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Abstract

Background: Following acute infection, Herpes Simplex virus-1 (HSV-1) establishes lifelong latency and recurrent
reactivation in the sensory neurons of trigeminal ganglia (TG). Infected tree shrew differs from mouse and show
characteristics similar to human infection. A detailed transcriptomic analysis of the tree shrew model could provide
mechanistic insights into HSV-1 infection in humans.

Methods: We sequenced the transcriptome of infected TGs from tree shrews and mice, and 4 human donors, then
examined viral genes expression up to 58 days in infected TGs from mouse and tree shrew, and compare the
latency data with that in human TGs.

Results: Here, we found that all HSV-1 genes could be detected in mouse TGs during acute infection, but 22 viral
genes necessary for viral transcription, replication and viral maturation were not expressed in tree shrew TGs during
this stage. Importantly, during latency, we found that LAT could be detected both in mouse and tree shrew, but
the latter also has an ICPO transcript signal absent in mouse but present in human samples. Importantly, we
observed that infected human and tree shrew TGs have a more similar LAT region transcription peak. More
importantly, we observed that HSV-1 spontaneously reactivates from latently infected tree shrews with relatively
high efficiency.
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with human infection.

Longitudinal study

Conclusions: These results represent the first longitudinal transcriptomic characterization of HSV-1 infection in
during acute, latency and recurrent phases, and revealed that tree shrew infection has important similar features
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Introduction
HSV-1 is a ubiquitous but important human patho-
gen carried by over half of the world’s population;
HSV-1 infection starts with primary infection at the
periphery and subsequent lifelong latency in the per-
ipheral nervous system [1]. In experimental animals
such as mouse, acute infection develops following
cornea inoculation, the virus replicates in the epithe-
lial cells on the corneal surface and is later trans-
ported into trigeminal ganglia, where it establishes
latency [2-4]. The acute stage of infection involves
lytic, or productive infection of HSV-1 at the site of
inoculation, and frequently in the TGs of infected
mice; in the tree shrew TGs, however, signs of lytic
infected were not seen and no infectious virus could
be detected [5]. During the lytic phase of infection
in cultured cells, all viral genes are believed to be
expressed in a cascade-dependent manner [6, 7], but
during latency, most viral genes are silenced with
the exception of the latency-associated transcript
(LAT), multiple miRNAs [8—10] and two small RNAs
[11]. Although latent, the virus reactivates from indi-
vidual neurons periodically, and could cause more
serious diseases including herpes keratitis or herpes
encephalitis [12, 13]. Recently, HSV-1 has been sug-
gested to play a role in Alzheimer’s disease [14, 15].
Multiple animal species including mice, rabbits and
tree shrews [5, 16, 17] have been used to model hu-
man HSV-1 infection, with mice being the most
widely used. However, we have recently studied HSV-
1 infection in tree shrews, which are more closely
related to primates than rodents [18], and observed
differences between tree shrews and mice during
acute infection, latency and reactivation [5, 19]. Here,
we performed an in-depth transcriptional profiling of
the infected mouse, tree shrew and human TGs, and
reveal the differences in viral gene expression pat-
terns. Importantly, we show that latent tree shrew
TGs can express many viral genes, including ULG,
ULS8 and ICP8, which are consistent with spontaneous
reactivation. More importantly, during latency tree
shrew and human TGs had more similar transcription
peaks in the LAT region and possibly more ICPO
transcription, supporting that the tree shrew model
better mimics HSV-1 latent infection in human.

Results

Viral infection dynamics vary among animal models

To analyze the viral transcriptional patterns during acute
and latent stages of HSV-1 infection, mice and tree
shrews were infected with HSV-1 strain 17+ by corneal
scarification, and infected TGs collected over a period of
58 days (Fig. 1a, b). For each time point, three biological
replicates were generated. Human TG samples were also
collected for comparison with latently infected mouse
and tree shrew TGs (Fig. 1a).

