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Introduction
During the COVID-19 pandemic, population-wide 
person-level electronic health record (EHR) data has 
increasingly gained importance for exploring, model-
ing, and reporting disease trends to inform healthcare 
and public health policy [1]. The increasing availability 
of COVID-19 digital health data has fostered the inter-
est in the use of real-world data (RWD) [2], defined as 
patient data collected from their EHRs, which can be 
analyzed to generate real-world evidence (RWE) [3]. 
Actually, RWE can provide a better image of the actual 
clinical environments in which medical interventions are 
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Abstract
Purpose Despite the extensive vaccination campaigns in many countries, COVID-19 is still a major worldwide 
health problem because of its associated morbidity and mortality. Therefore, finding efficient treatments as fast as 
possible is a pressing need. Drug repurposing constitutes a convenient alternative when the need for new drugs in an 
unexpected medical scenario is urgent, as is the case with COVID-19.

Methods Using data from a central registry of electronic health records (the Andalusian Population Health Database), 
the effect of prior consumption of drugs for other indications previous to the hospitalization with respect to 
patient outcomes, including survival and lymphocyte progression, was studied on a retrospective cohort of 15,968 
individuals, comprising all COVID-19 patients hospitalized in Andalusia between January and November 2020.

Results Covariate-adjusted hazard ratios and analysis of lymphocyte progression curves support a significant 
association between consumption of 21 different drugs and better patient survival. Contrarily, one drug, furosemide, 
displayed a significant increase in patient mortality.

Conclusions In this study we have taken advantage of the availability of a regional clinical database to study the 
effect of drugs, which patients were taking for other indications, on their survival. The large size of the database 
allowed us to control covariates effectively.
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carried out when compared to conventional randomized 
clinical trials (RCTs), given that RWD includes detailed 
data on patient demographics, comorbidities, adherence, 
and simultaneous prescriptions [4, 5]. Moreover, RWE 
studies are not only cheaper than RCTs but can also be 
accomplished much faster, an advantage in scenarios in 
which an urgent decision must be taken, as in the case 
of a pandemic. In particular, discovering new drugs that 
could be used as efficient COVID-19 therapies is still an 
urgent need. Interestingly, much information on drugs, 
prescribed in COVID-19 patients for other indications, 
that could affect the progression of the disease is cur-
rently available in EHRs. For example, RWE has recently 
demonstrated that vitamin D has a significant protective 
effect on COVID-19 hospitalized patients [6]. Therefore, 
RWD opens the door to carry out massive drug repurpos-
ing studies as well as research on potential adverse effects 
or interactions of drugs with COVID-19 progression.

Since 2001, the Andalusian Public Health System has 
systematically stored all the electronic health record 
(EHR) data of Andalusian patients in the Health Popu-
lation Base (BPS) [7], which is currently one of the larg-
est repositories of clinical data in the world (with over 
13  million of comprehensive patient registries) [7]. 
Because of its size and the detail of the data stored, BPS 
constitutes a unique and privileged environment to carry 
out large-scale RWE studies.

Results
Data analysis
Clinical data for a total of 15,968 COVID-19 patients 
hospitalized in Andalusia between January and Novem-
ber 2020 were requested from the BPS. The data was 
transferred from BPS to the Infrastructure for secure 

real-world data analysis (iRWD) [8] at the Foundation 
Progress and Health of the Andalusian Public Health 
System.

The endpoint considered was COVID-19 death during 
the first 30 days of hospital stay (see Methods). To eluci-
date if any given treatment could potentially reduce the 
mortality in COVID-19 inpatients a covariate balance 
analysis, which considers confounders (covariates that 
present an a priori possibility of confounding the asso-
ciation between a treatment and the survival outcome: 
sex, obesity, hypertension, cancer, pulmonary diseases, 
hypertension, asthma, age, and mental diseases; see 
Methods and Table 1), was carried out to determinate the 
viability of further covariate-adjusted analysis. For these 
drugs eligible for covariate-adjusted analysis, survival 
was estimated using a weighted Cox Proportional Hazard 
model (See Methods), conditioned to the confounders of 
interest (Table 1). A total of 864 treatments were identi-
fied in the BPS drug archive among the patients analyzed.

