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Abstract 

Since invasion, there will be a tug-of-war between host and virus to scramble cellular resources, for either restraining 
or facilitating infection. Alternative splicing (AS) is a conserved and critical mechanism of processing pre-mRNA into 
mRNAs to increase protein diversity in eukaryotes. Notably, this kind of post-transcriptional regulatory mechanism 
has gained appreciation since it is widely involved in virus infection. Here, we highlight the important roles of AS in 
regulating viral protein expression and how virus in turn hijacks AS to antagonize host immune response. This review 
will widen the understandings of host-virus interactions, be meaningful to innovatively elucidate viral pathogenesis, 
and provide novel targets for developing antiviral drugs in the future.
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Background
Virus takes full advantage of cellular machinery to sus-
tain themselves and promote replication. AS, a con-
served and critical mechanism of processing pre-mRNA 
into mRNAs in eukaryotes, has been reported to deeply 
involved in multiple biological processes. Many studies 
demonstrate that AS is at the mercy of virus to positively 
regulate its infection. Here, we briefly highlight how the 
virus hijacks AS to diversity its proteome and counteracts 
host immune response. This review widens the mecha-
nisms of host-virus interactions and provides a promising 
target for the development of novel strategies to antago-
nize virus infection.

Introduction
It’s well known that the quantity of proteins in eukary-
otes is far outnumbering the protein-encoding messenger 
RNAs (mRNAs) due to AS, making it possible to expand 
functional proteome with limited genes. Precursor mes-
senger RNA (pre-mRNA) splicing, dating back to 1978 
[1, 2], is a critical step in post-transcriptional regulation 
by removing introns and ligating exons to form mature 
mRNAs, which contributes to the increased organis-
mal complexity [3]. Genome-wide analysis shows that 
approximately 90–95% of human genes undergo AS, gen-
erating proteins with similar, dissimilar, and even mutu-
ally exclusive functions [4].

AS takes pre-mRNA as the primary template to gen-
erate various mRNA transcripts. Mechanistically, AS is 
sophisticatedly regulated by cis-acting elements, such 
as exonic/intronic splicing enhancers/silencers (ESE/S, 
ISE/S), and trans-acting factors, such as serine argi-
nine-rich (SR) proteins, heterogeneous nuclear ribonu-
cleoproteins (hnRNPs), and RNA secondary structure 
[5–7]. Recognizing 5’ and 3’ splice site and differentiat-
ing exons from introns by spliceosome are crucial for 
efficient and accurate splicing [8]. The spliceosome is 
a large RNA-protein complex that consists of five small 
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nuclear ribonucleoprotein particles (U1, U2, U4/U6, 
and U5 snRNPs) and hundreds of non-snRNP factors [9, 
10]. Generally, the exons and introns could be precisely 
excised when the boundaries are clearly outlined. How-
ever, if the exon–intron definition is blurred by negative 
regulation, the intron might be partially or integrally pre-
served, generating different transcripts from the wildtype 
one [11]. AS events have been classified into five main 
types at least, including the exon skipping, intron reten-
tion, alternative 3’ splice site, alternative 5’ splice site, and 
mutually exclusive exons [12, 13]. Not surprisingly, AS 
is a key technique for increasing transcriptome and pro-
teomic diversity from a small genome, since more than 
one splicing type could be simultaneously observed in a 
single transcript isoform [14].

Functionally, AS events are deeply involved in many 
biological and pathological processes, such as sex deter-
mination [15], organ development [16], cancer occur-
rence [17], and even virus infection [18]. Based on the 
facts that virus unscrupulously disrupts cellular path-
ways and splicing process is a ubiquitous regulatory 
mechanism of gene expression, AS is undoubtedly deeply 
involved in virus infection. Therefore, this review under-
lines the inseparable relation between virus and AS, 
especially how virus fully utilizing AS to work for itself, 
and provides a promising prospect for illustrating patho-
genesis and developing antiviral drugs.

Virus hijacks cellular splicing machinery 
to promote infection
After infection, virus takes over the cellular pathways to 
sustain themselves in the host cells. Since AS plays large 
part in shaping the transcriptome, it is no doubt that 
virus evolves to selfishly re-wire the AS response for its 
own benefit.