In total, we sequenced 52 samples (24 mouse TGs, 24
tree shrew TGs and 4 human TGs) using an Illumina
HiSeq Platform and generated about 5.9 million reads
per sample. After mapping to the genome of the hosts
and HSV-1 strain 17+, we performed differentially
expressed gene (DEG) detection using DESeq2 (differen-
tial expression analysis for sequence count data2) [20],
in which we compared viral and host gene expression
between samples with different infection times and unin-
fected control samples or each pair of consecutive time
points to determine what viral or host genes are
expressed significantly. The host genes were then filtered
out and are not discussed further here. When using read
count > 10 as the detection threshold of viral genes, we
found that the number of viral genes were quite different
between mice and tree shrews (Fig. 1c). Almost all of the
74 unique viral genes (LAT, ICPO, ICP34.5 and ICP4 all
have a duplicated in HSV-1 genome) were expressed in
mouse samples from 3 to 7 days post infection (dpi),
while only a total of 52 viral genes were detected during
the acute phase (3 to 10 dpi) in tree shrew TGs. The dif-
ferences extended to latency, only LAT was detected in
mouse TGs. However, infected tree shrew TGs also
showed a high level of ICPO transcript signal at both 28
and 58 dpi (Fig. 2a).

To provide a dynamic change in viral genes throughout
the infection period, we plotted the distribution of absolute
fold changes in viral genes expression for each model separ-
ately. For both models, the largest differences were ob-
served between the 0 and 3dpi. After 3dpi, the tree shrew
model showed an abrupt decline until 10dpi, then increased
between 10 and 14dpi, and then slowly declined again until
58dpi. The differences were that mouse model displayed an
ascending change during 5 to 10 dpi and showed no signifi-
cant change in the range of 14 to 28dpi (p > 0.05, ANOVA
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Fig. 1 Overview of the experimental procedure. a Overview of TG collection and RNA-sequencing data used in this study. Mouse and Tree Shrew
infected models were established through the ocular infection route, following which TGs were collected at different infection times for RNA
sequencing. In addition to 16 published human TG data sets, we generated RNA-sequencing data sets from 4 human TGs. These RNA-seq data
were used for viral transcriptome analysis in this study. Sample types were labeled in each host model: uninfected samples, acute infected
samples and latent infected samples. b Experimental timeline for infection of animals and the subsequent collection of samples. ¢ Line chart
representing the total number of viral genes (read count > 10) at the indicated time points. Data are represented as mean + standard deviation
(SD), and means were labeled around points. d Distribution of absolute log, fold changes for 74 viral genes between adjacent time points in two
animal models. Lines represent medians, boxes represent 25-75% intervals, and whiskers represent 5-95% intervals. Outliers are not shown.
Differences in fold changes were tested by ANOVA. e The lines report number of DEGs (log, fold change > 1 & adjusted P value < 0.01) for each
pair of consecutive time points in two animal modes

test, Fig. 1d). Next, we asked whether there were differences
in the up- or down-regulation of viral genes during this
period between the two models. The number of differen-
tially expressed genes for each pairwise comparison and
each model separately was shown in Fig. le, which was
highest in mouse model between 0 and 3dpi (up-regulated),
and showed down-regulated genes within 5 to 10dpi. This
demonstrates that the infected moue TG showed the lar-
gest changes in viral genes expression levels during acute
phase, while in tree shrew the changes are mild in acute
stage, but more significant changes occur during latency.
Therefore, it appears that strong acute infections tend to
lead to a calm latency, while the milder acute stage results
in a latency with greater change in viral transcription and a
higher frequency of reactivation.

The acute infection in mouse TG is more consistent with
productive infection based on the expression of essentially

all HSV-1 genes, therefore we compared mouse TG viral
gene expression with that in human primary fibroblasts at
2, 4 and 8 h post infection (hpi), and found that the tran-
scriptional pattern of lytic infection was similar to that in
the mouse model (Supplemental Figure 1). When consider-
ing that mice have a higher mortality than tree shrews dur-
ing the acute stage [19] and immunohistochemistry failed
to detect any HSV-1 antigens in acutely infected tree shrew
TGs while positive signals were detected in mouse TGs [5],
these results support the conclusion that HSV-1 can build
a highly active productive infection in mouse, but only
mount a limited or abortive infection in tree shrew TGs.

