MAO) [22]. The MAO was defined as hav-
ing one or more abnormal metabolic indexes, including
hyperglycemia, hypertension and dyslipidemia, while
MHO had none of them. However, none of these studies
systematically defined metabolically healthy or unhealthy
obesity nor did they consider the critical importance of
body fat distribution.

In the present study, we aimed to find important me-
tabolites that distinguish metabolically healthy peripheral
obese (MHPO) from metabolically unhealthy central
obese (MUCO) individuals with a more stringent defin-
ition along with a significant emphasis placed upon body
fat distribution. A targeted metabolomics methodology
was applied, which has broadly been used in the study of
metabolic diseases [23, 24]. The potential metabolites
discovered from this current investigation will more ac-
curately represent the metabolic route discrepancy be-
tween "metabolically healthy obesity" and "metabolically
unhealthy obesity" than any other studies to date. More-
over, these potential metabolites could lead to the dis-
covery of a number of important biomarkers for central
obesity related metabolic abnormalities.

Methods
Ethics statement
This study received ethical approval from Health
Research Ethics Authority of the Faculty of Medicine of
Memorial University, St. John’s, Newfoundland, Canada,
[with Project Identification Code #10.33 (latest date of
approval: February 11, 2016.)]. Written informed con-
sent was obtained from all of the volunteers.

Study population
We used a two-stage case–control study design, namely,
discovery and validation phases. Individuals for both
phases were selected from the ongoing CODING (Com-
plex Diseases in the Newfoundland Population: Environ-
ment and Genetics) study [25–29]. Inclusion criteria for
the CODING study are: 1) at least a third generation
Newfoundlander, 2) between the ages of 20 and 79 years
old, 3) not pregnant at the time of study. The metabolic
characteristics used for the classification of subjects be-
ing of metabolically unhealthy or healthy are as follows:
Metabolically Unhealthy Central Obesity (MUCO) - 1)

homeostasis model assessment of insulin resistance
(HOMA-IR) > 4.27 (90th percentile) [9, 11], 2) high-density
lipoprotein cholesterol (HDL-C) level < 1.03 mmol/L in
men and < 1.30 mmol/L in women [9, 11], 3) fasting
blood glucose ≥ 5.6 mmol/L [9, 11], and 4) waist circum-
ference > 102 cm in men and > 88 cm in women [9, 11];
Metabolically Healthy Peripheral Obesity (MHPO) - 1)

HOMA-IR < 4.27 [9, 11], 2) HDL-C level ≥ 1.03 mmol/L
in men and ≥ 1.30 mmol/L in women [9, 11], 3) fasting
blood glucose < 5.6 mmol/L [9, 11], and 4) waist circum-
ference ≤ 102 cm in men and ≤ 88 cm in women [9, 11].
In the discovery stage, two groups of obese individuals

(10 MUCO and 10 MHPO) were selected. All study par-
ticipants were classified as obese according to the World
Health Organization (WHO) criteria for obesity (body
mass index, BMI ≥ 30 kg/m2). Subjects of the two groups
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were matched for age, BMI, total dietary calorie intake,
and physical activity level.
In the follow validation stage, a normal weight group

(NW, 20 subjects) and two obese groups (29 subjects for
MUCO group and 30 subjects for MHPO group) were
selected. The metabolic characteristics used to distin-
guish the two obese groups were the same as during the
discovery stage, except BMI was expanded to above 27.2
due to the difficulty in identifying samples meeting the
stringent criteria of the studying groups. The metabolic
characteristics for NW group were same to MHPO
group except with 18 < BMI < 25. Subjects of the three
groups were also matched for age, sex, total dietary cal-
orie intake, and physical activity level, with MUCO and
MHPO additionally matched for BMI.