AS is critical to diversify the viral proteome
Viruses are nothing but small protein capsules enclos-
ing the simple genetic material. For certain ones, the 
splicing machinery is hijacked to produce viral proteins 

and maintain the lifecycle of the virus. Human immu-
nodeficiency virus type 1 (HIV-1), the etiologic agent of 
acquired immunodeficiency disease syndrome (AIDS), 
has always been the subject to study the important role of 
AS in its life cycle. HIV-I usurps host splicing mechanism 
to generate over 40 different spliced mRNA from a single 
full-length unspliced primary transcript, which are fur-
ther translated into diverse products including structural 
proteins and regulatory factors [19]. The sophisticated 
process depends on the cooperation of multiple positive 
and negative factors, such as cis-regulatory elements in 
HIV-1 RNA and trans-acting cellular and viral proteins. 
Over the past several decades, considerable progress has 
been made in understanding the mechanisms of how 
HIV-1 regulates its RNA splicing. Since high mutation 
frequency of HIV-1 RNA resulting in drug resistance, 
antiviral strategies targeting HIV-1 splicing has become 
the promising therapy to curb AIDS [20]. Apart from 
HIV-1, many other viruses depend on AS to complete its 
lifecycle. Here, we take some typical viruses as examples 
to show how the AS is usurped to maximize the coding 
potential of viral genome (Table 1).

Adenovirus
Adenovirus (AdV) genome is compact with rarely 
redundant nucleotides that are not transcribed or serve 
regulatory functions. Generally, it could be divided into 
different transcription units based on their expressive 
phase: the early (E1-E4) and the late genes (L1-L5) [21]. 
Thereinto, AdV E1 pre-mRNA has been well-known 
to undergo splicing by using five 5’ splice sites and one 
common 3’ splice site to excise introns from 1112 to 1225 
nucleotides (nt), from 974 to 1225 nt, from 637 to 852 nt 
and 1112 to 1225 nt, from 637 to 852 nt and 974 to 1225 
nt, or from 637 to 1225 nt, respectively, to generate 13S, 
12S, 11S, 10S, or 9S mRNA, respectively [22, 23]. Dur-
ing lytic infection, 13S and 9S forms are the most abun-
dant in early and late phases, respectively, and the shift 
from 13 to 9S is dependent on the SR splicing factors in 
an appropriate ionic condition [24, 25]. Notably, AS of 

Table 1  Types of AS have been identified in AdV, HPV, and IAV

Virus Viral gene Splice type Regulator factor Consequence

AdV E1A RNA Alternative 5’ splice 
site and alternative 3’ 
splice site

Celluar SR proteins Generate 9S, 10S, 11S, 12S, and 13S viral mRNA

L1 RNA Alternative 3’ splice site Cellular SR proteins and viral E4-ORF; viral cis-acting ele-
ments, 3RE and 3VDE

Generate 52/55 K and IIIa viral mRNA

HPV E6/E7 RNA Alternative 3’ splice site Cellular hnRNP and SR proteins; viral cis-acting elements 
SA409

Generate E6 and E7 mRNA

IAV M RNA Alternative 5’ splice site Cellular SR proteins, hnRNP protein family and NS1-BP, 
and viral polymerase complex as well as NS1

Generate M2 mRNA

NS RNA Alternative 5’ splice site Viral NS1 Generate NS2 mRNA
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E1A pre-mRNA is highly sensitive to changes in vari-
ous parameters, therefore, it has successfully been used 
as a model substrate to characterize the function of SR 
proteins [26]. Studies have demonstrated that ASF/SF2 
(especially its second RNA binding domain) and SC35 
enhance proximal 13S mRNA splicing [27, 28], SRp20 
enhances 12S mRNA splicing [29], and SRp54 enhances 
9S mRNA splicing [30]. The distinct trans-acting prop-
erties of SR proteins might due to their different binding 
ability between arginine/serine-rich domains with U1 
snRNP [31].

