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activation, oxidative stress, and DNA damage [4, 5]. 
Although many different factors lead to senescence, the 
DNA damage response (DDR) is a common factor in all 
of these mechanisms. Studies have demonstrated that 
senescence can be caused by persistent DDR [6, 7], a sig-
naling cascade activated by DNA damage [5], in which 
cells respond to DNA damage by pausing cell cycle pro-
gression and trying to repair [7, 203].

Human cytomegalovirus (HCMV) is a β-herpesvirus 
that infects a variety of cell types, including fibroblasts, 
epithelial cells, macrophages, endothelial cells, dendritic 
cells, and smooth muscle cells [8]. As an enveloped, 
double-stranded DNA (dsDNA) virus, it has the larg-
est genome of human viruses [9]. Herpesvirus genes are 
expressed in a “temporal cascade,” whereby the first set 
of viral genes, the immediate-early (IE) genes, drive the 
subsequent expression of delayed-early (DE) and late 
(L) genes [10–13]. During HCMV infection, the 72-kDa 
and 86-kDa IE1 and IE2 proteins are among the first and 
most widely expressed proteins. It is assumed that these 

Background
Cellular senescence was first formally described by Hay-
flick et al. over 50 years ago [1, 2]. Since then, it has been 
understood that cellular senescence is a stress-induced 
transformation in cellular states, including terminal cell 
cycle arrest and the development of senescence-associ-
ated secretory phenotypes (SASP) [3]. Senescence can 
be triggered by various types of cellular and environ-
mental stresses such as telomere shortening, oncogene 
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Abstract
The DNA damage response (DDR) is a signaling cascade that is triggered by DNA damage, involving the halting 
of cell cycle progression and repair. It is a key event leading to senescence, which is characterized by irreversible 
cell cycle arrest and the senescence-associated secretory phenotype (SASP) that includes the expression of 
inflammatory cytokines. Human cytomegalovirus (HCMV) is a ubiquitous pathogen that plays an important role in 
the senescence process. It has been established that DDR is necessary for HCMV to replicate effectively. This paper 
reviews the relationship between DDR, cellular senescence, and HCMV, providing new sights for virus-induced 
senescence (VIS).
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proteins operate as transcriptional regulators by interact-
ing with numerous cellular proteins that communicate 
with one another [14, 15].

A growing number of studies have shown that many 
viral infections, including HCMV [16–19], can also acti-
vate cellular senescence responses and that virus-induced 
senescence (VIS) has much in common with other forms 
of cellular senescence [20]. However, the precise regu-
latory mechanisms directly linking HCMV to cellular 
senescence remain unknown. As DDR signaling path-
ways are critical for the replication of HCMV [21–23], it 
would be interesting to investigate if HCMV can cause or 
worsen cellular senescence through DDR. In this review, 
we first provide a detailed explanation of how DNA dam-
age response (DDR) begins and develops as well as how 
DDR contributes to the establishment of cellular senes-
cence. We then concentrate on how HCMV influences 
DDR and ultimately causes cellular senescence which is 
characterized by the senescence-associated secretory 
phenotype (SASP).

DNA damage response(DDR)
DNA damage activates a signaling cascade named DNA 
damage response (DDR) [5], in which cells respond to 
DNA damage by pausing cell cycle progression and try-
ing to repair [7, 203] (Fig. 1). This complicated network 
of signaling channels made up of sensors, transducers, 
and effectors. The sensor delivers a signal to the trans-
ducer when it locates damaged DNA, such as DNA 
double-strand breaks (DSBs) or single-stranded DNA 
(ssDNA). The transducer amplifies the signal and trans-
mits it to the effector. The effector executes a series of 
cellular responses, including initiating activation of cell 
cycle checkpoints and mobilizing the corresponding 
damage repair pathways [22]. If DNA damage is repaired 
in time, the cell will quickly return to normal; however, 
if the DNA damage is particularly severe and cannot 
be repaired, the cell may undergo apoptosis or cellular 
senescence. The former is programmed cell death, a form 
of cellular suicide that removes damaged cells from the 
cell population [24]; the latter is a natural irreversible cell 
cycle arrest, induced by DDR. It remains unclear what 
determines the choice between apoptosis and senes-
cence, but determinants may include cell type and the 
intensity, duration, and nature of the damage [7].