Anthropometric and body composition measurements
All measurements were performed in the morning fol-
lowing a 12-h fasting period. Subjects were weighed
(Health O Meter, Bridgeview, IL) to the nearest 0.1 kg in
standardized clothing (hospital gown). Height was mea-
sured to the nearest 0.1 cm using a fixed stadiometer.
BMI was calculated from weight and height in kilograms
per square meter. Waist circumference was measured
midway between the lowest rib and iliac crest and evalu-
ated using a measuring tape to the nearest 0.1 cm. Blood
pressure (BP) was measured twice by manual oscillometric
methods in the morning after sitting for 10 minutes after
the subjects arrived at the laboratory.
Whole body composition measurements including fat

mass, lean body mass were measured using dual-energy
X-ray absorptiometry (DXA) Lunar Prodigy (GE Medical
Systems, Madison, WI) equipped with enCORE software
package (GE Medical Systems) Version 12.3 [11, 27].
The total percent body fat (BF%), percent trunk fat
(TF%), and percent android fat (AF%) were determined.
The Lunar Prodigy software system determines automat-
ically the regions. Trunk fat region is from the top of the
shoulders to the top of the iliac crest, while the android
fat region is the top of the second lumbar vertebra to
the top of the iliac crest. Visceral adipose tissue content
was estimated by CoreScan [30, 31] within the android
region and percent visceral fat (VF%) was determined.

Dietary assessment
Dietary intake patterns of each participant were assessed
using Willett Food Frequency Questionnaire (FFQ), a
semi-quantitative method for the assessment of dietary
intake patterns. The Willett FFQ is the most widely used
dietary intake questionnaire for the study of nutritional
information at the population level [32–34]. For each
food item listed, participants had to indicate their aver-
age use of the specified amount per week over the last
year. Based on the choice selected, the amount was

converted to a mean daily intake value. The daily intake
for each food item consumed was entered into a meal
plan using NutriBase Clinical Nutrition Manager (ver-
sion 8.2.0; CyberSoft Inc, Arizona) and the daily macro-
nutrient, micronutrient and total calorie intakes were
automatically computed by the NutriBase software [35].

Physical activity
Physical activity levels were measured using the ARIC-
Baecke Questionnaire, which consists of a Work Index,
Sports Index, and Leisure Time Activity Index [36]. All
responses from this questionnaire were scored based on
a five point scale with the exception of the name of the
participant’s main occupation and the type of sports
played. Three levels of physical activity (low, medium
and high) were defined for occupation and sports. Phys-
ical activity was then measured via assessment of the
number of hours spent doing the activity per week, the
number of months spent doing the activity per year and
the assigned exertion level. The work, sports, and leisure
time activity indices were added together to give an esti-
mate of total physical activity.

Serum lipids, glucose and insulin measurement
Venous blood samples were obtained from all volunteers
in the morning after an overnight fast (12 h). Serum
samples were isolated from blood and stored at −80 °C
for subsequent analysis. Concentrations of serum high-
density lipoprotein cholesterol (HDL-C), triglycerides
(TG) and glucose were analyzed using Synchron reagents
with an Lx20 analyzer (Beckman Coulter Inc., Fremont,
CA, USA). Additionally, the serum insulin level was mea-
sured using an immunoassay analyzer (Immulite; DPC,
Los Angeles, CA, USA) [11]. HOMA-IR [37] was calcu-
lated as follows: HOMA-IR = [(Fasting Insulin (mU/L) ×
Fasting Glucose (mmol/L))/22.5]

Serum metabolites measurement
Metabolic profiling was performed by using the Waters
XEVO TQ MS system (Waters Limited, Mississauga,
Ontario, Canada) coupled with the Biocrates Absolute-
IDQ p180 kit (Innsbruck, Austria), which can simultan-
eously identify and quantify 186 metabolites including
21 amino acids, 19 biogenic amines, 40 acylcarnitines
(including free carnitine), 15 sphingomyelins, 90 glycero-
phospholipids (14 lysophosphatidylcholines (lysoPC) and
76 phosphatidylcholines (PC)) and 1 hexose (>90 % is
glucose). The assay procedures of the kit as well as the
metabolite nomenclature have been described in detail
previously [23, 24].