Viral gene expression patterns differ between infected
mouse and tree shrew TGs

To determine the temporal pattern of viral gene expres-
sion following inoculation, we generated a heat map of
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Fig. 2 Comparison of viral gene transcription activity between mouse and tree shrew. a Heatmaps reflecting expression intensity of viral genes
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change. b Venn diagram indicating shared viral DEGs between infected mouse and tree shrew samples. ¢ Functional enrichment analysis for 22
selected viral genes which are below the DEGs threshold in tree shrews. The genes annotation information used in this analysis are shown in
supplemental Table 1. d Relative quantitation of selected viral transcripts based on the RT-qPCR validation using 5dpi RNA samples. Data are
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the viral DEGs expression data. As shown in Fig. 2a, in
mouse TGs essentially all HSV-1 genes were detected
with higher transcription levels during the acute stage,
but in tree shrew TGs, only some of these genes were
detected. During latency, from day 28-58, tree shrew
and mouse differed in that tree shrew TGs expressed
ICPO transcript, in addition to LAT, while mouse TGs
express only LAT with little or no ICPO signal.

Next, we focused on the viral genes that are not
expressed or are expressed at extremely low levels in
acutely infected tree shrew TGs, but are expressed in
acutely infected mouse TGs. We found that there are at
least 22 such genes (Fig. 2b). Using UniProt database
and HSV-1 17+ genome annotation information in
NCBI (Supplemental Table 1), we sorted these 22 viral

genes into 6 clusters (Fig. 2c). Four of these clusters con-
tain at least 3 viral genes, and these are tegument pro-
teins, envelope glycoproteins, DNA packaging proteins
and nuclear proteins, while the other clusters included
ICP4 and UL9. Selected RT-qPCR validation of these
transcripts is shown in Fig. 2d.

Importantly, of the 22 undetected genes, 6 are enve-
lope proteins, functioning in viral entry and membrane
fusion. Thus HSV-1 infected cells from tree shrew TGs
are likely missing these essential gene products for viral
maturation and subsequent infection. With most of the
important late structural genes not being made, HSV-1
in acutely infected tree shrew TGs was likely undergoing
an abortive lytic infection, which explains the low tox-
icity and absence of infectious HSV-1 in tree shrews.
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Furthermore, two of the viral genes not detectable in in-
fected tree shrew TGs are ICP4 and UL9. ICP4 mainly
acts as a transactivator of viral transcription, which is es-
sential for expression of almost all early and late genes;
UL9 encodes the viral origin binding protein, which acts
as an ATPase and helicase and is required for initiation
of DNA synthesis [1]. The lack of detectable expression
of these genes could account for the fact that viral tran-
scription is limited in tree shrew TGs.

Many HSV-1 genes that are below the detection

threshold by immunohistochemistry or
immunofluorescence were expressed at extremely low
levels in tree shrew TGs

In our previous study, we could detect HSV-1 antigens
by immunohistochemistry and in particular ICP4 by im-
munofluorescence in acutely infected mouse TGs, but
we could not detect any HSV-1 proteins in acutely in-
fected tree shrew TGs by immunohistochemistry using
the same anti-HSV-1 polyclonal antibodies, or by im-
munofluorescence using monoclonal antibody against
viral essential genes ICPO and ICP4 [5]. Consistent with
this data, ICP4 transcript was noticeably nearly absent
by Real Time PCR analysis (Fig. 2d). When examining
the sequencing data, we noted that ICP4 reads were ex-
tremely low. We selected ICP4 and unique short region
(US) genes for further analyses, as this region also in-
cludes genes US2, US3 and US5, which are also below
the detection threshold (log2 fold change >1, and ad-
justed P value <0.01). The sequence coverage profiles
are shown in Fig. 3a. The maximal mean ICP4 reads in
mouse TGs were very high, at nearly 12,000, contrasting
with tree shrew which were only 200. A more common
phenomenon in the data from acutely infected tree
shrew TGs is that many viral genes show incomplete
coverage in coding regions. To determine whether this
incomplete coverage reflects the difference in length of
the transcript, we designed primers to amplify about 1
kb fragments of selected viral genes (Fig. 3b and c). We
also sequenced these PCR products and found that they
correctly aligned to the viral genome. These results sup-
port the existence of very low levels of intact transcripts
in areas with little or no reads in RNAseq.