Besides early genes, the adenoviral major late tran-
scription unit (MLTU) is sophisticatedly manipulated 
by AS to generate approximately 20 mRNAs. The MLTU 
produces a primary transcript of ~ 28,000 nt, which 
becomes polyadenylated at one of five positions (L1-L5 
mRNA families) with co-terminal 3’-ends. Thereinto, 
L1 is an alternative spliced gene where the last intron is 
spliced using a common 5’ splice site and two competing 
3’ splice sites (11,040 nt and 12,308 nt) to generate two 
cytoplasmic mRNAs, the 52/55  K and the IIIa, respec-
tively [32, 33]. 52/55 K is indispensable for viral genome 
encapsulation [34], and IIIa protein serves its best char-
acterized function as a structural protein in the capsid 
[35]. Intriguingly, proximal 3’ splice site located at 11,040 
nt is activated in the early phase of infection, result-
ing in an exclusive production of 52/55 K. However, the 
distal 3’ splice site mapped at 12,308 nt becomes active 
to generate almost equal amount of 52/55 K and IIIa in 
the late time [36, 37]. Further study found that IIIa splic-
ing is tightly controlled by two cis-acting viral elements, 
the 49 nt IIIa repressor element (3RE) and the 28 nt IIIa 
virus-infection dependent splicing enhancer (3VDE). The 
3RE binds the hyper-phosphorylated form of SR proteins 
to inhibit the spliceosome assembly on the IIIa 3’ splice 
site [38, 39], therefore blocking IIIa expression in the 
early infectious stage. This inhibition is released by viral 
E4-ORF4 through inducing SR proteins dephosphoryla-
tion in order to recruit U2 snRNP binding the branch 
point [40]. The other element 3VDE, consisting of the IIIa 
branch point sequence, pyrimidine tract, and AG dinu-
cleotide, is necessary to activate IIIa splicing in the AdV-
infected HeLa-NE. Although 3VDE takes effect through 
an U2AF-independent manner, the L4-33  K has been 
identified as an AdV-encoded alternative RNA splic-
ing factor to active IIIa expression [41, 42]. These results 
indicate that virus could not only “steal” but plant “inside 
man” within splicing machinery to regulate viral protein 
expression.

Apart from the regulatory factors mentioned above, 
notably, RNA modification and dsRNA production play 
pivotal roles in efficient splicing of AdV RNAs. N6-meth-
yladenosine (m6A), the most prevalent modification in 

cellular RNAs, has been found in early and late adenovi-
ral transcripts [43]. Depletion of m6A writer methyltrans-
ferase like 3 (METTL3) specifically impacts viral late 
transcripts by reducing their splicing efficiency, and this 
biased-effect could be extended to all the multiply spliced 
AdV late RNAs [44]. Moreover, AdV mutants lacking 
virus-directed ubiquitin ligase activity, but not wildtype 
ones, produce abundant dsRNA within the nucleus of 
infected cells, leading to form intron/exon base pairs 
between top and bottom strand transcripts. Conse-
quently, cytoplasmic dsRNA sensor PKR is translocated 
to the nucleus, igniting host innate immune response and 
blocking AS of viral RNAs [45]. Therefore, m6A modifi-
cation and preventing dsRNA formation are necessary 
for avoiding restriction by host immune sensors and pro-
moting efficient splicing of viral RNAs.

Human papillomavirus
Similarly, Human papillomavirus (HPV) genome could 
be divided into exclusively early genes (E6 and E7), early 
and late genes (E1, E2, E4 and E5) and exclusively late 
genes (L1 and L2). Transcriptions from promoter p97 
and p670 generate pre-mRNAs encoding all the early 
and late genes, respectively [46]. Subsequently, the 5’ 
and 3’ splice sites are directly recognized by splicing fac-
tors, such as hnRNP or SR proteins, to either repress or 
stimulate the use of a specific splice site, which starting 
the splicing procedure to produce early and late proteins 
[47, 48]. For instance, E2 inactivates early polyadenyla-
tion signal pAE, causing a switch from early to late gene 
expression [49]. A splicing enhancer on E2 mRNA inter-
acts with amino acids 236–286 of cellular RNA binding 
protein hnRNP G, contributing to specific splicing at the 
3’ splice site SA2709 to generate E2 protein [50].