Statistical analyses
Data of the general characteristics of the study partici-
pants are presented as means ± SDs. Differences in
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anthropometry, dietary intakes and physical activity were
assessed using Student’s t-test. The sex ratio was ana-
lyzed by chi-square tests. SPSS software version 19.0
(SPSS Inc, Chicago, IL, USA) was used for these ana-
lyses. All tests were two-sided and a p-value less than
0.05 was considered to be statistically significant.
In the discovery stage, the Partial least squares

Discriminant Analysis (PLS-DA) method was used to
identify the characteristic metabolites with significant
difference between the two groups, using SIMCA-P 11.5
(Umetrics AB, Umea, Sweden) software. Since there were
vast differences in the absolute concentrations among dif-
ferent metabolites, all data were mean-centered and stan-
dardized before analyses. In PLS-DA, the R2X, R2Y and
Q2 (cum) parameters were used for the model evaluation,
representing the explanation, fitness and prediction power
respectively. R2X is the percentage of all response vari-
ables explained by the model. R2Y describes the percent-
age of variation explained by the model. Q2 shows the
predictive value of the model. The importance of each me-
tabolite in the PLS-DA was evaluated by variable import-
ance in the projection (VIP) score. The VIP score
positively reflects the metabolite’s influence on the classifi-
cation, and metabolites with VIP > 1 were considered im-
portant in the study. Additionally, the Kruskal-Wallis test
was executed using Multi Experiment View (V.4.9) soft-
ware to determine the significant metabolites. The signifi-
cance level was defined as p < 0.05. Those with VIP > 1
and p < 0.05 were recognized as the most important me-
tabolites and Bonferroni method (pBonferroni = 1–0.951/n)
was used to correct for multiple testing in different cat-
egories of metabolites. A p-value ≤ pBonferroni was con-
sidered to be statistically significant; hexose: ≤ 0.05,
amino acid: ≤ 0.005, biogenic amines: ≤ 0.013, acylcarni-
tines: ≤ 0.004, glycerophospholipids: ≤ 0.006.
In the following validation stage, the normal distribu-

tions of the 8 statistically significant metabolites survived
from the discovery study were analyzed. Logarithmic
transformation was used for the variables that did not
show normal distribution. One-Way ANOVA followed
by Tukey test was used to analyze significant difference
between groups by SPSS software version 19.0. Bonferroni
method was used to correct for multiple testing. A
p-value ≤ 0.005 was considered to be statistically significant.

Results
Demographic and metabolic characteristics of
participants
Twenty obese subjects were included in the discovery
stage. The general characteristics of the subjects in the
discovery stage are shown in Table 1. There were no sig-
nificant differences for age, BMI, sex ratio, BF%, TF%,
AF%, systolic blood pressure (SBP), diastolic blood pres-
sure (DBP), dietary food intake and physical activity

between the two groups. Waist circumference, visceral
fat mass, VF%, serum TG, glucose, insulin levels and
HOMA-IR value in MUCO group were significantly
higher than in MHPO group (p < 0.05). HDL-C level was
lower in MUCO group than in MHPO group (p < 0.001).
The general characteristics of the subjects in the valid-

ation stage are shown in Table 2. There were no signifi-
cant differences for age, sex ratio, dietary food intakes
and physical activity among the three groups. BMI, waist
circumference, BF%, TF%, AF%, visceral fat mass were
significantly lower in NW group, compared with the two
obese groups (p < 0.001). VF% was significant higher in
MUCO group than NW group (p < 0.001), but no signifi-
cant difference was found between MHPO and NW
groups. There were no differences for BMI, BF%, TF%
and AF% between the two obese groups, while waist cir-
cumference, visceral fat mass and VF% were significantly