The uneven coverage is seen in many HSV-1 genes
and is likely due to the low efficiency in amplification
during sequencing as a result of the high GC-content of
the viral genome [21]. Consistent with this possibility,
the detected reads correspond to reads that are also
abundant in mouse samples (see red boxes in Fig. 3a),
while the region with little or no reads correspond to
relatively low reads in the mouse samples (see green
boxes in Fig. 3a). We assessed the relationship between
GC-content and genome coverage in tree shrew acute
stage samples (Fig. 3d and Supplemental Figure 2A).

Page 5 of 13

These result support that the “coverage” or “non-cover-
age” in viral genome is not related with GC-content in
the case of a large amount of virus genes transcription
(tree shrew 5dpi, 7dpi and 10dpi samples); however, if
HSV-1 genome has a low transcriptional activity, GC-
content has a significant effect on genome coverage. The
non-covered region in tree shrew samples both has low
GC-content sites and high GC-content sites (Fig. 3e and
Supplemental Figure 2B), which indicated that high GC-
content is not the only reason for those undetectable
viral genes in tree shrew samples.

Since ICP4 is essential for viral transcription, it’s
extremely low level of expression contributes to the
lack of a productive infection in tree shrew TGs
[22-25]. The lack of ICP4 is likely due to transcrip-
tional inhibition and not a result of degradation of
the ICP4 protein. In our previous study, we had re-
ported that HSV-1 could become latent and later
spontaneously reactivate from tree shrew TGs, and
that the virus could mount a full productive infec-
tion in tree shrew CNS in vivo [19], and in vitro in
cultured ganglion neurons from tree shrew TGs
(Supplemental Figure 3), thus, ICP4 protein can
function in tree shrew neurons, and the low expres-
sion is more likely due to the specific inhibition of
the ICP4 transcription in TG neurons in vivo. None-
theless, we believe, that the extremely low level of
ICP4 transcripts might have been sufficient for the
virus to sustain a low level of genome replication as
reported before [26] and subsequently achieve la-
tency in the tree shrew without triggering a full
blown infection and immune response.

Spontaneous reactivation is detected during latency in
tree shrew TGs

RNA sequencing data suggested that low levels of viral
transcripts were widely present in infected tree shrew
samples as could be seen in samples beyond day 14, con-
trasting that of mouse TGs, where the average reads are
close to zero (Fig. 4a). To understand the distribution of
low levels of viral genes in tree shrew TGs, we separated
the three replicates of latency samples and analyzed
them individually. We found that the low levels of viral
transcripts were from individual tree shrew TGs and not
a result of uniform low level of expression in all samples.
As seen in Fig. 4b, sample #3 from day 28 and #1 from
day 58 appear to express many more viral genes than
the remaining samples.

We then calculated the significantly transcribed viral
genes in these sample using an R package, DEGseq,
which allowed us to identify differentially expressed
genes in each latent sample individually [27]. Several
viral genes, such as ICP8, UL6, UL8 were found to be
differentially expressed in more than one latent tree
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shrew samples (Fig. 4c), and therefore we validated
some selected viral genes using RT-qPCR from 58dpi
samples (Fig. 4d). The results indicate that tree shrew
#3 from day 28 sample and #1 from day 58 sample
are likely undergoing spontaneously reactivation as
predicted from our earlier study analyzing tree shrew
eye swabbing [5].