Besides E2, AS of E6 and E7 must be mentioned since 
the increased expression of the two oncoproteins strongly 
facilitate HPV-associated tumorigenesis [51, 52]. E6 and 
E7 target p53 and pRB, respectively, to inactivate tumor 
suppressors through proteasome-mediated degradation 
[53]. Notably, E6 and E7 are derived from the same poly-
cistronic transcript, which contains three exons and two 
introns with three 3’ splice sites in intron 1. AS of intron 
1 leads to produce four different alternative spliced 
mRNAs, E6 full length (E6fl), E6*I, E6*II, and E6*X (also 
called E6^E7) [54]. The three putative E6* proteins share 
the same N-terminal 44 amino acids of E6fl, with the 
C-terminal truncations or frame shifts into the E7 open 
reading frame [55]. Thereinto, E6*I, the most abundant 
isomer in HPV-related cancers, has been suggested to 
encode E7 [56–58]. E6/E7 splicing is precisely regu-
lated by the interaction of cis-acting elements, includ-
ing branch point sequence (BPS) and splicing silencers, 
and trans-acting factors. Several consecutive nucleotides 
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located within the E6-coding region upstream of 3’ splice 
site SA409, such as AAC​AAA​C for HPV16 and AAC​
UAA​C for HPV18, have been identified to be the BPS, 
which are closely related with the efficiency of E6*I splic-
ing and further affecting the production of E7 [59]. The 
crucial point mutation could interrupt BPS binding activ-
ity to U2 snRNP, causing inefficient splicing to produce 
E7 protein. Additionally, splicing silencers have been 
mapped to interact with hnRNP A1/A2, thereby reduc-
ing the expression of E6*I and E7 [60, 61]. Other trans-
acting factors, such as hnRNP G and SRSF2, could also 
negatively disrupt the balance of E6/E7 proportion and 
further cause apoptosis of infected cells [50, 62]. Since 
E6/E7 is important for HPV tumorigenicity, regulating 
AS to manipulate their expression might be the promis-
ing therapy to antagonize viral carcinogenesis.

Influenza virus
In addition to DNA viruses, RNA ones have been 
reported to usurp host splicing mechanism to expand 
the coding capacity of their limited genes [63]. The 
genome of influenza virus (IAV) consists of eight nega-
tive-sense RNA segments, and both M and NS genes 
are well-known to express different spliced transcripts. 
There are four differentially spliced isoforms from seg-
ment 7, M1, M2, M3, and M4. M1 and M2 are essential 
for viral nuclear export, virion packaging, and progeny 
budding [64, 65], and while no known function has been 
found for M3 and M4 [66]. M42, an M2-related protein, 
is expressed from M4 mRNA utilizing an alternative start 
codon and is hypothesized to be a novel ion channel pro-
tein to replace the function of M2 [67]. Shih et al. reports 
that viral polymerase complex and cellular splicing factor 
SF2/ASF jointly regulate the utilization of alternative 5’ 
splice sites in M pre-mRNA and control the M2 expres-
sion during infection [68, 69].Other study finds that cel-
lular hnRNP K and NS1-BP proteins direct M segment 
splicing through binding 5’ splice site of M2 mRNA. 
Mutation of either or both the hnRNP K and NS1-BP-
binding sites results in M segment mis-splicing and 
attenuated IAV replication [70]. Liu et al. further identi-
fies another cellular factor SRSF5 directly involves in M2 
production. SRSF5 binds crucial sites 163/709/712 in M 
pre-mRNA via its RRM2 domain, and recruits U1 snRNP 
through interacting with U1A to increase M2 expression, 
subsequently enhancing virus replication in A549 cells 
and pathogenicity in mice [71]. Apart from polymer-
ase complex and cellular splicing factors, NS1 has been 
demonstrated to participate in M2 expression [72, 73]. 
Although deleting NS1 gene (DelNS1) usually leads to 
severe attenuation of IAV in interferon-competent cells, 
A14U, an adaptive mutation in the 3’ noncoding region of 
M segment could compensate the replication of DelNS1 

through restore M2 expression [74]. This data suggests 
that NS1 is involved in IAV replication through modu-
lating the splicing process of M transcripts. Intriguingly, 
Calderon et al. shows that avian IAV M segment is prone 
to enhancing splicing efficiency to produce excessive M2 
protein when transcribed in mammalian cells. The aber-
rant high levels of M2 proton channel prevent fusion 
between autophagic vesicles with lysosomes, which in 
turn reducing the efficiency of viral replication and lim-
iting the zoonotic potential of avian IAVs [75]. This data 
is the auxiliary evidence for species barrier of avian IAV, 
however, the exact role of mammalian IAV M2 in host 
adaptation still needs to be further studied.