Table 1 Characteristics of the study participants in the
discovery stage

Variables MUCO MHPO P-value

Age (years) 49.5 ± 4.8 43.4 ± 11.7 0.154

Sex(F/M) 6/4 8/2 0.628a

Anthropometry

BMI (kg/m2) 31.8 ± 1.6 32.2 ± 2.1 0.661

Waist Circumference(cm) 107.6 ± 7.1 88.5 ± 18.2 0.004

BF % 36.4 ± 8.6 42.4 ± 10.8 0.189

TF % 41.7 ± 7.1 45.3 ± 9.5 0.343

AF% 48.8 ± 6.5 51.1 ± 8.6 0.520

Visceral fat (g) 1885.4 ± 369.2 1087.2 ± 663.2 0.004

VF% 5.9 ± 1.6 2.7 ± 1.3 0.000

Metabolic Profile

SBP (mmHg) 133.9 ± 10.7 127.0 ± 20.3 0.650

DBP (mmHg) 88.6 ± 5.9 85.6 ± 10.8 0.318

TG (mmol/L) 2.4 ± 1.2 1.2 ± 0.4 0.025

HDL-C (mmol/L) 1.0 ± 0.1 1.5 ± 0.2 <0.001

Glucose (mmol/L) 7.1 ± 2.0 4.9 ± 0.3 <0.001

Insulin (pmol/L) 281.9 ± 343.8 54.8 ± 22.1 <0.001

HOMA-IR 14.7 ± 22.3 1.7 ± 0.8 <0.001

Diet and Physical Activity

Caloric intake (kcal/day) 2057.3 ± 1093.9 1852. 0 ± 846.5 0.662

Protein intake (g/day) 91.0 ± 80.7 72.6 ± 22.5 0.591

FAT intake (g/day) 59.4 ± 29.4 54.5 ± 37.6 0.762

Carbohydrate (g/day) 277.1 ± 160.6 271.2 ± 147.5 0.936

Physical activity level 7.8 ± 1.3 7.7 ± 1.8 0.875

All values are means ± SDs. MUCO: metabolically unhealthy central obesity;
MHPO: metabolically healthy peripheral obesity; The student’s t-test was set to
p < 0.05. Logarithmic transformation was used for the variables that did not
have normal distribution (Insulin, glucose, HOMA-IR, TG and Protein intake)
aAnalyzed by chi-square tests by SPSS, statistical significance was set
to p < 0.05
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lower in MHPO group compared to MUCO group
(p < 0.01). SBP, serum TG, glucose, insulin levels and
HOMA-IR value in MUCO group were significantly
higher (p < 0.05 for all), and serum HDL-C level were sig-
nificantly lower (p < 0.01) than in NW group. DBP, serum
insulin level and HOMA-IR value were significantly
higher in MHPO group than in NW group (p < 0.05 for
all), while there were no differences for SBP, serum TG,
HDL-C, glucose levels between the two groups. Compared
to MUCO group, serum TG, glucose, insulin levels and
HOMA-IR value were significantly lower and serum
HDL-C level was significantly higher in MHPO group
(p < 0.001 for all), while there was no difference for
blood pressure between the two groups.

Identified metabolites in participant’s serum
Over 95 % of the metabolites (178/186) were successfully
determined in each sample. These included 40 acylcarni-
tines (including free carnitine), 21 amino acids, 12 bio-
genic amines, 89 glycerophospholipids (14 lysoPC, 75

PC), 15 sphingomyelins and hexose (>90 % is glucose),
as shown in Additional file 1: Table S1.

Metabolomics profiles changes in MHPO and MUCO
groups in the discovery stage
PLS-DA results were presented in Fig. 1. In the con-
structed PLS-DA model, R2X = 0.422, R2Y = 0.801 and a
good prediction parameter Q2 (cum) =0.571. The me-
tabolites with the VIP > 1 were regarded as important in
the classification of the two groups. The significant me-
tabolites were further evaluated by the Kruskal-Wallis
test with a threshold of p < 0.05. The results of metabo-
lites with VIP > 1 and p < 0.05 are shown in Table 3.
Compared with MHPO group, 39 metabolites were

successfully identified in MUCO group. 11 amino acids
(alanine, glutamine, histidine, isoleucine, leucine, lysine,
methionine, phenylalanine, proline, tyrosine, valine), 4
biogenic amines (alphaAAA, Met-SO, kynurenine, sarco-
sine), free carnitine (C0) plus 13 acylcarnitines (C3,
C3DC(C4OH), C4, C4:1, C5, C5:1, C5-DC(C6-OH),