Human and tree shrew are similar in HSV-1 ICPO and LAT
expression pattern in latently infected TGs

Studies using the mouse and other models have estab-
lished that during HSV-1 latent infection, almost all viral
genes are silenced with the exception of the LAT region,
which is expressed and produces a stable intron [28, 29],
small and microRNAs [8, 30], and helps to maintain
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latency or reactivation. This is indeed the case in mouse
with HSV-1 transcriptome profiling over the course of
2 months post infection. However, viral gene expression
in infected tree shrew TGs, with the additional expres-
sion of ICPO transcript during latency, differs signifi-
cantly from that in mouse TGs. This is evident in
Fig. 2a, where both the LAT and the ICPO region were
transcribed at robust levels in tree shrews during latency,
whereas only LAT signal was found in mouse.

To determine what HSV-1 genes are expressed in hu-
man TGs and which model is more similar to human in
terms of ICPO and LAT expression patterns during la-
tency, we analyzed human TG sequencing data, and
found that the LAT region and ICPO region were also
activated in human TGs, and no other viral genes were
detected. To confirm that the observed ICPO transcrip-
tion was not an artifact of the specific analytic tool, and
also to account for the fact that the region of the gen-
ome encoding ICPO overlaps the LAT region, we used
individual strand specific primers for ICPO and LAT and
validated the expression of ICPO (Fig. 5a), and the strand
specificity of this approach had been demonstrated in
supplemental Figure 4. When this assay was applied to
amplify a longer ICPO transcript (657pb), we only

detected the ICPO signal in the latently infected tree
shrew samples (supplemental Figure 4C). In our previ-
ous study, ICPO transcript was also detected by in situ
hybridization in 58dpi tree shrew TGs [5]. Human TGs
were harvested a considerable time (1.5-2.5days) after
death, which may result in HSV-1 reactivation, but no
viral genes other than LAT and ICPO were detected in
the RNAseq data, and whether this data can really reflect
the latent state in the living human is a question we can-
not answer.

Although most viral genes were at lower levels in tree
shrew than that in mouse during acute stage, the level of
LAT was higher in tree shrew TGs than in mouse TGs.
This trend continued into latency where LAT is
expressed at a much higher level in tree shrew TGs than
in mouse (Fig. 5b, c). To reveal the difference of viral
gene expression during latency, we compared the LAT
region transcription patterns between human and animal
models. Two of four human samples we collected
(Fig. 5d) and 2 of 16 GEO data (Supplemental Figure 5)
provided significant LAT signals. Moreover, the LAT
transcription patterns were more similar to those of tree
shrews, and they both had a transcription peak in the
120,758-121,214 region, which was not observed in the
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mouse latency samples (Fig. 5¢, d). We also compared
the coverage of the peak region (120,758-121,214), LAT
intron (remove peak region) and LAT exon (Fig. 5e),
and tree shrew and human have higher readings in the
peak region. Considering that the animal model is artifi-
cially infected, and the human sample is a natural infec-
tion, which may result in a low LAT reading in human
samples.

Discussion

HSV-1 infection in tree shrew TGs differs from that in
mouse, and viral transcriptional level in tree shrews and
mice are affected by many factors. In our previous rela-
tive HSV-1 genome quantitative data, acutely infected
mouse TGs contained higher levels of viral genome than
tree shrew TGs [5], which also contribute to the differ-
ences of viral transcription. Another factor that cannot

be ignored is whether HSV-1 replicates effectively in the
eye of the tree shrew model, because surface replication
is the source of the virus transported into the ganglion.
In fact, we had tested HSV-1 titer and genome copy
number in tree shrew eyes within a period of 46 days
after ocular infection (Li et al., in press), and these re-
sults support that HSV-1 replication in tree shrew eyes
could be comparable with that in mouse eyes.