The MRE11-RAD50-NBS1 (MRN) complex and the 
single-stranded DNA-binding protein replication protein 
A (RPA) are the major sensor proteins that detect DSBs 
and ssDNA, respectively [24–27]. These proteins then 
recruit ATM (ataxia-telangiectasia mutated) and ATR 
(ATM- and Rad3-related), both of which are the main 
kinases of the DDR [25]. ATM is largely engaged in DSB 
repair, whereas ATR is primarily involved in the recog-
nition of ssDNA wrapped by RPA [26] (Fig. 1). Although 

ATM and ATR recognize distinct forms of DNA damage, 
both are needed for proper checkpoint activation when 
DSBs are encountered [27–30]. The cis-local phosphory-
lation of histone H2AX (γ-H2AX) by ATM and ATR is 
a critical step in DDR [31]. MDC1 (mediator of DNA 
damage checkpoint protein 1) is hyperphosphorylated 
in an ATM-dependent manner, generating a phospho-
specific domain that can detect γH2AX [32–34]. MDC1 
recruitment to γH2AX amplified local ATM activity and 
the spreading of γH2AX along the chromatin from the 
DSB. This in turn raises the local concentration of many 
DDR components at the site of DNA damage, resulting 
in a positive feedback loop that amplifies ATM activ-
ity [7, 35–37]. Co-localization of ATRIP (ATR interac-
tion protein) [39] and the 9-1-1 complex (composed of 
RAD9, RAD1, and HUS1) [40] is also required for ATR 
activation by RPA-coated ssDNA [38, 39]. Furthermore, 
topoisomerase II binding protein 1 (TOPBP1) is an ATR 
signaling pathway amplifier [40, 41] (Fig. 1).

Regulation of cell cycle progression by DDR
DNA damage signaling activates cell cycle checkpoints, 
halting cell cycle advancement and allowing time for 
DNA repair, preventing damaged DNA replication. The 
cell cycle is divided into four stages: G1, S, G2, and M, 
each with its own set of regulatory proteins. Cyclin D, 
CDK4/6, and p16INK4a are examples of G1 phase reg-
ulatory proteins, whereas cyclin E, CDK2, and p21 are 
examples of S phase regulatory proteins. The production 
of cyclin E and CDK2 complexes is required for cells to 
enter S phase; G2 phase regulatory proteins primarily 
involve cyclin B and CDK1, and the formation of a com-
plex between the two causes cells to enter pre-M phase 
[42–44].

Activated ATM and ATR phosphorylate the activating 
checkpoint kinases CHK2 and CHK1, with ATR primar-
ily activating CHK1 but also ATM [45, 46]. Activated 
CHK1 and CHK2 then phosphorylate the cell division 
cycle 25 (CDC25) phosphatase and the tumor suppres-
sor protein p53, causing their inactivation or degradation 
and activation or stabilization, respectively [47–50]. Fur-
thermore, active CHK1 in yeast stimulates Wee1 kinase, 
which inactivates CDK1 and CycB [51, 52]. Both eventu-
ally produce cell cycle arrest: the ATM-CHK2-P53 path-
way regulates the G1 checkpoint, while the ATR-CHK1 
pathway controls the S and G2/M checkpoints [42, 53], 
and both pathways can cause cell cycle arrest through 
p53 activation (Fig. 1 upper panel). p53 is a transcription 
factor that regulates genes involved in DNA repair, cell 
cycle arrest, apoptosis, and metabolism [54, 55]. Phos-
phorylated P53 promotes the expression of the cyclin-
dependent kinase inhibitor (CDKI) p21. Both p21 and 
p16 cyclin-dependent kinase inhibitors are components 
of the tumor suppressor pathway and a major modulator 
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of senescence-associated cell cycle arrest. CycE and 
CDK2 are inhibited by p21 activation. CycD and cdk4/6 
cyclins are inhibited by p16 activation. The mechanism 
of p16 induction remains unknown [56]. Furthermore, 
both p21 and p16 can keep the retinoblastoma protein 
(pRB) hypophosphorylated and active, resulting in cellu-
lar senescence [57].