Since clinical data on laboratory analyses is also avail-
able in the BPS, lymphocyte progression, high levels of 
which account for a favorable progression, was assessed 
along with the drug treatment by a Linear Mixed Effects 
analysis, weighting the model with the same schema as in 
the survival analysis (see Methods for details).

Drugs with significant effect on patient survival
Survival estimations showed that a total of 21 drugs 
have a significant effect on patient survival and, simul-
taneously, showed a significant increase in lymphocyte 
counts, after correction for the possible confounding 
covariables and for multiple testing (see Fig. 1; Table 2). 
Figure  2 shows the pattern of lymphocyte counts along 
the infection in the period studied for Enoxaparin 
(Fig.  2A), which displays a clear trend of high levels of 
lymphocyte progression, for calcifediol (Fig.  2B), with 
protective effect already reported [6], supported also by 
high levels of lymphocyte progression, and, as a counter-
example, furosemide, here linked to an increase in death 
risk, with lymphocyte levels below the average popula-
tion (Fig. 2C). Table S2 contains an exhaustive list of the 
results obtained for the drugs tested.

Validation of previous machine learning predictions
Interestingly, a number of the drugs found to affect 
COVID-19 patient survival were predicted as poten-
tially active against COVID-19 [9] using machine learn-
ing and mathematical modeling [10] of the recently 
proposed COVID-19 the disease map [11] (see the last 
two columns from Table S2). It is interesting to note 
that, among the drugs eligible for the covariate-adjusted 
analysis (those in Table S2) there is a significant enrich-
ment of drugs predicted as repurposable by the machine 
learning model among those with a significant protective 

Table 1 Association between each covariate and the end point 
using chi-squared tests, along with the test p-value, counts and 
proportions with respect to the end point
covariate survival death p-value
Total N 13,116 2678
Sex (female) 6024 (45.9) 1129 (42.2) < 0.001
Flu vaccine 5465 (41.7) 1746 (65.2) < 0.001
Pneumococcal vaccine 3441 (26.2) 1111 (41.5) < 0.001
Diabetes 3856 (29.4) 1167 (43.6) < 0.001
Circulatory diseases 8111 (61.8) 2261 (84.4) < 0.001
Cancer 1550 (11.8) 545 (20.4) < 0.001
Respiratory diseases 2896 (22.1) 828 (30.9) < 0.001
Dementia 964 (7.3) 536 (20.0) < 0.001
Other mental diseases 1764 (13.4) 407 (15.2) 0.018
Anxiety and mood 
disorders

3382 (25.8) 784 (29.3) < 0.001

Age < 0.001
 18–40 1399 (10.7) 20 (0.7)
 41–67 5971 (45.5) 380 (14.2)
 68–99 5746 (43.8) 2278 (85.1)
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effect with respect to the covariate-adjusted survival test 
(X2 = 4.003, pvalue = 0.0454), which supports the validity 
of the predictions previously made [9].

Discussion
The drugs associated to the highest survival, bemipa-
rin (DB09258), logarithm of Hazard ratio (LHR)= -1.62, 
with a 95%, confidence interval (CI) of [-1.95,-1.31], and 
a False Discovery Rate (FDR) adjusted pvalue = < 10− 11 
and Enoxaparin (LHR= -1.17, 95% CI [-1.36,-0.98], FDR 
p-value = < 10− 11), are antithrombotic used, as other hep-
arins, to prevent thrombotic and thromboembolic com-
plications in hospitalized patients. While for bemiparin 
only weak evidence of its protective effect has been found 
in the literature [12], a lower rate mortality in COVID-
19 patients was described for enoxaparin when compared 
to other heparins [13], in agreement with the results 
found here. However, this protective effect is not shared 
by other anticoagulants, such as tinziparin (LHR= -0.34, 
95% CI[-1.38, 0.69], FDR p-value = 1), despite its use in 
pulmonary embolism, or Fondaparinux (LHR=-0.33, 95% 
CI[-1.64, 0.97], FDR p-value = 1). Calcifediol and Chole-
calciferol, already described by us in a previous work [6], 
are significantly associated with better patient survival, 
probably due to the protective role of vitamin D due to 
its pro-immune and antiinflammatory properties. Other 

studies suggest also a protective effect of ascorbic acid 
(vitamin C) [14]. Table S2 contains an exhaustive list of 
the results obtained from the drugs tested.