An important finding from this study is the apparent
spontaneous reactivation from latency from two of the
tree shrew TGs sequenced, a result supporting our pre-
vious study where live virus could be recovered from eye
tears in latently infected animals---a feature that mimics
human infections seen in tree shrew but less efficient in
mouse. From genes detected during spontaneous reacti-
vation, we found immediate early genes ICPO, ICP22
and ICP8, which are important for viral early
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transcription and genome replication. However, a num-
ber of studies support the spontaneous reactivation of
infectious HSV-1 in murine sensory ganglia [31, 32], and
ICPO signal was detected in individual latently infected
mice in our RNAseq data, but other lytic viral genes
reads are too low to tell if they are positive.

What caused the virus to spontaneously reactivate is
currently unknown. LAT is the only known transcript in
latently infected tissues [10, 33, 34], but it is not just a
latency marker, it maintains viral latency [35, 36] by
inhibiting apoptosis [37-40], repressing lytic gene ex-
pression [41], etc. There have been many studies sup-
porting LAT is essential for the highly induced
reactivation phenotype in the mouse model [42-44], and
for the high induced or spontaneous reactivation in the
rabbit model [45-53]. If true, then the high level of LAT
transcript in tree shrew TGs compared to mouse could
partially explain why the virus spontaneously reactivates
in tree shrew but not in mouse.

In our analyses comparing latently infected mouse,
tree shrew and human TGs, we observed that LAT
could be detected from all three, but tree shrew TG
was more similar to human TG in that both have
high reads in a LAT intron region. Considering that
the oligo (dT) method cannot enrich non-
polyadenylated LATs, the high level of LAT signal are
mainly supported by polyadenylated LATs [54—57],
the signal in the LAT intron region is in fact ICPO,
but not LAT intron, which is not polyadenylated.
This is supported by the strand-specific RT-qPCR ex-
periments shown in Fig. 5a.

A more important similarity between infected tree
shrew and human TGs is that both express transcript
from the ICPO region. In contrast, there are no ICPO
transcripts detected in infected mouse TGs, which is in-
consistent with some previous reports that the ICPO sig-
nal they detected was located near the first exon at the
5" end [58, 59]. In light of this, this comparison could
also include infected rabbits TGs in future analysis to
examine whether this ICPO transcripts exist in reactivat-
ing samples.

Both in tree shrew and human TGs, most of the ICPO
reads are concentrated at the 3" end of the ICPO gene
(Fig. 5¢ & d), while the remaining region of ICPO has
very few reads, raising the possibility that this region is
independently transcribed. However, it is also possible
that the uneven reads were a result of the high GC con-
tent of the HSV genome. Since we could not amplify the
full-length ICPO transcript, we could not rule out the
possibility of partial transcripts arising from the 3" of
ICPO. In addition, there is a 0.8 kb LAT insulator and a
CTCF binding site within LAT intron region [60], and
these elements are both located up-stream of the LAT/
ICPO transcription peak, making it possible that the
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CTCF binding site could serve as a promoter to for this
transcript, as reporter by others [61].

Conclusion

In this study, we compared the viral transcriptome of in-
fected mouse and tree shrew TGs during the course of
infection, and we compared the pattern of viral tran-
scripts in latently infected mouse and tree shrew TGs
with that of human TGs. We found that HSV-1 tran-
scription in acutely infected TGs differs dramatically be-
tween mouse and tree shrew, with HSV-1 in mouse TG
undergoing productive infection, while that in tree shrew
TGs appears to be going through an abortive infectious
cycle, missing keys genes needed for viral transcription,
replication and maturation. During the latent phase of
infection, LAT was detected in mouse, tree shrew and
human TGs, but we also detected an ICPO transcript
fragment from tree shrew and human TGs, making tree
shrew latent infection more similar to human than
mouse. When we analyzed tree shrew TGs individually,
we found samples that appeared to be undergoing spon-
taneous reactivation. Together these analyses support
the tree shrew as a better model of human HSV-1 infec-
tion in the peripheral nervous system, offering the possi-
bility of a better understand HSV-1 latency and
reactivation, and the discovery of potential novel targets
for therapeutic interventions. Taken together, the tran-
scriptome data reveals that tree shrews and humans have
a more similar transcription pattern in the LAT region
during latency than that of mice and humans, support-
ing tree shrews as a more accurate animal model for re-
search on HSV-1 latency and reactivation.