Repair mechanisms in the DNA damage response
The primary repair pathways for DSBs are non-homolo-
gous end-joining (NHEJ) and homologous recombination 
(HR). Non-homologous end joining (NHEJ) re-ligates 
a DSB without extensive processing of the DNA around 
the DSB and is present throughout the cell cycle, mak-
ing it a relatively easier, faster, and more extensive repair 
mechanism of the two. HR, on the other hand, necessi-
tates resection of the DNA at the break site to form sub-
stantial single-stranded overhangs that can invade the 

homologous sister strand, which is more difficult and 
precise and occurs only in the S/G2 phase [6, 58]. On the 
DSB, γH2AX progressively recruits MDC1, RNF8, and 
RNF168, triggering a ubiquitination cascade around the 
DSB [59]. Following this, the DSB repair proteins BRCA1 
and 53BP1 are recruited [59, 60]. The 53BP1-RIF1 and 
the BRCA1-CtIP pathway are in competition with each 
other and their selection is regulated by the cell cycle 
and histone modifications [44, 61, 62]. In the G1 phase, 
the recruitment of 53BP1-RIF1 enhances NHEJ repair 
by antagonizing the recruitment of the BRCA1-CtIP 
complex [44]. In the S/G2 phase, CtIP cooperates with 
nucleases to produce extensive single-stranded over-
hangs by excising DNA at the break site and invading the 
sister homologous strand. During this process, exposed 
ssDNA is first bound by RPA [6], and then the recombi-
nase RDA51 displaces RPA in the involvement of recom-
binant mediators BRCA1, PALB2, and BRCA2 to form 

Fig. 1  The DNA damage response. Responses to DNA damage caused by double-strand breaks (DSBs) and single-stranded DNA (ssDNA). The MRN com-
plex detects DNA DSBs and signals them by activating ATM. The accumulation of ssDNA at stalled or stressed replication forks activates ATR. Following 
the activation of transducer kinases, DNA damage signaling is initiated, which includes DNA repair processes (lower panel) and cell cycle checkpoints 
(upper panel). Direct and indirect interactions are indicated by solid and dashed arrows, respectively. This figure was modified according to the published 
Fig. 1 in reference [203].
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RAD51-single-stranded DNA nucleoprotein filaments. 
This nucleoprotein filament structure is capable of facil-
itating multiple processes such as homology search, 
strand invasion, and DNA polymerization [44, 63, 64] 
(Fig. 1 lower panel).

The link between cellular senescence and DNA 
damage
Cellular senescence is a state of irreversible cell cycle 
arrest. Cellular senescence can be caused by a variety 
of factors, including telomere malfunction, DNA dam-
age, oncogene activation, and organelle stress [5, 204]. 
DNA damage is likely the most powerful cause of cellular 
senescence, as DNA carries information about all of the 
proteins and RNAs produced by the cell [65, 66]. If DNA 
damage cannot be repaired and continues, it can result 
in prolonged DDR signaling and long-term prolifera-
tion arrest in the form of cellular senescence [48]. DDR 
foci harboring unrepaired DSBs have been reported in 
cultured senescent cells [49]. Inhibiting DDR signaling 
kinases (ATM, ATR, CHK1, and CHK2) permits senes-
cent cells to re-enter the cell cycle [67–69]. Furthermore, 
even in the absence of physical DNA damage, alterations 
in DDR sensors alone can cause cell cycle arrest [70].

Cellular senescence was initially identified as the mech-
anism that regulates the limited replicative lifespan of 
cultivated cells, also known as replicative senescence (RS) 
[2], a type of telomere-induced cellular senescence (TIS). 
Telomeres shorten with each round of DNA replication 
due to a lack of telomere maintenance mechanisms like 
telomerase expression or telomere recombination. Such 
ends are regarded as double-strand breaks (DSBs) below 
a specific length, triggering a DNA damage response 
(DDR) [68, 71]. However, aberrant activation of the pro-
liferative pathway can also cause cellular senescence. 
Oncogene-induced senescence (OIS) is characterized 
by substantial activation of the DDR pathway and the 
formation of DDR foci in senescent cells (also known as 
senescence-associated DNA-damage foci; SDFs) [7, 67, 
72, 73]. Furthermore, mitochondrial dysfunction induces 
increased ROS generation in senescent cells, resulting in 
DNA damage and DDR activation [74, 75], which drives 
cellular senescence [76, 77]. Clearly, all of these senes-
cence-inducing conditions influence DDR, which plays a 
critical role in cellular senescence (Fig. 2).