The splicing of segment 8 creates mRNAs that encode 
nonstructural protein 1 (NS1), NS2, and NS3. The full 
length NS1 is an RNA-binding protein, which is essen-
tial for efficient IAV replication and virulence due to its 
roles in counteracting host immune response and regu-
lating viral protein expression [76]. Two different 5’ splice 
sites are used to generate truncated NS2 and NS3 [77], 
which also play important roles in virus lifecycle, such as 
NS2 facilitating virus budding and antagonizing the pro-
duction of interferon (IFN) [78, 79], and NS3 stimulat-
ing cytokines to promote pathogenicity [80]. Since NS1 
plays critical roles in the splicing of viral genes, it has 
been reported to block the splicing and nucleocytoplas-
mic transport of its own mRNA, but not others, through 
N-terminal region in a transient replication/transcription 
system, suggesting that NS1 might maximize its function 
through suppressing the splicing rate [81–84].

Virus alters cellular genes splicing to clear the decks 
for infection
AS is significantly important for every aspect of human 
biology, not surprisingly, virus infection could massively 
disrupt AS to pave the way for effective infection.

Virus infection cause global host AS changes
Most nuclear-encoded genes in eukaryotes are modified 
by AS, which could be targeted by virus for their own 
advantage. To date, many viruses, such as herpesvirus 
(HSV) [85], dengue virus (DENV) [86], enterovirus 71 
(EV71) [87], zika virus (ZIKV) [88], severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) [89], and 
IAV [90], have been reported to change the global AS 
patterns in infected cells. And viruses alter cellular genes 
splicing mainly through the following ways:

(1)	 Virus regulates the expression of splicing factors 
Human cytomegalovirus (HCMV) infection upreg-
ulates the expression of cellular RNA-binding pro-
tein CPEB1, resulting in a global shortening of 3’ 
untranslated regions and lengthening of poly(A)-
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tails [91]. The μ2 protein encoded by mammalian 
orthoreovirus (MRV) M1 gene could reduce the 
protein level of U5 snRNP core components [92], 
which is well-known to be important in recogni-
tion and subsequent removal of the intron [93]. 
As RNA-binding proteins, U5 snRNP components 
are mainly located in nucleus, while MRV repli-
cates in cytoplasm, the battle field in which μ2 pro-
tein affects either the stability or degradation of 
the unassembled U5 proteins before their nuclear 
import.

(2)	 Virus changes the subcellular localization of splicing 
factors M1, M2, and M3 proteins of vesicular sto-
matitis virus (VSV) induce a cytoplasmic relocation 
of hnRNPs to inhibit host genes transcription [94, 
95]. Similarly, seneca valley virus (SVV) infection 
causes cytoplasmic retention of hnRNP K, which is 
subsequently cleaved and degraded by viral 3Cpro, 
to promote virus infection but inhibit cellular gene 
expression [96]. Human rhinovirus 16 (HRV16) 2A 
protease directs the splicing factor SRp20 relocating 
from nucleus to cytoplasm in HeLa cells as early as 
2 h post infection, in order to initiate internal ribo-
some entry site (IRES)-mediated viral gene transla-
tion [97].

(3)	 Virus interacts with the splicing machinery to alter 
splice site choice DENV NS5 reduces splicing effi-
ciency of endogenous mRNAs through binding U5 
snRNP core components CD2BP2 and DDX23 to 
increase the ratio of intron retention, rendering an 
advantageous cellular environment for DENV rep-
lication [86]. The fingers domain of EV71 3Dpol, an 
RNA-dependent RNA polymerase (RdRp), targets 
the C-terminal region of pre-mRNA processing fac-
tor 8 (Prp8) to inhibit the second step of the splic-
ing process, resulting in accumulation of the lariat 
form and a reduction on mRNA levels [98]. SARS-
CoV-2 Nsp16 protein binds the mRNA recognition 
domains of U1/U2 spliceosomal components and 
acts to suppress global mRNA splicing upon infec-
tion [99].

(4)	 Virus non-coding RNAs sponge off splicing factors As 
important emerging and reemerging human patho-
gens, flavivirus infections produce viral noncoding 
RNAs, known as sfRNAs, involved in viral replica-
tion and pathogenesis [100, 101]. ZIKV has been 
reported to cause neuropathology via disturbing 
the splicing process of cellular transcripts [102], and 
sfRNAs deserve all the credit. sfRNAs from ZIKV 
could serve as a sponge for over 20 RNA-binding 
proteins to disturb post-transcriptional modifi-
cation in cells, including splicing, RNA stability, 
and translation. As a component of U2 snRNP, for 

example, SF3B1 strongly restricts viral infection, 
while sfRNAs dysregulates its function to promote 
ZIKV propagation [103].

