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Abstract

Bovine leukemia virus (BLV), an oncogenic member of the Deltaretrovirus genus, is closely related to human T-cell
leukemia virus (HTLV-I and II). BLV infects cattle worldwide and causes important economic losses. In this review,
we provide a summary of available information about commonly used diagnostic approaches for the detection
of BLV infection, including both serological and viral genome-based methods. We also outline genotyping methods used
for the phylogenetic analysis of BLV, including PCR restriction length polymorphism and modern DNA sequencing-based
methods. In addition, detailed epidemiological information on the prevalence of BLV in cattle worldwide is presented.
Finally, we summarize the various BLV genotypes identified by the phylogenetic analyses of the whole genome and env
gp51 sequences of BLV strains in different countries and discuss the distribution of BLV genotypes worldwide.
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Background
Bovine leukemia virus (BLV) is a retrovirus, an
oncogenic member of the Deltaretrovirus genus, and the
causative agent of enzootic bovine leukosis (EBL) [1, 2].
The Deltaretrovirus genus also includes human T-cell
lymphotropic virus types I and II (HTLV-I and -II) and
simian T-cell lymphotropic virus (STLV) [3, 4]. EBL is a
contagious lymphoproliferative disease of cattle, charac-
terized by B-cell lymphosarcoma, which occurs through-
out the world [2, 5]. Although BLV can infect various
immune cell populations, including CD5+ IgM+ and
CD5− IgM+ B-cells; CD2+, CD3+, CD4+, CD8+, and γ/δ
T-cells; monocytes; and granulocytes in peripheral
blood and lymphoid tissues of cattle [6–11], BLV-
induced tumors usually arise from the CD5+ IgM+ B-
cell subpopulation [12].
BLV infection can result in a variety of clinical out-

comes [2]. The majority of BLV-infected cattle are
asymptomatic carriers of the virus, neither showing any
clinical signs nor any changes in lymphocyte count;
however, a recent study showed that although lympho-
cyte counts were not elevated in BLV-infected but

clinically normal cattle, CD5+ IgM+ B-cells were
increased [11], and there is substantial evidence suggest-
ing that BLV-infected but clinically normal cattle may
exhibit a degree of immunological dysregulation leading
to economic losses for various reasons including
reduced milk production [13], a high incidence of infec-
tious disease [14], and reproductive inefficiency [15]. Ap-
proximately one-third of infected cattle develop a benign
form of non-malignant proliferation of untransformed
B-lymphocytes, termed persistent lymphocytosis (PL).
PL is typically characterized by a permanent and stable
increase in the number of CD5+ IgM+ B-cells circulating
in the peripheral blood. Less than 5% of infected cattle
develop malignant B-cell lymphoma originating from
mono- or oligo-clonal accumulation of CD5+ IgM+ B-
cells after a relatively long period of latency. This malig-
nant form of B-cell lymphoma is predominantly detected
in cattle over 4–5 years old [16]. Such malignancies
induce disruption of the spleen and remarkable enlarge-
ment of the lymph nodes, which can be visible under
the skin. BLV-induced neoplastic cells can penetrate into
the abomasums, right auricle of the heart, intestine, kid-
ney, lung, liver, and uterus. The clinical signs of BLV-
induced tumors are varied and primarily involve digestive
disturbance, weight loss, weakness, reduced milk produc-
tion, loss of appetite, and enlarged lymph nodes [17].
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BLV genome structure
The BLV genome consists of 8714 nucleotides (nt) [18]
including essential structural protein and enzyme coding
genes and a pX region, flanked by two identical long ter-
minal repeats (LTRs) (Fig. 1a). The structural protein
and enzyme coding genes, namely, gag, pro, pol, and env,
have essential and indispensable roles in the viral life-
cycle, viral infectivity, and the production of infectious
virions [19–24]. The gag gene of BLV is translated as the
precursor, Pr45 Gag, and processed to generate three
mature proteins [19, 23]: the matrix protein, p15, which
binds viral genomic RNA and interacts with the lipid bi-
layer of the viral membrane [25]; the capsid protein,
p24, which is the major target of the host immune
response, with high antibody titers against this molecule
found in the serum of infected animals [26, 27]; and the
nucleocapsid protein, p12, which binds to packaged gen-
omic RNA [28] (Fig. 1b). The env gene encodes the ma-
ture extracellular protein, gp51, and a transmembrane
protein, gp30 [19]. The pX region, which is located be-
tween env and the 3′ LTR [2], encodes the regulatory
proteins Tax and Rex, and the accessory proteins R3 and
G4 (Fig. 1a). The regulatory proteins are important for
regulation of viral transcription, transformation of BLV-
induced leukemogenesis, and nuclear export of viral
RNA into the cytoplasm [29–36]. The R3 and G4
accessory proteins contribute to the maintenance of high
viral loads [37, 38]. In addition to the genes described
above, the BLV genome also contains RNA polymerase-
III-encoded viral microRNAs (miRNAs) between the env
and pX regions. Viral miRNAs are strongly expressed in

preleukemic and malignant cells, and may have roles in
tumor onset and progression [39, 40] through their
effects on proviral load and consequently viral replica-
tion in the natural host [41]. Besides, Van Driessche et
al. revealed the recruitment of positive epigenetic marks
on BLV miRNA cluster, inducing strong antisense pro-
moter activity [42]. They also identified cis-acting
elements of an RNAPII-dependent promoter [42].

