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Abstract

Background: During the last two decades, structural biology analyses have shown that viruses infecting hosts far apart
in evolution share similar architectural features, prompting a new virus classification based on structural lineages. Until
recently, only a few prokaryotic viruses had been described for one of the lineages, whose main characteristic is a
capsid protein with a perpendicular double jelly roll.

Main body: Metagenomics analyses are showing that the variety of prokaryotic viruses encoding double jelly roll capsid
proteins is much larger than previously thought. The newly discovered viruses have novel genome organisations with
interesting implications for virus structure, function and evolution. There are also indications of their having a significant
ecological impact.

Conclusion: Viruses with double jelly roll capsid proteins that infect prokaryotic hosts form a large part of the
virosphere that had so far gone unnoticed. Their discovery by metagenomics is only a first step towards many more
exciting findings. Work needs to be invested in isolating these viruses and their hosts, characterizing the structure and
function of the proteins their genomes encode, and eventually access the wealth of biological information they may
hold.

Keywords: Bacteriophages, Double jelly roll, Metagenomics

Structural biology and the first glimpses of the
double jelly roll reach
Towards the end of last century, many virus structures
had been determined by protein crystallography, show-
ing that the β-barrel fold (consisting of eight antiparallel
β-strands organized in two sheets that form the opposite
sides of the barrel) was a common feature in the
organization of icosahedral virus capsids [1]. ssDNA vi-
ruses infecting bacteria (Microviridae such as ΦX174),
as well as ssRNA viruses infecting plants (e.g. tombus-
viruses), insects (tetra-, noda-, dicistroviruses), cattle
(foot-and-mouth disease virus) and humans (rhinovirus,
poliovirus) all were found to build their capsids using
proteins that fold as a “jelly roll” β-barrel. Back then,
only one dsDNA virus, human adenovirus, was known
to utilize the β-barrel fold in its capsid, albeit in an odd
way. The adenovirus major coat protein contains two
β-barrels instead of one, an arrangement also referred to
as double jelly roll [2] (Fig. 1). The adenovirus β-barrels

are not parallel, but perpendicular to the capsid surface,
and form pseudo-hexagonal capsomers, allowing tri-
meric proteins to fill in the six-fold coordinated posi-
tions of the icosahedral capsid [3].
Then, in 1999, the major coat protein structure of a

peculiar, tail-less, membrane-containing dsDNA bac-
teriophage called PRD1 was solved, and unexpectedly
proved that the human adenovirus structural solution
was present also in viruses with prokaryotic hosts [4].
This finding raised questions on virus evolution, hinting
at a possible common ancestor of viruses infecting pro-
karyotic and eukaryotic organisms [5]. At about the
same time, it was also realized that herpesviruses share
architectural characteristics with tailed phages, and that
reoviruses have structural similarity with the bacterial
cystoviruses [6, 7]. All these observations evolved into
the proposal that a classification on structural lineages,
based on major coat protein folds, might be more useful,
and better reflect the evolutionary history of viruses,
than previous classifications based on genome type or
host [8–10].* Correspondence: carmen@cnb.csic.es; mjvanraaij@cnb.csic.es
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Four icosahedral virus structural lineages are recog-
nized at present [10], with indications that other line-
ages may exist, for example one encompassing positive
and negative ssRNA viruses [11]. The dsDNA herpes-
viruses, which infect animals, form one structural
lineage with tailed bacteriophages: they share many
structural characteristics, including their assembly
pathway and major coat protein fold. A second struc-
tural lineage includes the dsRNA cystoviruses (bacte-
riophages like Φ6) together with eukaryotic dsRNA
viruses such as reo- or totiviruses. A third lineage en-
compasses picorna-like viruses, with coat proteins
folding as a β-barrel lying parallel to the capsid sur-
face. Adenoviruses, which infect vertebrates, and the
tectivirus PRD1 were the founding members of the

fourth icosahedral structural lineage, which encom-
passes dsDNA viruses infecting organisms across the
evolutionary tree (Table 1): bacteria (tectiviruses, cor-
ticoviruses), archaea (turriviruses), unicellular animals
(giant viruses like mimivirus and their relatives, also
their virophages) and algae (phycodnaviruses), insects,
fish, amphibians and reptiles (iridoviruses), pigs (asfar-
viruses), and vertebrates in general including humans
(adenoviruses) [10, 12]. The infectious particles of all
these viruses are built from trimeric double jelly roll
capsomers (Fig. 1), arranged with triangulation num-
bers ranging between T = 21 [13] and 499 [14]. The
triangulation number of the giant mimivirus capsid,
which has not been unequivocally determined yet, is
estimated to be in the 972–1200 range [15]. Members