Table 2 Characteristics of the study participants in the validation stage

Variables NW(n = 20) MUCO(29) MHPO (30) P1 P2 P3

Age (years) 44.9 ± 11.4 49.3 ± 11.4 43.4 ± 11.8 0.384 0.880 0.115

Sex (F/M) 10/10 15/14 15/15 1.000a 1.000a 1.000a

Anthropometry

BMI (kg/m2) 21.7 ± 0.8 31.6 ± 3.2 30.1 ± 1.4 0.000 0.000 0.066

Waist Circumference(cm) 80.7 ± 6.4 107.5 ± 9.5 92.1 ± 7.6 0.000 0.000 0.000

BF % 25.3 ± 8.6 36.5 ± 6.9 35.6 ± 9.2 0.000 0.000 0.924

TF % 26.9 ± 8.6 41.6 ± 5.8 39.8 ± 7.2 0.000 0.000 0.607

AF% 31.9 ± 11.8 48.7 ± 5.7 45.9 ± 6.6 0.000 0.000 0.247

Visceral fat(g) 354.3 ± 295.9 2077.8 ± 814.4 1120.00 ± 641.4 0.000 0.000 0.000

VF% 2.5 ± 2.1 6.5 ± 2.3 4.2 ± 2.8 0.000 0.057 0.002

Metabolic Profile

SBP (mmHg) 122.4 ± 14.4 137.4 ± 14.3 130.1 ± 15.9 0.003 0.192 0.165

DBP (mmHg) 78.1 ± 9.3 84.3 ± 10.9 85.5 ± 8.3 0.072 0.028 0.890

TG (mmol/L) 0.87 ± 0.29 2.79 ± 1.27 1.11 ± 0.53 0.000 0.060 0.000

HDL-C (mmol/L) 1.6 ± 0.23 0.99 ± 0.17 1.5 ± 0.4 0.000 0.521 0.000

Glucose (mmol/L) 5.0 ± 0.28 7.3 ± 2.8 4.9 ± 0.34 0.000 0.931 0.000

Insulin (pmol/L) 38.9 ± 20.3 153.1 ± 48.6 58.5 ± 32.5 0.000 0.035 0.000

HOMA-IR 1.2 ± 0.6 7.1 ± 3.9 1.9 ± 1.0 0.000 0.029 0.000

Diet and Physical Activity

Caloric intake (kcal/day) 1896.2 ± 1199.7 1509.3 ± 568.2 1935.6 ± 789.5 0.292 0.999 0.210

Protein intake (g/day) 65.8 ± 36.5 60.6 ± 32.7 73.1 ± 34.5 0.601 0.729 0.152

Fat intake (g/day) 57.0 ± 22.7 50.2 ± 19.6 55.2 ± 20.4 0.800 0.984 0.863

Carbohydrate (g/day) 238.6 ± 128.7 201.9 ± 87.1 248.9 ± 120.4 0.369 1.000 0.074

Physical activity level 8.1 ± 1.7 7.3 ± 1.2 8.1 ± 1.4 0.090 0.974 0.089

All values are means ± SDs. The One-Way ANCOVA followed by Tukey test was set to p < 0.05. NW: Normal Wight; MUCO: metabolically unhealthy central obesity;
MHPO: metabolically healthy peripheral obesity; P1:The P value between MUCO and NW groups; P2:The P value between MHPO and NW groups; P3:The P value
between MUCO and MHPO groups; Logarithmic transformation was used for the variables that did not have normal distribution (Insulin, glucose, HOMA-IR, TG)
a Analyzed by chi-square tests by SPSS, statistical significance was set to p < 0.05
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C6(C4:1-DC), C6:1, C10:1, C10:2, C16, C16OH), and
hexose (>90 % is glucose) were significantly higher and 9
glycerophospholipids (lysoPC C28:1, PC aa C40:2, PC ae
C34:2/C36:3/C36:4/C38:4/C38:5/C38:6/C42:0) were sig-
nificantly lower in MUCO group.
While, after multiple testing adjustment, hexose, leu-

cine, isoleucine, tyrosine, valine, phenylalanine, alphaAAA,

Met-SO and C3 were still statistically significantly differ-
ent between the two groups. However, glucose accounted
for 90 % of the hexose in the metabolomics approach
used, thus the elevation of hexose in the MUCO subjects
is probably owing to the high level of fasting glucose.
Therefore, all these metabolites except hexose were identi-
fied as the key metabolites distinguishing MUCO and