BLV diagnosis
A variety of techniques have been developed for diagno-
sis of BLV and implemented worldwide. These diagnostic
methods can be assigned into two main groups, consist-
ing of antibody-based serological tests and detection of
the proviral genome by nucleic acid-based polymerase
chain reaction (PCR) assays (summarized in Table 1).

Serological tests
For indirect BLV diagnostic methods, particularly
antibody-based tests, antibodies recognizing the p24 capsid
protein encoded by the gag gene and the extracellular gp51
protein encoded by env-gp51 are targeted. This is because
antibodies against these proteins are produced shortly after
BLV infection, can be detected 2–3 weeks post-infection,
and remain detectable for the life of the host animal [43].
In addition, the p24 capsid protein is a major target for
host immune responses, inducing high antibody titers [44],
and gp51 invokes the expression of massive amounts of
specific antibodies in infected animals [24, 45, 46]. There-
fore, antibodies against these proteins are targeted for BLV
diagnostics using conventional serological techniques such

Fig. 1 Schematic representations of the BLV genome structure (a) and viral particle (b). The structural and enzymatic genes, gag, pro, pol, and env;
regulatory genes, tax and rex; accessory genes R3 and G4; and microRNA (miRNA) are indicated in (a). Proteins encoded by structural and enzymatic
genes, including the Env glycoproteins (gp51 and gp30) encoded by the env gene, the Gag proteins (p12, p24, and p15) encoded by the gag gene,
reverse transcriptase and integrase (RT-IN) encoded by the pol gene, and protease (Pro) encoded by the pro gene are indicated in (b)
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Table 1 Summary of common techniques used for diagnosis of BLV prevalence

Diagnostic assay Sample Target Advantages Disadvantages References

Type Assay

Serological
test

AGID Serum Antibodies
(p24, gp51)

Specific, simple, and easy to perform
Large scale screening Less expensive
Rapid

Less sensitive and inconclusive
Cannot evaluate disease states
of infected cattle

Aida et al., 1989
[47]

Wang et al., 1991
[48]

Monti
et al., 2005 [49]

Kurdi et al., 1999
[50]

Jimba et al.,
2012 [43]

Naif et al., 1990
[55]

ELISA Serum Milk
Bulk milk

Antibodies
(p24, gp51)

Specific and sensitive Large scale
screening Time saving

False negatives (cattle in early
infection phase) False positive
(maternally derived antibodies)
Cannot evaluate disease states of
infected cattle A number of
controls and a plate reader required
Results require interpretation

Naif et al., 1990
[55]

Burridge et al.,
1982 [56]

Schoepf et al.,
1997 [53]

Kurdi et al., 1999
[50]

Monti et al.,
2005 [49]

Jimba et al.,
2012 [43]

Zaghawa et al.,
2002 [52]

PHA Virus particle BLV
glycoprotein

Sensitive Specific detection of BLV
Large scale titration Less expensive
Rapid

Affected by pH and temperature
Hemagglutination activity reduced
by trypsin, potassium periodate,
and neuraminidase

Fukai et al., 1999
[51]

RIA Serum Antibodies
(p24)

Sensitive Able to detect BLV during
the early period of infection

Cannot be used for mass screening Levy et al., 1977
[54]

Nguyen et al.,
1993 [57]

Proviral
DNA
detection

Single
PCR;
Semi-
nested
PCR;
Nested
PCR

Blood PBMC
Tumor sample
Buffy coat Milk
somatic cells
Semen Saliva Nasal
secretions

Provirus Direct, fast, sensitive A variety of
samples can be used BLV detection
during the early phase of infection
or in the presence of colostrum
antibodies
Can detect new infections, before
the development of antibodies to
BLV

Unable to detect BLV when the
proviral load is too low
Cross contamination occurs easily
Requires specific primers Requires
equipment (PCR machine) False
negatives in the presence of PCR
inhibitory substances in samples
Requires internal control Needs
confirmatory testing, such as
sequencing

Monti et al.,
2005 [49]

Kurdi et al., 1999
[50]

Zaghawa et al.,
2002 [52]

Tajima et al.,
1998 [64]

Tajima et al.,
2003 [61]

Real-
time
PCR

Blood PBMC
Tumor sample
Buffy coat Milk
Somatic cells
Semen Saliva
Nasal secretions