Materials and methods

Experimental animals

Chinese tree shrews, 6-month-old female, were obtained
from the experimental animal core facility of the Kun-
ming Institute of Zoology, Chinese Academy of Sciences.
During the experiment, tree shrews were kept in experi-
mental cages of 54 cm x45cm x50 cm, and no more
than two animals per cage. The temperature in the room
was controlled at 15 ~ 28 °C, the relative humidity was
40 ~ 70%, the daily light was 12 h, and the noise should
not exceed 60dB. BALB/C mice, 6-week-old female,
were obtained from the Kunming Medical University.
All experimental procedures and animal care were car-
ried out in accordance with the protocols approved by
the Institutional Animal Care and Use Committee of the
Kunming Institute of Zoology, Chinese Academy of Sci-
ences. The research program was reviewed and approved
by the Institutional Animal Care and Use Committee of
Kunming Institute of Zoology, Chinese Academy of
Sciences.



Wang et al. Virology Journal (2020) 17:95

Virus and cells

HSV-1 strain 17+ was used to infect mouse and tree
shrews. Viral culture was performed in Vero cells and ti-
trated by plaque forming assay on RS1 cells, and these
two cells were both obtained from Conservation Genet-
ics Academy of Science (CAS) Kunming Cell Bank. The
infected cells were cultured in DMEM supplemented
with 2% fetal bovine serum (GibcoTM). All cells were
maintained at 37 °C with 5% CO2. Experiments involving
infectious virus were conducted in a Biosafety level 2
laboratory.

Animal infections and collection of samples

Animal anesthesia, corneal scarification and inocula-
tion with HSV-1 17+ virus was as previously de-
scribed [5]. 1x10* PFU of HSV-1 were used to
inoculate each mouse eye, and 1 x 10° PFU were used
on tree shrews, which was consistent with our previ-
ous reports [5, 19]. The control (mock infected) ani-
mals were also scratched and treated with Vero cell
supernatant. To generate biological replicates, three
groups of animals were infected independently on dif-
ferent days. Samples of infected trigeminal ganglions
were collected at 3, 5, 7, 10, 14, 28, 58dpi, and mock
infected samples were collected after 24h of treat-
ment, and then were ground to a fine powder in li-
quid nitrogen using 50 ml grinding beakers and 20-
mm grinding ball for RNA extraction.

Human trigeminal ganglions collection and preparation
Four human trigeminal ganglia were obtained at aut-
opsy and provided by Academy of Forensic Science
(Shanghai, China) and Second Affiliated Hospital of
Kunming Medical University. According to the record,
the material was taken after 2-3 days of death, then
stored in liquid nitrogen and transported with dry ice,
and demographics are shown in supplemental Table 3.
This is about as early as it is possible to legally ob-
tain human tissue for our studies. Tissues were stored
at — 80°C until processing. To disrupt the tissue, fro-
zen ganglia were wrapped in aluminum foil and
mechanically broken apart on dry ice using a metal
anvil and hammer, both also frozen on dry ice. Small
fragments of tissue from a trigeminal ganglion from
were used for RNA extraction.