Fig. 1 PLS-DA score plots of MUCO and MHPO groups. “1” represent metabolically healthy peripheral obesity (MHPO) group; “2” represent
metabolically unhealthy central obesity (MUCO) group

Table 3 The variable importance in the projection (VIP) valuesa and p values of identified metabolites between MHPO and MUCO
groups in the discovery stage (VIP > 1, p-value < 0.05)

Metabolites VIP value P-value Metabolites VIP value P-value

Hexoses 1.87725 0.000157* C4:1 1.55489 0.010843

Tyrosine 1.95689 0.000507* C10:2 1.55734 0.012379

Leucine 2.00158 0.000669* C6(C4:1-DC) 1.16246 0.015448

Isoleucine 1.91919 0.000881* C0 1.26561 0.015564

Valine 1.93636 0.000881* C6:1 1.36558 0.018482

Phenylalanine 1.78606 0.003197* C16-OH 1.61161 0.024043

Lysine 1.51144 0.008151 C5-DC(C6-OH) 1.30387 0.027184

Histidine 1.55651 0.015564 C16 1.20206 0.033822

Methionine 1.55505 0.015526 C10:1 1.2771 0.041174

Alanine 1.47744 0.019110 C3-DC(C4-OH) 1.0104 0.049025

Proline 1.37059 0.023342 PC aa C40:2 1.30675 0.041250

Glutamine 1.42081 0.041250 PC ae C38:4 1.37446 0.019110

alphaAAA 1.72871 0.001152* PC ae C342 1.11563 0.025692

MetSO 1.57108 0.007564* PC ae C36:4 1.18682 0.028366

Kynurenine 1.41756 0.028366 PC ae C38:5 1.25626 0.034294

Sarcosine 1.3291 0.028366 PC ae C42:0 1.13183 0.041250

C3 1.53624 0.003299* PC ae C36:3 1.15062 0.049366

C4 1.45988 0.006502 PC ae C38:6 1.15541 0.049366

C5:1 1.45929 0.008849 lysoPC a C28:1 1.22246 0.049366

C5 1.44608 0.009056
aHigher VIP values indicate a stronger influence of the metabolite in distinguishing different groups. Kruskal-Wallis test set to p < 0.05. MUCO metabolically unhealthy
central obesity; MHPO metabolically healthy peripheral obesity; Hexose (mainly glucose); alphaAAA, alpha-Aminoadipic acid; Met-SO, Methioninesulfoxide. Asterisk (*)
marks statistical significance after Bonferroni correction
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MHPO groups and were further examined in the valid-
ation stage.

Metabolomics profiles changes among groups in the
validation stage
The significant differences of 8 metabolites were further
examined during the validation stage. Five metabolites
were identified as statistically significant among the
three groups. As shown in Table 4, serum leucine, iso-
leucine, valine, alphaAAA, C3 levels were significant
higher in MUCO group compared to NM or MHPO
groups after multiple testing adjustment (p < 0.001).
There were no statistically significant differences on the
concentration of the 5 metabolites between MHPO and
NW groups.

Discussion
To the best of our knowledge, this study is the first to
identify serum metabolic biomarkers in MUCO focusing
on fat distribution factors and using a metabolomics
technology. We discovered significant increases in 5
serum metabolites (leucine, isoleucine, valine, alphaAAA
and C3 acylcarnitine) that distinguished metabolically
unhealthy centrally obese from metabolically healthy
peripherally obese patients.
Obesity is one of the primary risk factor for diabetes

and other metabolic conditions [2]. However, paradoxic-
ally a significant proportion of obese individuals in the
general population can exhibit a phenotype free of meta-
bolic abnormalities [6, 9, 10]. Consequently, recent stud-
ies have suggested that the differentiation of metabolic
health status among obese individuals is partially due to
different fat distribution [38]. Abdominal visceral fat ac-
cumulation or central obesity is currently known to be
the key risk factor that links to metabolic abnormalities
in obesity [6, 10, 11]. Essentially, centrally obese patients
have significantly higher risk of one or more abnormalities
related to lipids, insulin, glucose, blood pressure and in-
flammation than peripherally obese patients [4, 5, 8].
However, the specific downstream metabolic characteristic
and molecular mechanisms which distinguish the