Provirus Direct, fast, sensitive Low risk of
contamination A variety of samples
can be used Distinguishes EBL from
SBL BLV can be detected during the
early phase of infection or in the
presence of colostrum antibodies
Quantitative measurement of
proviral load

Requires internal control Requires
positive controls of different
concentrations Requires specific
primers and probes Require
equipment (real-time PCR machine)
Expensive
Complicated sample preparation
procedure

Somura et al.,
2014 [68]

Lew et al., 2004
[69]

Jimba et al.,
2010 [70]

Jimba et al.,
2012 [43]
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as agar gel immunodiffusion (AGID) [43, 47–50], passive
hemagglutination assay (PHA) [43, 51], enzyme-linked
immunosorbent assay (ELISA) [43, 49, 50, 52, 53], and
radio immunoassay (RIA) [54]. Most of these serological
methods aim to detect antibodies in bovine serum and
milk, and the supernatants of BLV-infected cell cultures.
AGID is relatively inexpensive and can be used to screen
many serum samples simultaneously; however, it is not
sufficiently sensitive [55] and it is not suitable for analysis
of milk samples. ELISA is a highly sensitive and easily
implemented procedure, and can be used to analyze both
serum and milk samples; however, it requires a number of
controls and produces both false-negative result in serum
samples from cattle in the early phase of infection [55] and
false-positive results in calves that contain maternally-
derived antibodies [56]. PHA aims to detect BLV glycopro-
teins, but, PHA test efficiency is sensitive to pH,
temperature, and trypsin. RIA is suitable for diagnosing
BLV soon after animals are exposed, but not suitable for
the purpose of mass screening [57]. Overall, these
antibody-based detection methods cannot be used to test
calves less than 6 months old, due to the presence of
maternal antibodies, which may trigger false-positive
results [58].

Proviral DNA detection
BLV can integrate into dispersed sites within the host
genome [59] and appears to be transcriptionally silent in
vivo [60–62] and remain in cellular genomes, even in
the absence of detectable BLV antibodies. Indeed,
transcription of the BLV genome in fresh tumor or per-
ipheral blood mononuclear cell samples from infected
individuals is almost undetectable by conventional tech-
niques [60, 63]. Interestingly, one copy of the full-length
proviral genome can be detected in BLV-infected cattle
throughout the course of the disease [64]. Another study
also demonstrated that BLV-induced tumors and BLV-

infected cells contain provirus, with approximately four
copies of proviral DNA in each tumor [65]. Hence, in
addition to the routine diagnosis of BLV infection using
the conventional serological techniques described above,
nucleic acid-based PCR methods can greatly accelerate
the detection of BLV prevalence.
A variety of PCR methods, including standard PCR

[49, 50], nested PCR [33, 52, 64], real-time quantitative
PCR (qPCR) [43, 66–71], and direct blood-based PCR
[72, 73], have been extensively applied worldwide for
BLV detection (Table 1). A variety of genes in the BLV
genome are targeted for detection of BLV infection
prevalence by direct diagnostic PCR methods, including
the LTR region [43, 70, 71, 73–77], and the gag [78], pol
[69, 79, 80], env [55, 79], and tax [68, 79] genes.
Importantly, the BLV provirus copy number is gener-

ally very low compared with that of host genes therefore,
the majority of PCR systems designed to detect BLV
used a nested design [64, 74, 76]. These nested assays
are extremely sensitive, but also obtain false-positive
results due to DNA contamination. However, the
method requires expensive real-time PCR machines and
reagents and involves difficult sample preparation proto-
cols. Recently, a novel blood-based PCR system that
amplifies target DNA regions without a requirement for
DNA isolation and purification was developed [72, 73].
The assay can detect BLV provirus with high specificity
and at low cost, facilitating timely identification of BLV-
infected cattle.
As discussed above, PCR-based genome screening

methods for diagnosis of BLV broaden the range of sam-
ples that can be used, increase testing sensitivity, specifi-
city, and efficiency, and are less time consuming. PCR
also allows the detection of BLV infection in cattle
several weeks before it is possible to detect antibodies
[81]; however, PCR-based provirus screening involves
complicated sample preparation processes, which can

Table 1 Summary of common techniques used for diagnosis of BLV prevalence (Continued)

Diagnostic assay Sample Target Advantages Disadvantages References

Type Assay

Tawfeeq et al.,
2013 [67]

Brym et al., 2013
[66]

Takeshima et al.,
2015 [71]

Direct
blood-
based
PCR

Blood Provirus Cost-effective No need for
DNA purification Low risk
of contamination

Unable to detect BLV when
the proviral load is too low
Results in failure if there are
mismatches between the PCR
primers and BLV sequences
Relatively low sensitivity

Nishimori et al.,
2016 [72]

Takeshima et al.,
2016 [73]