Fig. 1 From the simplest to the most complex double jelly roll virus structures solved so far. The structures of the major capsid protein monomer (top
row) and trimer (middle row) are shown, together the complete capsid (bottom row) of bacteriophage PM2, human adenovirus, and Faustovirus. These
viruses represent the simplest and most complex examples for which both the high resolution structure of the major coat protein and at least the
general capsid organization have been solved. While the PM2 major coat protein is formed by the double jelly roll motif with no more elaborations, the
adenovirus and Faustovirus proteins have extensive tower domains which establish intricate interlacing in the trimer. Database identifiers and
triangulation numbers are shown by each structure. The colour bar indicates capsid radii, in nm
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Table 1 Double jelly-roll virus families for which the major capsid protein and/or capsid structures have been studied

Example virus and family name Host Capsid diameter Triangulation
number

Genome type and
approximate size

Ref. Number of accepted
species in ICTV [35]

Prokaryotic host - bacteria

PRD1, Tectiviridae Gram-negative
bacteria

70 nm T = 25 linear dsDNA,
15 kbp

[36] 6

PM2, Corticoviridae Pseudoalteromonas 60 nm T = 21d circular dsDNA,
10 kbp

[33] 1

Salisaeta Icosahedral
phage 1 (SSIP-1),
Sphaerolipoviridae?,
Unclassified

Salisaeta sp 100 nm
(single jelly roll?)

T = 49 circular dsDNA,
44 kbp

[37] –

Flavobacterium-infecting,
lipid-containing phage (FLiP),
Unclassified

Flavobacterium sp. 55 nm T = 21d circular ssDNA,
9 kb

[19] –

Prokaryotic host - archaea

STIV, Turriviridae Sulfolobus
solfataricus

96 nm
(with turrets)
73 nm (without)

T = 31d circular dsDNA,
18 kbp

[38] 2

HHIV-2, Sphaerolipoviridae Haloarcula
hispanica

80 nm
(single jelly roll)

T = 28d linear dsDNA,
30 kbp

[22] 7a

Eukaryotic host

Paramecium bursaria chlorella
virus 1 (PBCV-1), Phycodnaviridae

Chlorella variabilis 190 nm T = 169d dsDNA with
covalently closed
hairpin termini,
330 kbp

[39, 40] 33

Phaeocystis pouchetii virus 1 (PpV01)
Phycodnaviridae or Mimiviridae:
under debate.b

Phaeocystis
pouchetii
(phytoplankton)

220 nm T = 219 485 kbp [40, 41] –

Cafeteria roenbergensis virus
(genus Cafeteriavirus, Mimiviridae)

Cafeteria
roenbergensis
(zooplankton)

300 nm T = 499 730 kbp [14, 42] 1c

Acanthamoeba polyphaga Mimivirus
(APMV), genus Mimivirus, Mimiviridae

Acanthamoeba
polyphaga

500 nm T = 972–1200 linear dsDNA,
1180 kbp

[15, 43] 1

Sputnik, Lavidaviridae Amoebae/Mimivirus
(virophage)

75 nm T = 27 circular dsDNA,
18 kbp

[44] 3

Melbournevirus, Marseilleviridae Acanthamoeba
castellanii

230 nm T = 309 circular (?) dsDNA,
369 kbp

[45, 46] 4

Faustovirus, unclassified
(distantly related to Asfarviridae)

Vermamoeba
vermiformis

260 nm T = 277 circular dsDNA,
466 kbp

[47–49] –

Pacmanvirus, unclassified
(distantly related to
Faustovirus and Asfarviridae)