metabolically unhealthy obese phenotype from metabolic-
ally healthy obese phenotype remain poorly understood.
The criteria applied to define metabolically unhealthy

and healthy obesity vary largely in the current literature
[6–12]. Apparently, the stringency of criteria used in a
study will affect the numbers and types metabolites that
will be detected. To date, three studies have been per-
formed using metabolomics technology to address the
metabolic profiles between metabolically unhealthy and
healthy obese individuals [20–22]. However, none of the
studies considered the role of fat distribution and neither
had normal weight control group. In our current study,
on top of defining different phenotypes of obesity with
waist circumference, which is known as an effective pre-
dictor abdominal visceral fat accumulation [39, 40],
stricter criteria were taken with both MS and IR been
used when defining metabolically healthy and unhealthy
obesity [9, 11]. Moreover, visceral fat mass and visceral
fat percentage were measured and found significantly
higher in MUCO group. Furthermore, the aforemen-
tioned groups were matched for age, sex, total dietary
calorie intake, physical activity and BMI to eliminate the
confounding effects of these factors on metabolites. Age
and sex are primarily important factors that affect me-
tabolism and the metabolites studied [41–43]. Total cal-
orie intake is a critical factor in maintaining energy
balance and likely the levels of various metabolites:
amino acids, lipids and carbohydrates [44]. In addition,
physical activity level is likely the most important non-
dietary factor to influence the general metabolism of all
the macro- and micro-nutrients [44, 45]. It is extremely
important to properly control these factors in a study
that analyzes and compares hundreds of metabolites.
Moreover, a NW group was added as the control group
in the validation stage to further emphasize differences
in obesity associated risk factors related to metabolic
health. These stringency are important and indicate our
findings are likely more specific and accurate.
In the validation stage, we successfully confirmed the

elevation of 5 serum metabolites (leucine, isoleucine, val-
ine, alphaAAA, C3 acylcarnitine) discovered in the first
stage that are associated with metabolically unhealthy

Table 4 Metabolites with significant difference among groups during the validation stage