Furthermore, cellular senescence is frequently regarded 
as a stress response that, in addition to the characteris-
tic stable cell cycle arrest, involves a pro-inflammatory 
phenotype known as the senescence-associated secretory 
phenotype (SASP), which is primarily mediated by the 
cGAS-STING, NF-κB, and C/EBPβ signaling pathways 
[3, 78]. Studies have shown that the gene expression of 
SASP often requires sustained DDR signaling and that 
key DDR proteins such as ATM, NBS1, and CHK2 are 

involved in the activation of SASP genes [78, 79] (Fig. 3). 
Defective DDR signaling is a fundamental mechanism of 
DNA damage, cellular senescence, and aging [80].

Cyclic GMP-AMP synthase (cGAS) has been found 
to be a key linkage between DNA damage, SASP gene 
expression, and cellular senescence [81]. SASP gene 
expression is reduced when cGAS is deleted [81]. cGAS 
or stimulator of interferon genes (STING) deprived 
cells are unable to induce senescence by DNA dam-
age stimulation, and p16, p21, and SASP are also not 
increased [81–83]. The binding of cGAS to cytoplasmic 
dsDNA fragments, including double-stranded DNA 
from the leaky senescent nuclei and exogenous nucleic 
acids (viruses), initiates the cGAS-STING pathway [202, 
84, 85] (Fig. 3). Activated cGAS catalyzes the formation 
of cyclized dinucleotides (cGAMP) from ATP and GTP. 
cGAMP translocates to the endoplasmic reticulum, 
where it binds to and activates STING [84, 86]. Activated 
STING translocates to the Golgi apparatus and recruits 
TANK-binding kinase 1 (TBK1) and IκB kinase (IKK), 
which activate Interferon regulatory factor 3 (IRF3) and 
NF-kB [86–88].In most unstimulated cells, NF-kB dimers 
are found in the cytoplasm as complexes with IkB pro-
teins. Upon stimulation, IkB is phosphorylated by the 
IKK complex, ubiquitinated, and targeted for degrada-
tion, thus releasing the NF-kB subunits that translocate 
to the nucleus and induce transcription of inflammatory 
proteins like type I interferon [86–89]. Direct activation 
of the NF-kB signaling pathway by nuclear DNA damage 
necessitates the activation of ATM and PARP1 [43, 90], 
resulting in the phosphorylation and ubiquitination of 
sumoylated NEMO. PARP-1 is an essential DNA dam-
age sensor [91]. NEMO is a regulatory subunit of the 
IκB kinase complex. Ubiquitinated NEMO coupled with 
ATM is exported into the cytoplasm, where it activates 
the IKK complex and then the NF-kB signaling cascade 
like the traditional pathway [90, 92].

Cellular senescence Induced by infection with 
HCMV and other viruses
Immature myeloid lineage cells present in the bone mar-
row and circulating in the blood are considered as pri-
mary sites for viral latency [93–96]. Although persistent 
CMV infection is systemically controlled by the immune 
system and viral particles are detectable only in times 
of reactivation, life-long exposure to HCMV has been 
demonstrated to severely impair the T cell system. It 
increases the number of highly differentiated, exhausted 
CD4 and CD8 T cells, named terminally differentiated T 
Cells [97, 98]. One of the most robust markers in describ-
ing these exhausted T cells is the lack of the costimula-
tory molecule CD28, a member of the tumor necrosis 
factor receptor family that interacts with CD80 and/or 
CD86 expressed on activated antigen-presenting cells 



Page 5 of 14Wu et al. Virology Journal          (2023) 20:250 

[99]. The age-dependent accumulation of exhausted 
CD28+ T cells, which preferentially produce the pro-
inflammatory cytokines IFN-γ and TNF-α, is thought 
to contribute—together with components of the innate 
immune system—to the low-grade pro-inflammatory 
background observed in elderly persons (inflamm-aging) 
[100] (Fig. 4A).