Acanthamoeba
castellanii

250 nm T = 309 dsDNA, 395 kbp [50] –

Chilo iridescent virus
(CIV), Iridoviridae

Invertebrates,
amphibians, fish

185 nm T = 147 linear dsDNA,
212 kbp

[51, 52] 13

Adenovirus, Adenoviridae Vertebrates 95 nm T = 25 linear dsDNA,
27–43 kbp

[3] 104

Vaccinia virus, Poxviridae Vertebrates 200–300 nm Non-icosahedral linear dsDNA,
130–375 kbp

[16] 71

aTwo of these seven sphaerolipovirus species have been isolated from extremophile bacterial hosts [21]
bFor a recent discussion on the diversity of Mimiviridae and their taxonomic challenge, see Ref. [53]
cClaverie and Abergel [53] list eleven members of the Mimiviridae family that have been physically isolated and fully sequenced, covering a genome length range
of 370–1500 kbp and a particle size range of 140–600 nm (for the icosahedral shell)

San Martín and van Raaij Virology Journal          (2018) 15:181 Page 3 of 6



of the double jelly roll lineage have also a single per-
pendicular jelly roll protein forming the pentameric
vertex capsomers. Remarkably, a scaffold protein of
the non-icosahedral poxviruses involved in the initial
stages of assembly also folds as a double β-barrel
pseudo-hexamer [16].

How did the double jelly roll fold jump from
prokaryotic to eukaryotic hosts?
The fact that viruses with different hosts share a common
structural solution suggests that the architecture was
established in the early stages of evolution, before the
branches of the evolutionary tree diverged into the three
kingdoms known today (archaea, bacteria and eukarya).
Intriguingly, an evolutionary connection has been found
between viruses in the double jelly roll lineage and large
(15–20 kbp) eukaryotic double-stranded DNA transpo-
sons called Polintons [17]. Polintons are so named be-
cause they all encode a protein-primed DNA polymerase
(to sustain self-replication, POL) and a retroviral-like inte-
grase (INT). Most of them also include genes for a
DNA-packaging ATPase and a maturation protease like
those found in double jelly roll lineage viruses. Exhaustive
sequence analyses revealed that these transposable ele-
ments also encode genes that could translate into double
or single jelly roll proteins, suggesting that at some point
in time, or in certain conditions, they could form icosahe-
dral capsids.
In the light of all these findings, an evolutionary model

was proposed in which a primordial, PRD1-like double
jelly roll phage (encoding a double jelly roll capsid pro-
tein, a protein-primed DNA polymerase and a packaging
ATPase) would have invaded a proto-eukaryotic host
with a bacterial endosymbiont (mitochondria), somehow
reached the nucleus, and recombined with a eukaryotic
transposable DNA element carrying the integrase and
maturation protease. This “polintovirus” element would
have then evolved in separate ways to produce the polin-
tons (transposable, capsid-less integrating elements), and
a variety of eukaryotic “free-standing” viruses, all the
way from adenovirus to mimiviruses [18].

New findings from metagenomics extend the
double jelly roll reach
The great majority of known dsDNA viruses belong to
either the tailed phage/herpes lineage or to the double
jelly roll lineage. The tailed phage/herpes lineage is mas-
sively dominated by the tailed phages, with herpesviruses
the only eukaryotic members. Conversely, there is a large
variety of double jelly roll viruses infecting eukaryotic
hosts, from algae to humans, while only a few lineage
members with prokaryotic hosts (bacteria and archaea)
have been isolated (Table 1). Even within this paucity,
some discoveries hinted at variant uses of the double

jelly roll architecture, and its possible widespread use in
the prokaryotic world. On the one hand, the Flavobac-
terium-infecting, lipid containing phage FLiP, has a
double jelly roll architecture but a circular ssDNA in-
stead of a dsDNA genome [19], demonstrating the use
of similar architectural solutions irrespective of genome
nature. On the other, some viruses infecting archaea or
extremophile bacteria encode two major coat proteins,
each folding as a single β-barrel, that combine in
hetero-multimers to produce capsids with the single jelly
rolls perpendicular to the surface [20–22]. The existence
of these later viruses supports the hypothesis that double
jelly roll coat proteins may have evolved from single jelly
rolls by gene duplication [23].
Progress in structural biology technologies facilitated