RNA extraction and sequencing

Mouse, tree shrew or human TGs were individually
ground to a fine powder in liquid nitrogen before
RNA extraction. For each sample, approximately 1g
of powder (from two TGs of one animal) was resus-
pended in 1ml TRIzol reagent (Life Technologies)
and total RNA was extracted according to the manu-
facturer’s recommendation. Afterwards, RNA samples
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were sent to BGI (Wuhan, China) for purification, li-
brary preparation and sequencing. The Ambion
Trubo DNA-free kit (Life Technologies) was used to
eliminate genomic DNA contamination, and an Agi-
lent 2100 Bioanalyzer (Agilent RNA 6000 Nano Kit)
to perform the total RNA sample quality control.
mRNAs were isolated from total RNA using the
oligo (dT) method, and then purified and fragmented
using divalent cations under elevated temperature.
The oligo (dT) method could not extract, and thus
excluded non-polyadenylated transcripts, such as
non-polyadenylated LAT introns, and retains only
polyadenylated LATs [54-57]. First strand cDNA
was synthesized using random primers, and the sec-
ond strand ¢cDNA was synthesised with Polymerase I
and RNase H. cDNA fragments were purified and re-
solved with EB buffer for end reparation and single
nucleotide A (adenine) addition. After that, the
c¢DNA fragments were linked with adapters. Those
c¢DNA fragments with suitable size (300 bp) were se-
lected for PCR amplification. An Agilent 2100 Bioa-
naylzer and ABI StepOnePlus Real-Time PCR System
were used in quantification and qualification of the
libraries. Finally, all of the transcriptome libraries
were sequenced using an Illumina HiSeq X Ten se-
quencer with a paired-end protocol.

Read mapping, normalization, and statistical analysis of
differential gene expression

According to the BGIs instructions, the low quality
reads (More than 20% of the bases qualities were
lower than 10), reads with adaptors and reads with
unknown bases (N bases more than 5%) were filtered
using an internal software, SOAPnuke, to get the
clean reads. After filtering, the remaining reads were
stored in FASTQ format. All reads were aligned to
the host genome or HSV-1 17+ using HISAT2 soft-
ware with default parameters [62]. In viral transcrip-
tome analysis, all reads aligned to host genomes were
filtered out, and all unmapped reads were then
mapped against HSV-1 17+ genome. The quantifica-
tion of transcript abundance (raw count) was con-
ducted using featureCounts [63] software supported
by the Subread package [64], and multi-mapping and
multi-overlapping reads were excluded from expres-
sion analysis. We chose to normalize our data set
using the relative log expression method implemented
in the DESeq2 package (v1.22.2) [20] in R (www.r-
project.org), and only viral genes that had a read
count of at least 5 were considered. After DESeq2
analyses, genes with a log2 fold change >1 and FDR-
adjusted p-value <-0.01 were considered differentially
expressed.
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Reverse transcription PCR (RT-PCR) and quantitative real-
time RT-PCR (RT-qPCR)

In Fig. 5a and b, reverse transcription used strand-
specific primers for ICPO and LAT transcript respect-
ively and was performed with a high fidelity RT-PCR kit
(TaKaRa), according to the manufacturer’s instructions.
In a 20 pl reaction mixtures contained RNase inhibitor,
RTase, PrimeScript buffer, ANTP mixture, 1 ug template
RNA and 5pM a strand-specific RT primer. After RT re-
action, 1 pL. cDNA was used for PCR reaction flowing by
30 cycles of 10s at 98°C, then 5s at 60°C, and 20s at
72°C. The RT-PCR product was electrophoresed on a
2% agarose gel for 20 min at 200 V. For gene expression
analysis via RT-qPCR, isolated total RNA was reverse-
transcribed using a PrimeScriptTM RT reagent Kit with
gDNA Eraser (TaKaRa). The RT-qPCR was performed
in an Applied Biosystems 7900HT using FastStart Uni-
versal SYBR Green Master (ROX, Roche). Per RT-qPCR
reaction, cDNA derived from 50 ng RNA was deployed.
Cycling conditions were 10 min 95 °C, followed by 45 cy-
cles of 10s at 95°C, 30s at 60°C, and 30s at 72°C.
Primers are listed in supplemental Table 2. For the ex-
pression of fold changes of RT-qPCR data, the 2 — AACt
method was used [65].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
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