AGID agar gel immunodiffusion, BLV bovine leukemia virus, EBL enzootic bovine leukosis, ELISA enzyme-linked immunosorbent assay, PHA passive
hemagglutination assay, RIA radio immunoassay
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lead to false-positive results if cross contamination
occurs. In addition, PCR-based BLV detection methods
require specific laboratory facilities, including PCR
machines, and the design of specific primers and probes
is also necessary. The CoCoMo algorithm, is a method
used to design degenerate primer sets that amplify all
available sequences within a target region. Recently, the
BLV-CoCoMo-qPCR assay was developed to measure
the BLV proviral load with extremely high sensitivity
and to amplify both known and novel BLV variants [43,
70, 71]. This assay enabled us to demonstrate that the
proviral load correlates not only with BLV infection
capacity but also with BLV disease progression [43, 82],
and identification of risk factor associated with increased
BLV proviral load in infected cattle [82, 83] and detec-
tion of BLV provirus in nasal secretion and saliva
samples [84].

Other methods
In addition to the techniques described above, other
BLV diagnostic approaches, including detection of viral
proteins by western blotting [21, 31, 33, 85], a syncytium
formation assay [85], and detection of BLV antigens by
indirect immunofluorescent assay [47], have also been
described.

BLV genotyping and identification of ten distinct
genotypes
Studies of BLV genotypes for phylogenetic and epi-
demiological analyses have primarily focused on the env
gene, the env gp51 gene in particular, because of its bio-
logical functions. The extracellular gp51 protein has key
roles in the viral lifecycle and is indispensable for viral
entry into host cells [20, 86]. In addition, because of the
surface localization of the gp51 glycoprotein, it is also
the target of neutralizing antibodies [87]. The conform-
ational epitopes, F, G, and H, located in the N-terminal
half of gp51, are important in syncytium formation and
viral infectivity [87, 88]. Therefore, the env gp51 se-
quence region is frequently used for BLV phylogenetic
analysis.
Over the years, a number of methods have been

applied for BLV genotyping, as summarized in Table 2.
In the early days of BLV genotyping, researchers clus-
tered or genotyped BLV strains from different geograph-
ical regions based on restriction fragment length
polymorphisms (RFLP) of PCR-products, generated
using various restriction enzymes [86, 89–96]. BLV
clusters and genotypes were named after the geograph-
ical region of sample isolation, such as “Argentine type”
or “Australian type”, or with reference to phylogenetic
clustering (e.g., “cluster one”). A total of seven BLV clus-
ters/genotypes were determined by PCR-RFLP [91];

however, PCR-RFLP genotyping studies were not
consistent or comprehensive.
In 2007, Rodriguez et al. reported sequencing of the

env gene (all of gp51 and part of gp30) of 28 BLV field
strains, performed phylogenetic analysis of these
sequences in comparison with published sequence data
representative of established genetic groups by neighbor-
joining, maximum likelihood, and Bayesian inference
methods, and assigned BLV sequences into seven geno-
types [97]. Subsequently, a new genotype, genotype-8,
was identified in BLV samples from Croatia by Balic et
al. [98], who concluded that BLV may be more divergent
than previously thought, speculating that additional ge-
notypes might be discovered in the future. Indeed, the
presence of eight BLV genotypes was later confirmed in
different geographical locations [74, 77, 99–101]. Finally,
in 2016, the novel BLV genotypes, genotype-9 and -10,
were discovered in Bolivia [75], Thailand [102], and
Myanmar [76], a totaling ten BLV genotype clusters
(Fig. 2). Previously, almost all phylogenetic studies of
BLV genotypes focused on the partial or entire env gene.
However, for the first time in their study [75, 76], Polat
et al. successfully concluded the existence of genotypes-
1, −2, −4, −6, −9 and −10 among ten BLV genotypes
(Fig. 3) by phylogenetic analysis using complete
sequences of BLV strains newly determined by next gen-
eration sequencing and sequencing cloned, overlapping
PCR products in their studies, and using complete BLV
genome sequences available in the database (NCBI &
DDBJ). These phylogenetic analysis of complete BLV
genomes demonstrated that each BLV genotype encodes
specific amino acid substitutions in both structural and
non-structural gene regions.