Cells from the myeloid lineage are thought to play a 
critical role in HCMV latency and reactivation but do not 
support productive infection [93–95]. Instead, this virus 
can infect many other cell types, in most of which virus 
causes a productive infection, such as macrophage, endo-
thelial cells, fibroblasts [101, 102]. Complex mechanisms 
control the reactivation of the HCMV from latency. 
Inflammation has been shown to have the potential to 
cause latent HCMV to reactivate [103–105] (Fig. 4).

Tracking HCMV infection with single-cell transcrip-
tomics revealed that infection outcome (productive 
or latent) is also based on viral gene expression levels 
at early stages of infection [106]. High early viral gene 

expression levels, particularly of immediate early (IE) 
genes, facilitate productive infection [106, 107]. In the 
productive infection, previous reports demonstrate 
that HCMV induces premature senescence in early pas-
sage human fibroblasts, similar to senescent cells which 
have reached the limit of their replicative capacity [108]. 
Specifically, the IE1 protein activates and interacts with 
p53, causing p53 accumulation [109, 110]. The IE2 pro-
tein inhibits cellular DNA synthesis, resulting in cell 
cycle arrest through a functional p53 pathway [111]. The 
interaction of IE1, IE2, and p53 above ultimately evokes 
the senescence phenotype in HCMV-infected cells [16, 
110, 111]. Additionally, HCMV infection upregulates the 
expression of p16, which is necessary for ideal viral rep-
lication [112]. Furthermore, HCMV infection affects the 
inflammatory phenotype in addition to causing cell cycle 
arrest [17] (Fig. 4B).

According to recent researches, virus infections, such 
as measles virus, human respiratory syncytial virus 
and COVID-19, can prematurely stimulate cellular 

Fig. 2  The relationship between cellular senescence and DNA damage. Senescence can be activated by different stimuli, including telomere shortening, 
DNA damage, oxidative stress, and oncogene activation. A central factor involved in all aspects of senescence is the sustained DNA damage response 
(DDR), which causes cell cycle arrest via the p53 and RB-dependent pathways and SASP secretion via the NF-kB and cGAS-STING pathways, ultimately 
inducing cellular senescence. This figure was modified according to the published Fig. 1 in reference [204].
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senescence, known as virus-induced senescence (VIS) 
[23, 113, 114]. Measles virus (MV) infection has been 
proven to induce p53 and p16-pRb pathway-dependent 
cellular senescence via cell [115]. Epstein–Barr virus 
(EBV), Kaposi sarcoma herpesvirus (KSHV) and human 
respiratory syncytial virus (RSV) infections can trig-
ger DNA damage-mediated cellular senescence through 
replicative stress or induction of mitochondrial ROS [23, 
116, 117]. Senescence markers and SASP factors have 
been found in tissue samples of the nasopharyngeal cav-
ity and lungs of patients suffering from coronavirus dis-
ease 2019 (COVID-19) with severe disease progression 
[20]. A basic research study, assessing the occurrence of 
VIS, found that human diploid fibroblast models exposed 
to high-titer retrovirus exhibited typical senescence and 
the activated cyclic GMP-AMP synthase-stimulator of 
interferon genes (cGAS-STING) pathway after the fifth 
day of infection [118].

HCMV infection can promote cellular senescence 
by modulating the DDR
As mentioned above, Virus-induced senescence (VIS) has 
been a widespread event [20]. Viral infections generate a 
variety of cellular impairments, including DNA damage 
[23], as well as significant biological changes in host cells, 
such as cellular senescence [23, 115, 119]. Similarly, like 
activators of DNA damage, oncogenes [120–122] and 
oxidative stress [123–125], we speculate that DDR plays a 
key role in cellular senescence induced by infection with 
HCMV.