One of drugs with a significant protective effect is 
simvastatin, a widely used statin, a group of drugs that 
reduce the blood level of low-density lipoprotein (LDL) 
cholesterol. Statins are also known for their pleiotropic 
effect, exerting an anti-inflammatory and antithrombotic 
action by inhibiting the NF-Kβ pathway which directly 
reduces inflammatory cytokines (IL1, IL6, TNF-α), CRP, 
and neutrophils [15]. Furthermore, a retrospective study 
performed in COVID-19 hospitalized patients showed 
that statins inhibit RAS activation and reduce angio-
tensin II proinflammatory effects, therefore improving 
endothelial function and remodeling after vascular injury 
[16]. A recent in-vitro study demonstrates that simvas-
tatin pretreatment in human Calu-3 epithelial lung cells 
inhibited SARS-CoV-2 binding and entry to the cell by 
inducing a redistribution of ACE2 receptors, lowering its 
concentration on the plasma membrane [17]. Recent ret-
rospective studies also point to the relationship between 
statin consumption and a reduced risk of mortality in 
COVID-19 patients [16, 18]. Another predicted drug is 
hydrochlorothiazide, a diuretic drug, often combined 
with ACE-inhibitors such as enalapril as antihyperten-
sive therapy [19]. It has been reported that patients with 

Fig. 1 Impact of drugs on patient survival. Adjusted log-hazard ratios 95% confidence intervals for all the eligible treatments that were significant in both 
analyses (survival and lymphocyte count progression) before and after FDR adjustment
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Fig. 2 Lymphocyte counts. Plots showing the evolution of lymphocyte counts along the time studied (15 days since hospital admission) for (A) enoxa-
parin, (B) Calcifediol and (C) Furosemide
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hypertension present a higher susceptibility to a severe 
COVID-19 prognosis [20], underlying hypertension as 
a risk factor for increased mortality in infected patients. 
Although the effect of antihypertensive drugs on 
COVID-19 patients with hypertension is controversial, 
the upregulation of ACE2 by ACE-inhibitors was linked 
to a dampened hyperinflammation and increased intrin-
sic antiviral responses of the cell in hypertensive COVID-
19 patients [21]. The results presented here, together with 
these previous reports, suggest that ACE-inhibitors may 
have a protective effect, in addition to helping to improve 
the prognosis of hypertensive patients. Dexamethasone 
has been studied in the context of COVID-19 disease 
due to its property as an anti-inflammatory drug [22]. 
Although ibuprofen and other analgesic like acetamino-
phen was initially discommended for COVID-19 treat-
ment [23], further studies based on observational data 
could not confirm the theoretical risks of ibuprofen and 
other Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) 
in SARS-CoV-2 infection [24]. Moreover, other studies 
suggested that some NSAID could have antiviral activity 
in coronaviruses, including SARS-CoV-2 [25], an activity 
demonstrated here for ibuprofen. Similarly, tranmadol is 
an opioid analgesic used to treat moderate to severe pain, 
that was initially deemed as bad prognosis [26], but fur-
ther studies suggested a potential therapeutic effect [27].

The empagliflozin is an inhibitor of the sodium-glucose 
cotransporter 2 (SGLT2) used in the treatment of type 2 
diabetes, whose potential utility in patients with COVID-
19 has been suggested [28] but not demonstrated yet. 
Also for diabetes patients, the available evidence suggests 
that Sitagliptin may be beneficial in treating COVID-19, 
particularly in patients with type 2 diabetes who appear 
to be at high risk of mortality and of cardiorenal or cere-
brovascular complications [29]. Another diabetes treat-
ment, metformin, has also been suggested as an effective 
in the treatment of COVID-19 [30].