BLV prevalence
BLV has spread to all continents via the trade in
breeding animals, and is prevalent in cattle worldwide.
BLV infection levels vary between and within coun-
tries, as shown in Table 3 (data obtained on March
17th, 2017; updated and detailed information is avail-
able at http://www.oie.int/wahis_2/public/wahid.php/
Diseaseinformation/statuslist) [17, 103]. BLV eradica-
tion programs and control measures have been esta-
blished in European Community member countries
since the second half of the twentieth century, and
eradication programs have been very successful in the
majority of western Europe [104–107]; indeed, some
countries, including Denmark, Finland, Switzerland,
Estonia, The Netherlands and Poland, are completely
free of BLV [104, 108–110]. Despite the majority of
countries in Western Europe being free from disease,
EBL still exists in eastern European nations, including
Poland, Ukraine, and Croatia [98, 100, 111–113]. In
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Table 2 Summary of BLV genotyping methods

Genotyping
method

Amplified BLV region Amplicon
size (bp)

Enzymes Phylogenetic
approaches

Classification result Reference

PCR-RFLP Partial env-gp51
region

444 BamHI, BglI, HaeIII, BclI,
PvuII, DraI, HindIII, HpaII,
StuI, TaqI

7 groups: A, B, C, D, E, F, G Fechner
et al., 1997
[90]

Licursi et al.,
2002 [91]

Asfaw et al.,
2005 [95]

RFLP +
sequencing

Partial gp51
sequencing

400–444 BamHI, BclI, PvuII,
GmbH

NJ; MP; ML RFLP-based type: Australian type,
Argentine type, Belgium type,
Japanese type; Sequence-based type:
Argentine cluster, European cluster,
Japan and German isolate cluster; groups
I–IV; or genotypes 1–8

Monti et al.,
2005 [49]

Felmer et al.,
2005 [93]

Camargos
et al., 2007
[122]

PCR-
sequencing

Partial gp51
sequencing

346–444 NJ; ML; BI Japanese group, Argentine group,
European group; or genotypes 1–8

Camargos
et al., 2002
[121]

Licursi et al.,
2003 [92]

Matsumura
et al., 2011
[98]

Rola-
Luszczak
et al., 2013
[99]

Polat et al.,
2015 [74]

Ochirkhuu
et al., 2016
[77]

Polat et al.,
2016 [75, 76]

Sequencing of partial
or full gp51 gene
sequences

444–903 NJ; ML; BI Up to 10 BLV genotypes Moratorio
et al., 2010
[126]

Balic et al.,
2012 [97]

Lee et al.,
2015 [100]

Lee et al.,
2016 [101]

Sequencing of env
(full gp51 and/or gp30
genes)

up to
1548

NJ; ML; BI Consensus cluster, US Californian cluster,
European cluster, Costa Rican cluster; or
genotypes 1–10

Zhao et al.,
2007 [109]

Rodriguez
et al., 2009
[96]

Yang et al.,
2016 [131]

Full BLV
genome
sequencing

BLV complete
genome

8714 ML genotypes −1, −2, −4, −6, −9, and −10 Polat et al.,
2016
[75, 76]

BI Bayesian inference, BLV bovine leukemia virus, NJ neighbor-joining, ML maximum-likelihood, MP maximum-parsimony, RFLP restriction fragment
length polymorphism
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addition, in Italy, Portugal, Belarus, Latvia, Greece,
Romania, and Bulgaria, BLV is present, although dis-
ease is either absent or limited to specific areas [103].
Nationwide BLV eradication and control programs

were introduced in Australia and New Zealand in 1983
and 1996, respectively, and 99.7% of Australian dairy
herds were declared free from EBL in December 2013,

while those in New Zealand have been free from BLV-
induced EBL since 2008 [113, 114].
In North America, an epidemiological study of BLV

prevalence in US dairy cattle conducted by the De-
partment of Agriculture’s National Animal Health
Monitoring System demonstrated that 83.9% of dairy
cattle were BLV-positive at herd level and 39% of beef

Fig. 2 Maximum likelihood phylogenetic tree constructed based on partial BLV env sequences identified in geographical locations around the world. A
maximum likelihood (ML) phylogenetic tree was constructed based on sequences from known BLV strains, representing ten different BLV genotypes
derived from viruses isolated worldwide. Nucleotide sequences were obtained from the GenBank nucleotide sequence database.
Sequences are labeled with their accession numbers and countries of origin. Genotypes are indicated by numbers to the right of
the figure. One thousand replications were performed to calculate bootstrap values (indicated on the tree). The bar at the bottom
of the figure indicates evolutionary distance
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herds had at least one BLV-infected animal [115]. In
Canada, studies of BLV prevalence revealed that up to
37.2% of cows and 89% of herds were BLV-positive
[116–118]. BLV is also present in both beef and dairy
cattle in Mexico [119]; however, disease is either ab-
sent or limited to specific areas [17] (accessed on 22
Dec 2016).
In South America, relatively high levels of BLV preva-

lence have been observed, and BLV-induced leukosis is
present in the majority of countries. In Brazil, BLV
prevalence varies among states, with infection rates ran-
ging from 17.1% to 60.8% [120–123]. Individual and
herd level BLV prevalence in Argentina are as high as
77.4% and 90.9%, respectively [75, 95, 124]. Moreover,
individual infection rates between 19.8% and 54.7% have
been reported in Chile, Bolivia, Peru, Venezuela,
Uruguay, Paraguay, and Columbia [75, 94, 125–131].
BLV infection is widespread in Chinese dairy farms.