After penetration of the plasma membrane, compo-
nents of the virion, including its 240-kb linear double-
stranded DNA (dsDNA) genome (which consists of two 
unique coding sequences [UL and US] flanked by a series 
of inverted repeat, are rapidly transported to the nucleus, 
where viral transcription and replication take place [21, 
126]. It has been proved that the entrance of the HCMV 

Fig. 3  cGAS is a key linkage between DNA damage and SASP. Exogenous and Endogenous aberrant DNA bind cyclic GMP-AMP synthase (cGAS) and 
activate the synthesis of 2′3′-cyclic GMP-AMP (2′3′-cGAMP), which binds to and induces oligomerization of STING (stimulator of interferon genes) in 
the endoplasmic reticulum and its incorporation into vesicles. When STING is activated, it attracts and activates TANK-binding kinase 1 (TBK1), which 
phosphorylates STING and the interferon regulatory factor IRF3, activating the NF-κB signaling cascade. The sensor kinase ataxia telangiectasia mutated 
(ATM) also activates TBK1, through the phosphorylation of NF-κB essential modulator (NEMO), a member of the IB kinase complex that activates NF-κB. In 
response to nuclear DNA damage, ATM can potentially activate STING in a non-canonical manner. PARP-1, poly (ADP-ribose) polymerase 1, is an essential 
DNA damage sensor. This figure was modified according to the published Fig. 3 in reference [202].
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genome into the infected cell nucleus can initiate DDR 
during productive infection [21–23].

HCMV is a DNA damage-inducing factor
HCMV infection is genotoxic to host cells, and the type 
and quantity of damage rely on viral genome expres-
sion and the cell cycle phase at the time of viral infec-
tion [127]. Infected host cells cause particular breaks on 
chromosome 1, 1q42 and 1q21, during the S phase [128]. 
Stably transfected cells expressing HCMV UL76 develop 
chromosome aberrations including micronuclei and mis-
aligned chromosomes, lagging and bridging, and activate 
the DNA damage signal γH2AX, causing foci formation 
in nuclei [129]. HCMV infection interfering with cel-
lular replication can induce replication stress (RS) with 
ensuing implications for genomic integrity. In addi-
tion, expression of IE1 and IE2, driven by the viral major 
immediate early enhancer and promoter (MIEP), has 
been determined to induce RS alone [130].

Furthermore, there is accumulating evidence that 
viral infection can generate oxidative stress [131–133], 

which can lead to DNA damage [74, 75]. HCMV infec-
tion has been found to increase ROS generation [18] and 
mitochondrial biogenesis [134]. ROS promotes HCMV 
replication via paracrine and autocrine pathways, and 
N-acetylcysteine, a ubiquitous H2O2 scavenger, decreases 
HCMV replication activation [135]. Interestingly, HCMV 
appears to utilize virus-specific mechanisms to protect 
the cells from the harmful effects of ROS and maintain 
redox homeostasis [125]. There is no doubt that HCMV 
and ROS have a complementary relationship, and there 
is evidence that both HCMV and ROS can cause DNA 
damage, but there is still no direct evidence that HCMV-
mediated increase in ROS leads to DNA damage, which 
would be interesting to investigate.

HCMV influences cell cycle checkpoint activation 
during DDR
Human cytomegalovirus (HCMV) infection activates 
multiple DDR proteins, including ATM and down-
stream effector proteins p53 and H2AX [21, 110, 136]. 
These proteins are also necessary for efficient HCMV 

Fig. 4  The model of HCMV-induced senescence. Human cytomegalovirus (HCMV) has two modes of infection: latent and productive. (A) In the latent 
infection, cells from the myeloid lineage are considered as primary sites. Long exposure to HCMV enables terminal differentiation of T cells leading to 
accumulation of exhausted CD28 T cells, which secrete TNF-α and IFN-γ to promote inflamm-aging. (B) In the productive infection, HCMV-infected cells 
show senescence phenotype, including cell cycle arrest and SASP.
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replication [137, 138]. Activated p53 directly induces p21 
[139], ultimately leading to cell cycle arrest in HCMV-
infected fibroblasts [138, 140]. Immediate early 1 (IE1) of 
HCMV is an important viral protein for the induction of 
DDR. Its stimulation of cellular DDR was first described 
by Castillo et al., who showed that IE1 was sufficient to 
activate ATM. ATM subsequently activates the p53 path-
way by phosphorylation [110]. This conclusion was later 
supported by additional research, which also showed 
that the DSB marker γH2AX is similarly activated in an 
IE1-dependent way [137]. In addition to the activation of 
ATM by IE1, HCMV infection also leads to ATM auto-
phosphorylation [136]. Interestingly, p53 is bound by IE2 
but its transactivation activity is inhibited [141, 142]。.