It has been suggested that steroids used for asthma 
treatment could have a protective effect in COVID-19 
[31], although specifically beclometasone dipropionate 
was not assessed. It has also been reported that cortico-
steroids, including prednisone, are effective in reducing 
mortality in COVID-19 patients within their therapeu-
tic window [27], or reduce hospitalization times, like 
budesinode [32]. Some studies suggest that formoterol 
could be used to improve lung function and assist symp-
tom control in COVID-19 patients [33] however, the 
available evidence does not suggest any significant inter-
action between formoterol and COVID-19 [34]. A recent 
study suggested that olmesartan could alleviate renal 
fibrosis induced by SARS-CoV-2 envelope protein by reg-
ulating HMGB1 release and autophagic degradation of 
TGF-β1 [35]. In the case of omeprazole, a proton pump 
inhibitor used to treat gastroesophageal reflux disease 

(GERD), peptic ulcer disease, and other acid-related dis-
orders, several studies have indicated an anti-viral effect 
[36], as well as a therapeutic role in combination with 
other antiviral [36]. Finally, zithromycin is an antibiotic 
with potential antiviral and anti-inflammatory properties 
[37] although the consensus is that there is no evidence 
to support the use of azithromycin for the treatment of 
COVID-19 [38].

On the other hand, a study suggested that furosemide, 
a diuretic medication used to treat fluid build-up due to 
heart failure, liver scarring, or kidney disease and high 
blood pressure, may have potential therapeutic benefits 
for COVID-19 patients with acute respiratory distress 
syndrome [36], contrarily to what we observed here, 
supported by the lymphocyte count data (see Table  2 
and Supplementary Table S2). It is important to note 
that other drugs, which are marginally non-significant 
because of small sample sizes, have also a potential nega-
tive effect on COVID-19 patient survival. These drugs 
have different mechanisms of action and are used to treat 
different conditions: latanoprost, used to treat glaucoma 
and ocular hypertension, ciprofloxacin, an antibiotic, 
tamsulosin, an alpha-blocker, trazodone and lormetaz-
epam, used to treat insomnia and anxiety, and lormetaz-
epam, a benzodiazepine.

To our knowledge, previous studies either did not iden-
tify evidence suggesting any effect on COVID-19 prog-
nosis, or they not have detected the significant protective 
effects we observed in this study for certain drugs such 
as diazepam, gliclazide, hydrochlorothiazide, calcium, 
aspartic acid, codeine, ramipiril, flitucasone furoate, flitu-
casone furoate, zithromycin and enalapril. The large sam-
ple size of this study and the appropriate management of 
confounding variables allowed us to validate some pro-
posed therapeutic interventions and to expand the num-
ber of potential COVID-19 treatments.

Conclusions
The Andalusian Population Health Database was used 
to explore drug repurposing using data from 15,968 
COVID-19 patients hospitalized in Andalusia between 
January and November 2020. The study identified 21 
drugs associated with improved patient survival and 
lymphocyte progression. This finding offers potential 
treatment options for COVID-19. However, one drug, 
furosemide, was linked to increased patient mortality, 
requiring further investigation. This study demonstrates 
the value of drug repurposing strategies in addressing 
emergent health challenges. Additionally, it underscores 
the importance of comprehensive clinical databases in 
advancing medical knowledge and patient care.



Page 7 of 9Loucera et al. Virology Journal          (2023) 20:226 

Materials and methods
Design and patient selection
This study uses a retrospective cohort which includes 
Andalusian patients with COVID-19 diagnosis, hospital-
ized during the period January 2020 to November 2021.

The Ethics Committee for the Coordination of Bio-
medical Research in Andalusia approved the study (29th 
September, 2020, Acta 09/20) and waived informed con-
sent for the secondary use of clinical data for research 
purposes.

Data management
Clinical data corresponding to COVID-19 patients hos-
pitalized in Andalusia between January and November 
2020 was requested to the Health Population Base (BPS), 
and from there transferred to the Infrastructure for 
secure real-world data analysis (iRWD) at the Founda-
tion Progress and Health (FPS) of the Andalusian Public 
Health System for further analysis. In particular, the data 
listed in Table S1 was extracted in BPS from the elec-
tronical health records for each patient and transferred to 
FPS for a total of 15,968 COVID-19 patients that fulfilled 
the inclusion criteria.

Data preprocessing
Medication data in the office and hospital pharmacy 
records were found for 864 treatments. Individuals are 
considered as treated with a specific drug if prescriptions 
and the corresponding pharmacy dispensations (therein-
after a valid pharmacy order) were found within a period 
from 15 days before the hospital admission until the dis-
charge up to 14 days (or death). Otherwise they were 
considered untreated.