Infection rates are up to 49.1% among individual dairy
cattle, while 1.6% of beef cattle are BLV-positive [132].
Moreover, serological tests revealed that 20.1% of yaks in
China were BLV-positive [133]. Epidemiological studies

in Japan revealed varying levels of BLV prevalence
throughout the country, based on different detection
methods [83, 134–136], and BLV infection rates of
40.9% of dairy and 28.7% of beef cattle, with infection
rates in animals over 2-years-old reaching 78% in
dairy herds and 69% in beef cattle herds [136]. Less
than 6% of cattle were infected with BLV in Mongolia
(3.9%) [77], Cambodia (5.3%) [137], and Taiwan
(5.8%) [48], while a serological survey in Iran revealed
that the prevalence of BLV was between 22.1% and
25.4% in that country [138, 139]. Lee et al. [102]
demonstrated an average prevalence of BLV of 58.7%
in Thailand, reaching maxima of 87.8% and 100% of
cattle when assayed using PCR and ELISA, respect-
ively. In Korea, 54.2% of dairy cattle and 86.8% of
dairy herds were BLV-positive, whereas only 0.14% of
beef cattle were infected with BLV [101]. BLV infec-
tion levels in The Philippines ranged from 4.8% to
9.7% [74] while it was 9.1% in Myanmar [76]. BLV in-
fections in Middle Eastern countries are relatively
low. The prevalence of BLV infection is approximately
5% in Israel [140], while in Saudi Arabia, 20.2% of

Fig. 3 Maximum likelihood (ML) phylogenetic tree constructed from complete BLV genomic sequences. The ML phylogenetic tree was constructed using
complete BLV genomic sequences from the GenBank nucleotide sequence database. One thousand replications were performed to calculate bootstrap
values (indicated on the tree). The strains identified in this study are indicated by the sample identification number and country name.
Genotypes are indicated by numbers to the right of the figure. The bar at the bottom of the figure indicates evolutionary distance
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Table 3 Detailed information on BLV infection levels worldwide

Geographical
division

Country Within
country

BLV prevalencea References

Europe Andorra Nationwide BLV-free, 1994 OIE, 2009 [103]

Cyprus Nationwide BLV-free, 1995 OIE, 2009 [103]

Czech
Republic

Nationwide BLV-free, 2010 OIE, 2009 [103]

Denmark Nationwide BLV-free, 1990 OIE, 2009 [103]

Estonia Nationwide BLV-free, 2013 OIE, 2009 [103]

Finland Nationwide BLV-free, 2008 OIE, 2009 [103]

Ireland Nationwide BLV-free, 1999 OIE, 2009 [103]

Norway Nationwide BLV-free, 2002 OIE, 2009 [103]

Spain Nationwide BLV-free, 1994 OIE, 2009 [103]

Switzerland Nationwide BLV-free, 2005 OIE, 2009 [103]

Sweden Nationwide BLV-free, 2007 OIE, 2009 [103]

Slovenia Nationwide BLV-free, 2006 OIE, 2009 [103]

UK Nationwide BLV-free, 1996 OIE, 2009 [103]

The
Netherlands

Nationwide BLV-free, 2009 OIE, 2012 [17]

Poland BLV-free, 2017 EFSA Panel on Animal Health and
Welfare, 2017 [110]

Ukraine Present OIE, 2012 [17]; Rola-Luszczak et al.,
2013 [100]

Croatia Present OIE, 2012 [17]; Balik et al., 2012

Italy Present OIE, 2009 [103]; Molteni et al., 1996
[144]

Portugal Present OIE, 2009 [103]

Belarus Present OIE, 2012 [17]; Rola-Luszczak et al.,
2013 [100]

Latvia Present OIE, 2009 [103]

Romania Restricted to certain area OIE, 2009 [103]

Bulgaria Present OIE, 2009 [103]

Greece Present OIE, 2009 [103]

Oceania Australia BLV-free in dairy cattle, 2013 EPAHW, 2015 [113]

New
Zealand

BLV-free, 2008 Chethanond, 1999 [114]

North America USA 83.9% dairy cattle; 39% beef cattle, 2007 APHIS, 2008 [115]

Canada Nationwide 89% at herd level APHIS, 2008 [115]

Nationwide 78% at herd level, 1998–2003 Nekouei, 2015 [13]

Saskatchewan 37.2% at individual level, 2001 VanLeeuwen et al., 2001 [116]

Maritime 20.8% at individual and 70.0% at herd level, 1998–1999 VanLeeuwen et al., 2005 [117]

Maritime 30.4% at individual and 90.8% at herd level, 2013 Nekouei, 2015 [118]

Mexico Nationwide 36.1% of dairy and 4.0% of beef cattle, 1983 Suzan et al., 1983 [119]

South America Brazil 17.1% to 60.8%, 1980–1989 and 1992–1995 Sammara et al., 1997 [120] ;
D’Angelino et al., 1998 [121]

Argentina Buenos Aires 77.4% at individual and 90.9% at herd level, 2007 Polat et al., 2016 [75]

Multiple
regions

32.85% at individual and 84% at herd level, 1998–1999 Trono et al., 2001 [124]

Chile Southern
region

27.9% at individual level, 2009 Polat et al., 2016 [75]
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dairy cattle tested as BLV-positive [141]. Compared to
these countries, BLV infection rates in Turkey are
higher, with 48.3% of dairy herds including sero-
positive animals [142].