Efficient HCMV replication requires a host DDR that 
centers on the presence of ATM and E2F1 protein [137]. 
E2F1 is a protein in the E2F family that belongs to the 
RB-regulated activator class [143, 144]. It has been shown 
that RB inactivation and deregulation of E2F1 leads to 
DNA double-strand break (DSB) accumulation and cell 
cycle checkpoint signaling [145–148] (Fig. 5). One of the 
earliest impacts of HCMV infection has been identified 
as RB family protein inactivation [137]. IE1, IE2, pp71, 
and pUL97 of HCMV, all of which can inactivate RB fam-
ily members [15, 149–156], lead to dysregulation of E2F1 
proteins and induction of DSBs [146]. And the result-
ing activation of ATM and its downstream target phos-
phorylation, including H2AX and p53, contribute to the 
replication of HCMV and cell cycle arrest in the host cell 
[137, 157].

However, the role of DDR in HCMV replication has 
long been controversial. Although ATM is important for 

virus replication in cells [137], HCMV replication in cells 
lacking ATM has also been reported [21], Some DDR 
proteins have been shown to mislocate from the nucleus 
to the cytoplasm after infection, blocking checkpoint 
signaling and inhibiting host DDR. Therefore, HCMV is 
also able to escape some of the consequences produced 
by DDR [158, 159]. In conclusion, ATM and ATR control 
multiple pathways, and more research are needed to elu-
cidate how HCMV targets DDR and which specific com-
ponents are regulated by HCMV.

HCMV infection affects damage repair mechanisms 
during DDR
The replication of the human cytomegalovirus (HCMV) 
genome is assumed to be biphasic [160]. The initial phase 
of infection is characterized by origin-specific replication 
from the input circularized genome, which leads to single 
copies of the virus. Later, replication switches to a roll-
ing loop process, resulting in the formation of huge con-
centric circles [157, 161]. HR happens along conjugated 
DNA, as indicated by the inversion of genomic sequences 
in contiguous monomeric units. HR occurs between 
freely cleaved monomeric and conjugated structures as 
well, with intermediate structures forming branches late 
in the infection period [162–165]. It has been suggested 
that these recombinant structures trigger a DNA dam-
age response (DDR) in host cells during herpesvirus rep-
lication [21, 158, 166, 167]. Previous research has also 
revealed that viral proteins can govern HR [168–170].

The IE1 protein of HCMV is not only a strong activa-
tor of DDR, but it can also accelerate HR [110, 137, 168]. 
Further research found that the IE1 protein, in a novel 

Fig. 5  Model of the host DNA damage response induced by HCMV infection. Efficient replication of HCMV requires DDR centered on ATM and E2F1. 
HCMV infection can activate multiple DDR proteins, including ATM and the downstream effector proteins p53 and H2AX. IE1, IE2, pp71, and pUL97 of 
HCMV can inactivate RB family members, leading to dysregulation of E2F1 proteins and subsequent production of DSBs.
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way, can activate flap endonuclease 1 (FEN1), a cellular 
factor recently identified to be involved in HR-mediated 
repair of stalled replication forks by actively inducing 
DSBs [171], hence restarting stalled replication forks in 
viral replication [172]. Furthermore, IE1 binds to p53 
and inhibits p53’s inhibitory impact on Rad51, enabling 
HR [173]. Rad51 is a key regulator of HR, and its lev-
els are much higher in HCMV-infected human foreskin 
fibroblasts (HFFs) [21], but not in normal cells [174]. 
We hypothesize that viruses may employ the cellular 
HDR process to boost the efficiency and fidelity of viral 
genome replication [160, 175, 176].

HCMV infection regulates SASP secretion
IL-8 and IL-6 are important SASP factors that participate 
in HCMV infection. HCMV UL76 protein can activate 
the NF-kB system via the DDR, thereby inducing IL-8 
expression [92] and enhancing HCMV replication [177]. 
As a crucial part of SASP, IL8 activates the chemokine 
receptor CXCR2 (IL8RB), enhancing DDR and promot-
ing replicative senescence(RS) and oncogene-induced 
senescence (OIS) [178, 179]. US28, a G protein–coupled 
receptor encoded by HCMV promotes the production of 
interleukin-6 (IL-6) [180, 181], whose depletion would 
cause the inflammatory network to collapse and abol-
ished senescence entry and maintenance [182].