The endpoint studied was COVID-19 death (certified 
death events during hospitalization). As in previous stud-
ies, the first 30 days of hospital stay were considered for 
survival calculations [39]. The time variable in the models 
corresponds to the length (in days) of hospital stay. The 
stays that imply one or more changes of hospital units are 
combined in a single stay where the admission and dis-
charge dates are set to either the start of the first or the 
end of the last combined stay. Only the first stay for each 
patient was considered to reduce potential biases due to 
reinfection.

Covariate definition
Following previous studies [40] the ICD codes were 
grouped into conditions as diabetes mellitus (ICD code 
E11), diseases of the circulatory system (ICD10 codes 
I00-I99), diseases of the respiratory system (ICD10 codes 
J00-J99), neoplasms (ICD10 codes C00-D49), demen-
tia (ICD10 codes F00-F03), anxiety or mood disor-
ders (ICD10 codes F30-F48), and other mental diseases 
(ICD10 codes F04-F29 and F50-F99). Obesity and other 

associated conditions (ICD10 codes D5-D8) with a possi-
ble confounding effect with the COVID-19 outcome were 
checked but no evidence was found in our database (non-
significant χ2 association test). The age was categorized in 
the following ranks: [18, 40], [41, 67] and [68, 99). Gender 
was also considered as a known covariate. Table  1 dis-
plays the association between each covariate and the end 
point considered here, death, using chi-squared tests, 
along with the test p-value. Counts and proportions with 
respect to the end point are also provided.

Statistical analysis
To elucidate if any given treatment could potentially 
reduce the mortality in COVID-19 inpatients three sta-
tistical tests were conducted, considering covariates that 
present an a priori possibility of confounding the associa-
tion between a treatment and the survival outcome [41] 
(see previous section).

Firstly, the survival outcome was estimated using a Cox 
Proportional Hazard model weighted using the Inverse 
Probability of Treatment Weighting (IPTW) technique, 
with the weights computed using a logistic regression 
model and adjusted for estimating the Average Treatment 
effect on the Treated population (ATT) conditioned to 
the confounders of interest using the whole cohort. ATT 
is the most used weighting approximation to estimate 
treatment effects [42]. To obtain an accurate measure of 
the variability of the marginal hazard ratios the closed-
form estimator previously proposed [43] was used.

Then, the lymphocyte progression, a marker of 
COVID-19 severity [44], is established as the different 
measurements of lymphocyte counts with respect to the 
initial day of hospitalization up to 14 days [45]. Dates 
outside the hospitalization date range were omitted. The 
association between the positive linear trends in daily 
lymphocyte counts and reduced mortality in COVID-19 
is obtained by comparing the trends in a treated popu-
lation versus a control untreated population. A Linear 
Mixed Effects (LME) analysis was conducted to esti-
mate if there was an increasing linear trend in the log-
transformed lymphocyte progression due to being under 
a given treatment and the statistical significance was 
checked using an ANOVA analysis of the model [46]. 
The model was weighted following the same weighting 
schema as in the survival analysis. In addition, a covariate 
balance analysis to determine the viability of the weight-
ing schema [47] was carried out.

For each treatment, the Inverse Probability Weighting 
(IPW) was used, based on propensity scores (IPW) gen-
erated using the WeightIt R package (v 0.12) [48]. Here, 
the exposed condition is either having valid pharmacy 
order for the treatment during the 15 days prior to the 
beginning of the hospitalization event or during the first 
14 days of the hospitalization. To assess the viability of 
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the IPW analysis the proportion of covariates that could 
be effectively balanced was checked using the standard-
ized mean differences test as implemented in the Cobalt 
R package (v 4.3.1) [49], using the 0.05 threshold [47]. A 
treatment is eligible if all the covariates could be properly 
balanced, resulting in 122 eligible treatments out of the 
864 initially found.

In both cases, p-values are corrected for multiple test-
ing with False Discovery Rate (FDR) [50]. Significance is 
achieved at level 0.05 and 95% confidence intervals are 
provided.

Software used
Weights for IPW are computed with the WeightIt R 
package (v 0.12) [48]. IPW covariate suitability was com-
puted using the Cobalt R package (v 4.3.1) [49]. The sur-
vival estimation was conducted with R package HrIPW 
(v 0.1.2) [51]. The LME analysis was conducted with R 
package lme4 (v 1.1–27) [52]. The ANOVA analysis of the 
LME model was conducted with R package lmerTest (v 
3.1-3) [46]. R version 3.6.3 (2020-02-29).
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