Distribution of BLV genotypes worldwide
As mentioned above, phylogenetic analyses of whole
genome (Fig. 3) and env gp51 sequences (Fig. 2) of BLV
strain showed that BLV can be classified into ten

Table 3 Detailed information on BLV infection levels worldwide (Continued)

Geographical
division

Country Within
country

BLV prevalencea References

Bolivia Multiple
regions

30.7% at individual level, 2008 Polat et al., 2016 [75]

Peru Multiple
regions

42.3% at individual level, 2008 Polat et al., 2016 [75]

Multiple
regions

31.0% at individual level, 1983 Ch, 1983 [125]

Venezuela Nationwide 33.3% at individual level, 1978 Marin et al., 1978 [126]

Uruguay Present Moratorio et al., 2010 [127]

Paraguay Asuncion 54.7% at individual level, 2008 Polat et al., 2016 [75]

Colombia Narino 19.8% at individual level, 2013 Benavides et al., 2013 [131]

Africa South
Africa

BLV-free, 2012 OIE, 2012 [17]

Tunisia BLV-free, 2005 OIE, 2009 [103]

Egypt BLV-free, 1997 OIE, 2009 [103]

Asia Kazakhstan BLV-free, 2007 OIE, 2009 [103]

Kyrgyzstan BLV-free, 2008 OIE, 2009 [103]

China 49.1% of dairy and 1.6% of beef cattle, 2013–2014 Yang et al., 2016 [132]

Japan Nationwide 40.9% of dairy and 28.7% of beef cattle, 2009–2011 Murakami et al., 2013 [136]

Nationwide 79.1% of dairy herd, 2007 Kobayashi et al., 2010 [134]

Nationwide 28.6% overall; 34.7% of dairy, 16.3% of beef, and 7.9% of
fattening beef cattle, 2007

Murakami et al., 2011 [135]

Nationwide 73.3% at individual cattle, 2012–2014 Ohno et al., 2015 [83]

Mongolia 3.9% of dairy cattle, 2014 Ochirkhuu et al., 2016 [77]

Cambodia 5.3% of draught cattle, 2000 Meas et al., 2000 [137]

Taiwan 5.8% of dairy cattle, 1986 Wang et al., 1991 [48]

Iran Nationwide Between 22.1% to 25.4%, 2012–2014 Nekoei et al., 2015 [138]; Mousavi
et al., 2014 [139].

Khorasan
Razavi

29.8% of dairy cattle, 2009 Mousavi et al., 2014 [139].

Khorasan
Shomali

1.5% of dairy cattle, 2009 Mousavi et al., 2014 [139].

Thailand 58.7% of cattle, 2013–2014 Lee et al., 2016 [102]

Philippines 4.8% to 9.7% of cattle, 2010–2012 Polat et al., 2015 [74]

Myanmar 9.1% at individual level 2016 Polat et al., 2016 [76]

Korea 54.2% of dairy cattle and 86.8% of dairy herds; 0.14% of beef
cattle, 2014

Lee et al., 2015 [101]

Middle East Israeli 5% at individual level Trainin & Brenner, 2005 [140]

Saudi
Arabia

20.2% of dairy cattle, 1990 Hafez et al., 1990 [141]

Turkey 48.3% of dairy herd Burgu et al., 2005 [142]

BLV prevalence in this table shows BLV infection in certain specific period. Therefore, there might be a change in BLV prevalence in different times
APHIS Animal and Plant Health Inspection Service, BLV bovine leukemia virus, EFSA European Food Safety Authority, EPAHW European Panal on Animal Health and
Welfare, OIE The World Organisation for Animal Health
Note: aBLV prevalence in each sample collection year; however, no information about sample collection year was provided in some cases
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genotypes. Three genotypes of BLV, namely genotype-1,
genotype-4 and genotype-6, were mainly detected from
across the world, as shown in Table 4. Genotype-1 is the
most dominant genotype of BLV and is distributed
across almost all continents, including Europe, America,
Asia, and Australia. In particularly, genotype-1 spread to
South and North America, and these continents still
have a high prevalence of BLV infection. In addition,
genotype-1 continues to spread worldwide, including
Asian countries. The second most widely distributed
genotype is genotype-4, which is primarily detected in
Europe and some American countries. However, it is
only found in Mongolia among Asian nations. Interest-
ingly, although genotype-4 used to exist in Europe, it de-
creased because of BLV eradication in European
countries. Genotype 6 may have come from South
America and spread to South Asia by animal trading. Of
the other genotypes, genotype-2 is restricted to South
American countries and is only found in Japan among
Asian nations, while genotype-8 is restricted to Europe.
Genotypes-5 (in Brazil and Costa Rica) and −10 (in
Thailand and Myanmar) are only observed in geograph-
ically proximal areas, where there may be an exchange
of animals across national boundaries [76, 102]. By
contrast, genotypes-7 is distributed across geographically
dispersed regions [74, 77].
In detail, in Europe, a total of five different BLV geno-