Metabolites (umol/L) NM MUCO MHPO P1 P2 P3

Leucine 189.5 ± 37.6 321.5 ± 36.8 216.6 ± 32.6 0.000 0.346 0.000

Isoleucine 87.7 ± 48.2 132.0 ± 52.7 92.5 ± 45.2 0.000 0.584 0.000

Valine 297.8 ± 50.1 388.5 ± 53.4 291.3 ± 43.4 0.000 0.917 0.000

alphaAAA 2.45 ± 0.24 3.10 ± 0.40 2.62 ± 0.29 0.000 0.138 0.000

C3 0.30 ± 0.08 0.42 ± 0.11 0.29 ± 0.11 0.000 0.976 0.000

All values are means ± SDs. The One-Way ANOVA followed by Tukey test was set to p < 0.05. NW normal weight, MUCO metabolically unhealthy central obesity,
MHPO metabolically healthy peripheral obesity; alphaAAA, alpha-aminoadipic acid. Logarithmic transformation was used for the variables that did not have normal
distribution (alphaAAA); P1: The P value between MUCO and NW groups; P2: The P value between MHPO and NW groups; P3:The P value between MUPO and
MHPO groups
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centrally obese patients. No significant difference was
found between MHPO and NW control group. Leucine,
isolucine, and valine are BCAAs. BCAAs comprise ap-
proximately 40 % of the free essential amino acids in
blood. They play important roles in maintenance and
growth of skeletal muscle, are used as an energy source
during exercise, and can serve as gluconeogenic precur-
sors [46]. In humans, serum BCAAs cannot be created
from other compounds and mainly come from dietary
protein, amino acids and endogenous protein catabolism
in muscle [47]. The two groups of obese patients from
our study had no significant difference in dietary intake
of protein or amino acids (shown in Additional file 2:
Table S2 and Additional file 3: Table S3). These results
suggest that the significantly higher level of BCAAs in
MUCO individuals may be due to the increased protein
catabolism, likely secondary to insulin resistance [14,
48]. A recent theory suggested that increased circulating
concentration of BCAAs might be caused by a block of
BCAAs catabolism in the mitochondria of adipose tissue
[48–51], with visceral fat playing an important role in
this regard [52]. Furthermore, accumulating evidence in-
dicated that abnormal levels of circulating BCAAs were
involved in various diseases, including chronic liver dis-
ease [53], obesity [54], diabetes [55], cardiovascular dis-
ease [56] and cancer [57]. It has long been recognized
that BCAAs are elevated in the blood of patients with
obesity, IR or diabetes [14, 54, 55, 58–60]. The finding
from our present study provides the first link between
increased serum BCAAs levels with central obesity spe-
cifically, rather than with peripheral obesity. The precise
molecular mechanisms mediating the association be-
tween BCAAs and metabolic abnormalities during obes-
ity is unclear, but may be related to the activation of
mTOR-S6 K1 induced disruption of insulin signaling or
the inhibition of GCN2, ATF4 and AMPK mediated
lipid, glucose metabolism and energy homeostasis dis-
order [14, 57, 61].
Acylcarnitines are formed intracellularly from carni-

tine during the metabolism of long-chain fatty acids and
BCAAs [62, 63]. In our study, we discovered that serum
acylcarnitine C3 (propionylcarnitine) were significantly
higher in MUCO individuals. C3 is a product of BCAAs
mitochondrial catabolism, especially isoleucine and
valine catabolism [14]. Elevation of serum C3 levels
was also observed in patients with obesity or diabetes
previously [14, 64–66], and the increased BCAA deg-
radation in muscle tissue or liver associated with the
increased serum BCAA levels was considered as a po-
tential cause [14].
Biogenic amines are bioactive substances containing

one or more amine groups. They are basic nitrogenous
compounds formed mainly by decarboxylation of amino
acids or by amination and transamination of aldehydes

and ketones. Among the biogenic amines measured in
the current study, only serum alpha-aminoadipic acid
(alphaAAA) was significantly different among the
groups. AlphaAAA is a product of lysine degradation in
mammals [67, 68], that has been identified as a bio-
marker for the development of T2DM and a potential
modulator of glucose homeostasis in humans [69, 70].
Reports on the changes of serum alphaAAA level in
obesity are rare, while a study from Korea described sig-
nificantly higher serum alphaAAA levels in obese chil-
dren [71]. It is well known that obesity, especially central
obesity is the primary risk factor for the development of
IR and diabetes [6, 10–12]. However the factors that link
obesity and diabetes are largely unknown. The patients
in the present study were well defined having central
obesity. Our finding strongly suggests that alphaAAA is
at least one important factor mediating central obesity
and diabetes.
This study had a number of limitations to consider.

First, this is a cross-sectional case–control study. Se-
quential observations made in a prospective manner
would provide more useful information. Secondly, al-
though the targeted metabolomics approach explored
186 metabolites, we might have missed important me-
tabolites which the panel does not have. Finally, al-
though HOMA-IR is a widely accepted measure of IR,
hyperinsulinemic euglycemic clamp technique is consid-
ered a more accurate method to measure IR [72].

Conclusions
This is the first study using a targeted metabolomics ap-
proach and two-stage study design to identify serum me-
tabolites differences between metabolically healthy
peripheral obese and unhealthy central obese individuals.
We found significantly higher levels of serum branched-
chain amino acids (leucine, isoleucine, valine), propionyl-
carnitine (C3 acylcarnitine) and alphaAAA to distinguish
metabolically unhealthy central obesity from metabolically
healthy peripheral obesity. The identified metabolites pro-
vide novel insights into the metabolic characteristic and
pathogenesis of metabolic abnormalities in central obesity.
Future studies are warranted to further verify the rele-
vance of these novel metabolites associated with cen-
tral obesity, and elucidate the underlying biochemical
mechanisms.
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