Although many viruses regulate splicing factors via dif-
ferent ways, notably, it could not directly demonstrate 
that these pathogens exert strong influence on global 
host AS. Since numerous splicing factors co-regulate host 
genes splicing events, which one(s) of them are altered by 
virus infection still need further illustration.

Virus utilizes negative splicing variants of innate immune 
response genes to inhibit antiviral defense
The innate immune system is the first line of defense 
against invading pathogens. The pathogen-associated 
molecular patterns (PAMPs) are instantly recognized by 
pattern recognition receptors (PRRs) to ignite an array 
of anti-microbial immune responses via the induction 
of various chemokines, pre-inflammatory cytokines, 
and IFNs. To date, many negative splicing transcripts of 
immune molecules have been found in humans, mouse, 
Chinese tree shrews, and zebrafish [104]. Which are at 
the behest of virus to promote infection. Here, we take 
stimulator of interferon genes (STING), TANK binding 
kinase 1 (TBK1), and interferon stimulated gene (ISG) 
as examples to illustrate how virus exploits their nega-
tive splicing variants to antagonize host antiviral defense 
(Fig. 1).

Splicing variants of STING negatively regulate IFN‑I pro‑
duction to  promote virus infection  STING is an endo-
plasmic reticulum membrane dimeric protein that con-
tains transmembrane domain (TMD) in the N-terminus 
and an intracellular soluble portion in the C-terminal 
domain (CTD) [105]. The N-terminal region regulates its 
cellular localization and homodimerization [106], and the 
CTD functionally docks downstream molecules, includ-
ing TBK1/IKKε and IRF3/IRF7, to transmit signal [107]. 
Besides the full length one, four kinds of STING splic-
ing variants, MRP, isoform2, isoform3, and STING-β, 
have been identified in human cells. Since all the former 
three are absent for exon 7 compared to the canoni-
cal mRNA, they are unable to interact with TBK1 and 
interferon regulatory factor 3 (IRF3) due to lacking CTD. 
STING-β, transcribed by using an alternative first exon 
and an alternative 5′ transcription initiation site, contains 
the functional CTD, but without TMD. Due to lacking 
important function domain, the four splicing variants are 
always usurped by virus to counteract antiviral response. 
STING-β has been identified to bind cyclic GMP-AMP 
(cGAMP), STING, and TBK1 to antagonize IFN expres-
sion. Therefore, IFN susceptible VSV-GFP and HSV-
GFP replication is significantly attenuated in HEK293 
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cells incubated with conditioned media from STING-β 
knockdown THP-1 cells [108]. Chen et al. demonstrates 
that overexpression of MRP inhibited STING-mediated 
activation of IFN-β promoter by disrupting the STING-
TBK1 interaction. MRP could even promote RNA virus 
replication, such as sendai virus (SeV) and VSV, via nega-
tively regulating the induction of IFN signaling pathways 
[109]. Moreover, recent study finds that RNA-binding 
protein LUC7L2 downregulates STING level by mediat-
ing its intron 3 retention, leading to attenuate the innate 
immune responses to HSV-1 infection [110]. Notably, the 
function of the same isomer might be discrepant during 

different virus infection, and the exact molecular mecha-
nism still needs to be further illustrated.

Splicing isoforms of  TBK1 downregulate the  expression 
of  virus‑triggered IFN‑I  TBK1 is an important signal-
ing hub downstream of RIG-I like receptors (RLRs) and 
DNA-sensing receptors (DSRs). Similarly, it is subject 
to AS and produce isomer TBK1s, which lacks kinase 
domain since missing exons 3–6 compared to the full-
length mRNA. Upon SeV infection, TBK1s is upregulated 
in human and mouse cells, and targets caspase recruit-
ment domain (CARD) of RIG-I, but not TBK1, to disrupt 