the studies on large, complex coat proteins and virus
particles that were instrumental in revealing the struc-
tural lineages. In parallel, highly advanced DNA sequen-
cing methods became common, paving the way for
environmental metagenomics projects that are nowadays
the main source of virus discovery [24, 25]. Metage-
nomics allows virus discovery even if the host is not
known or cannot be cultured in laboratory conditions.
By providing previously inaccessible, large amounts of
sequence data, metagenomics has also facilitated the
analysis of virus evolution trends. Marine metagenome
analyses have recently revealed a new group of putative
polinton-like viruses in algae [26]. Polinton-like virus ge-
nomes contain genes for single and double jelly roll pro-
teins and a packaging ATPase, but lack the protease and
integrase genes. Therefore, polinton-like viruses could
represent a minimal version of the double jelly roll
lineage in eukaryotic hosts, or perhaps the first
eukaryotic dsDNA viruses to evolve from bacterial an-
cestors [26].
Morphological surveys on marine samples suggested

that non-tailed phages might even be more abundant
than the tailed ones, despite their scarcity in culture and
sequence collections [27]. More recently, examination of
agents infecting marine Vibrionaceae bacteria has re-
vealed that a new group of double jelly roll viruses, the
autolykiviruses, has a very broad host range, and may be
responsible for a large part of deaths in marine bacteria,
indicating the ecological relevance of double jelly roll
tail-less phages [28, 29]. With 10 kbp long genomes and
49 nm diameter capsids, the autolykiviruses would be
the smallest members of the double jelly roll lineage
found so far.
A more recent study used the previously identified

prokaryotic double jelly roll major coat protein se-
quences as bait for mining the GenBank and metage-
nomics databases [30]. Some of the hits found were
flanked by typical bacterial genes, reminding us that ana-
lyses limited to genomic sequences might identify
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non-functional prophages as well as actual viruses. But
once this was taken into account, the authors found in-
dications that many more double jelly roll virus families
may exist in the prokaryotic landscape, including a com-
pletely new group of viruses (termed Odin), which has
no characterized members. It was remarkable that, when
the database search was carried out with just the pres-
ence of the double jelly roll major coat protein as a com-
mon trait, a large variety of genome organizations was
found. It was observed that two genes previously
thought to be fundamental lineage traits can be absent:
the protein-primed replication polymerase, and the
packaging ATPase. These were considered part of the
“primordial” double jelly roll virus in bacteria that
recombined with transposons in eukaryotic cells [18].
The finding that double jelly roll prokaryotic viruses
may exist without these two genes raises questions about
their mode of assembly and replication, and their place
in the evolutionary landscape.
The role of the packaging ATPase is still a mystery for

many double jelly roll viruses. While it seems to function
as a bona fide portal for genome translocation into a pre-
formed capsid in bacteriophage PRD1 [31, 32], such a
function does not appear so obvious for members of the
lineage where topological constraints are at odds with
genome translocation. For example, it is not clear how the
corticovirus PM2, with its circular, supercoiled dsDNA
genome, or adenovirus, with a linear dsDNA genome
heavily covered by protein, would use a portal with a pack-
aging ATPase for genome translocation [13, 33, 34]. Until
recently, only FLiP, the single lineage member with a cir-
cular ssDNA genome, had been found to lack the ATPase
gene [19]. Now it is found that viruses in the Odin group
also lack it, and have instead an open reading frame cod-
ing for a small protein preceding the major coat protein
gene. This small protein has no detected similarity to any
known proteins, but is conserved throughout the group.

Conclusions
Prokaryotic double jelly roll viruses are much more abun-
dant and hold much more genomic variability than previ-
ously thought. These realizations open the way to exciting
future findings: more new viruses, new modes of genome
replication and particle assembly, new host-pathogen in-
teractions, and ecological relevance. To achieve all this
new knowledge, several steps need to be addressed first,
such as identifying the virus hosts, isolating the virus par-
ticles themselves, solving the structure of the capsid and
determining the folds of other virus protein structures.
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