In addition, it has been proved that cellular senescence 
was induced in host cells upon HCMV infection [81], 
which was recognized as an antiviral immune response 
[113, 119, 183]. Mechanistically, this induction of cellu-
lar senescence was mainly due to activation of the cGAS-
STING pathway triggered by HCMV dsDNA as well as 
the subsequent SASP secretion [85, 184]. Interestingly, it 
has been demonstrated that HCMV has evolved multiple 
strategies to antagonize the activation of GAS-STING 
signaling in host cells. UL31 and UL42 interacted with 
cGAS respectively, inhibiting DNA binding and enzy-
matic activity of cGAS [185, 186]; pp65 selectively bound 
to cGAS and prevented its interaction with STING, thus 
inactivating the signaling pathway through the cGAS/
STING/IRF3 axis [187]. UL82, UL94 and US9 interacted 
with STING respectively, disrupting the translocation 
of STING and impairing the TBK1 recruitment to the 
STING signalsome [188–191]; pUL48 had a ubiquiti-
nating effect on STING and IE2 protein facilitated the 
proteasome-dependent degradation of STING, both of 
them inhibiting STING-induced IFN-β promoter activa-
tion [192, 193]; UL35 and UL37 × 1 downmodulated this 
signaling pathway at the level of the key signaling factor 
TBK1 [194, 195]; UL138 inhibited the pathway down-
stream of STING but upstream of IRF3 phosphorylation 
and NF-κB function [196]. Although the cGAS-STING 
signaling induced by HCMV dsDNA was challenged by 
the HCMV encoded inhibitors described above serving 

for the viral immune escape, this pathway remained acti-
vated [184] and subsequently induced cellular senescence 
[81].

Previous research has demonstrated that HCMV-
infected fibroblasts can mimic senescence-asso-
ciated inflammation and elicit a significant 
inflammatory response, potentially leading to the devel-
opment of age-related inflammatory disorders [17]. As 
a result, we hypothesize that DDR is intrinsically con-
nected to HCMV-induced SASP production and cellular 
senescence.

Conclusion
Previous studies have shown that HCMV infection 
triggers molecular mechanisms associated with host 
cell senescence [16, 109–112] as well as inflammatory 
responses [17, 184, 197]. However, there is little evidence 
to explain why HCMV can cause senescence-associated 
phenotypes in host cells. A growing number of stud-
ies demonstrate that HCMV might alter the DNA dam-
age response (DDR), for example, by acting directly as 
a DNA damage agent, interacting with essential DDR 
proteins, and activating the cGAS itself as aberrant DNA 
[21, 110, 136]. As a result, we argue that DDR may be one 
of the reasons why HCMV can generate the senescence 
phenotype.

Interestingly, cellular senescence has been proposed as 
a key mechanism of viral invasion resistance [183]. Viral 
entrance generates major biological changes in infected 
host cells as a viral-triggered state shift that may lead 
to cellular senescence [23, 115], with varied degrees of 
impact on virus proliferation [119, 198]. Stable cell cycle 
stoppage and the release of pro-inflammatory cytokines 
and chemokines associated with cellular senescence may 
give rise to antiviral response features [119]. Leading to 
speculation that cellular senescence may have evolved as 
an antiviral defense mechanism [183, 199]. This notion 
is strengthened by the function of endogenous IFN-b, 
which is generated by DNA damage, in the induction of 
senescence [200]. Surprisingly, recent researches high-
light a commensal-like function for HCMV in the immu-
nosurveillance of aging cells in immunocompetent hosts: 
on the one hand, HCMV can be reactivated in senes-
cent fibroblasts, but with low IE1/2 expression and the 
absence of productive infection, and on the other hand, 
CD4 CTLs are able to target HCMV-gB antigens to rec-
ognize and clear senescent cells [119, 183, 201].

In conclusion, the significance of HCMV in the aging 
process is receiving increased attention and is intri-
cately related to all aspects of aging. Here we focus on 
the effects of HCMV on cellular senescence. As to how 
HCMV causes cellular senescence, there are necessar-
ily many other mechanisms involved besides DDR, and 
more research is needed to demonstrate this.
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