Fig. 1  Virus manipulates the splicing of specific checkpoints in innate immune pathways to evade antiviral defense. STING-β negatively regulates 
the signal transduction through inhibiting cGAMP-STING and STING-TBK1 interactions and facilitates VSV-GFP and HSV-GFP replication. MRP 
similarly promotes SeV and VSV propagation through blocking STING-TBK1 interaction to inhibit IFN-I response. TBK1s binds to RIG-I to inhibit the 
interaction between RIG-I and MAVS upon SeV infection. TBK1s targets RIG-I to inhibit interaction between RIG-I and MAVS upon SeV infection. 
In SVCV-infected epithelioma papulosum cyprini cells, TBK1_tv1, TBK1_tv2, and TBK1-tv3 competitively associate with TBK1 and IRF3 to inhibit 
the formation of TBK1-IRF3 complex. And TBK1-tv3 additionally promotes the degradation of TBK1 and IRF3 through the ubiquitin–proteasome 
pathway and the lysosomal pathway, respectively. EBV SM protein upregulates the expression of STAT1β to exert negative effect on IFN response. 
HSV-1 and IAV creates a pro-viral state in infected cells by promoting the production of MxA isoforms
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interaction between RIG-I and mitochondrial antiviral 
signaling (MAVS), resulting in decreasing the produc-
tion of IFN-β [111]. Additionally, similar spliced isoforms, 
TBK1-tv1, TBK1-tv2 and TBK1-tv3, have been identified 
in zebrafish, and both the three act as negative regulators 
in RIG-I/MAVS/TBK1/IRF3 axis during spring viremia 
of carp virus (SVCV) infection. However, the underlying 
mechanism is different from that of TBK1s. TBK1_tv1 and 
TBK1_tv2 competitively associate with TBK1 and IRF3 to 
inhibit the formation of TBK1-IRF3 complex, impeding 
the phosphorylation of IRF3 mediated by TBK1 [112]. 
And TBK1-tv3 also promotes the degradation of TBK1 
and IRF3 through the ubiquitin–proteasome pathway 
and the lysosomal pathway, respectively [113]. These data 
suggest that different splicing variants generated from the 
same gene could achieve the same end through different 
ways.

Virus induces aberrant splicing of  ISGs to  counteract 
IFN‑mediated host immune response  IFN interacts with 
cell surface receptors and initiates a signaling cascade 
through JAK-STAT pathway, leading to the expression 
of numerous ISGs involved in the innate immune sys-
tem response [114]. STAT1, an integral mediator of both 
IFN-I and IFN-II signal transduction pathways, contains 
two isoforms, STAT1α and STAT1β. Since generated by 
splicing in the last intron, STAT1β lacks the trans-acting 
domain and is inactive in signal transduction [115]. EBV 
SM protein is an RNA-binding protein in the lytic phase 
and acts as a trans-acting factor to regulate viral RNA 
splicing [116]. Importantly, SM has been reported to exert 
negative effect on IFN response via disproportionately 
increasing the abundance of STAT1β [117].

Myxovirus resistance protein A (MxA), a classical ISG 
induced by IFN-I, plays antiviral role in various virus 
infections. In humans, MxA gene contains 17 exons 
and the encoded protein consists of N-terminal GTPase 
domain and C-terminal central interactive domain and 
leucine zipper domain [118]. A variant MxA isoform 
(varMxA) with conserved GTPase domain and a novel 
CTD due to the deletion of 14–16 exons is induced in 
HSV-1 infected cells. Unlike MxA with vibrant antiviral 
activity, varMxA favors HSV-1 replication and enhances 
the production of infectious virus progeny [119]. Shu 
et al. reports that compared to healthy controls, patients 
infected with avian H7N9 IAV carry higher rate of het-
erozygous single-nucleotide variants in MxA gene, some 
of which might affect the effective and accurate splic-
ing to generate MxA protein. Importantly, nearly all the 
inactive MxA variants exert a dominant-negative effect 
on the antiviral function of wild-type MxA, suggesting 
that variations in MxA gene are closely correlated with 
susceptibility to IAV [120]. Notably, whether and how 

varMxA and other isoform counterparts directly inhibit-
ing the antagonism of MxA on virus infection still needs 
to be further studied.

Conclusions
AS is a mechanism that allows single gene to generate 
multiple transcripts that encode proteins with diverse 
and even antagonistic functions. It is ubiquitous for virus 
to usurp splicing mechanism to regulate viral protein 
expression and create a pro-viral environment. Exten-
sive studies have demonstrated that virus caused aber-
rant splicing of cellular genes significantly contributes 
to pathogenicity in infected cells. Identifying anomalous 
isoforms induced by virus and studying their functions 
could be the biomarker for diagnosis and the primary 
target for novel antiviral strategies. Since splicing iso-
forms of the same gene are divergent in different model 
animals, however, their formation and functional mecha-
nism need to be rigorously investigated before clinical 
trial.
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