types have been detected (genotypes −1, −3, −4, −7, and
−8): genotype-4 in Belarus [100] and Belgium [86, 143];
genotypes-4, −7, and −8 in Russia and Ukraine [100];
genotype-8 in Croatia [98]; genotypes −4 and −7 in Poland
[100]; genotypes −3 and −4 in France [86]; genotypes −1
and −4 in Germany [91]; and genotype-7 in Italy [144]. In
Australia, only genotype-1 was detected [90]. In North
America, genotypes −1, −3, and −4 have been detected in
the USA [86, 143, 145], and genotype-1 was reported in
the Caribbean [146]. In Central America, genotypes −1
and −5 were detected in Costa Rica [143]. A variety of
BLV genotypes (−1, −2, −4, −5, −7, and −9) were detected
in South America: genotypes −1, −2, −4, and −6 in
Argentina [93, 95, 97, 147, 148]; genotypes −1, −2, −5, −6,
and −7 in Brazil [122, 123, 127]; genotypes −4 and −7 in
Chile [94]; genotypes −1, −2, −6, and −9 in Bolivia [75];
genotypes −1, −2, and −6 in Peru and Paraguay [75]; and
genotype-1 in Uruguay [126]. In Asia, a total of seven BLV
genotypes have been confirmed (−1, −2, −3, −4, −6, −7,
and −10): genotypes −1 and −3 in Korea [101, 149]; geno-
types −1, −2, and −3 in Japan [93, 99, 143, 150]; genotypes
−1 and −6 in The Philippines [74]; genotypes −1, −6, and
−10 in Thailand [102]; genotypes −1, −4, and −7 in
Mongolia [77]; genotype-10 in Myanmar [76]; and geno-
types −1 and −6 in Jordan [151].
Based on the European Food Safety Authority panel

on animal health and welfare, BLV-induced EBL may

have originated and spread widely from an area of
Memel in East Prussia (now Klaipeda in Lithuania)
[113, 152]. The worldwide distribution of the disease
occurred due to the introduction of cattle from Euro-
pean countries into herds in other countries free of
the disease, and also through the international trade
of bred animals [113]. Interestingly, genotype-4
existed primarily in East Prussia as shown in Table 4.
Then, infected cattle were reintroduced into some
European countries; for example, BLV was introduced
into the UK via bred animals from Canada in 1968
and 1973 [113]. As detailed in some previous publica-
tions, the widespread distribution of BLV genotypes
within and between distant geographical locations
may be driven by the spread of virus through the
movement of live animal populations, associated with
human migration and animal domestication, and also
with viral transmission during close contact between
individual animals [97].

Future prospects
It appears that at least ten different BLV genotypes of
BLV strains are circulating in various geographical
locations worldwide. The completion of whole gen-
ome sequencing of these BLV strains has revealed
that BLV genomes contain a number of unique geno-
type specific substitutions not only in the env region,
but also in the LTR, Gag, Pro, Pol, Tax, Rex, R3, G4,
and miRNA encoding regions, distinguishing each
genotype [75]. However, the BLV genome sequences
of strains from different geographic origins, especially
the important sites on the regulation of viral replica-
tion of BLV, are relatively stable and highly conserved
among BLV strains, assigned to different genotypes.
By contrast, several groups recently reported that the
expression or pathogenesis of BLV does not depend
on strains, but rather, is related with the specific site
of mutation in their BLV genome [153, 154]. These
results clearly demonstrate that BLV strain should be
determined by full genome sequencing. However,
although BLV is present worldwide, BLV genotyping
studies are limited to certain areas, as shown in
Table 4. Therefore, the accumulation of the full
genome sequencing of BLV strains, assigned to differ-
ent genotypes worldwide may define the genotype-
dependent pathogenesis and association between
genetic variability in each genotype and its infectivity,
and differences in its functions in the future.

Conclusion
BLV is the etiologic agent of EBL, which is the most
common neoplastic disease in cattle. It infects cattle
worldwide, thereby imposing a severe economic
burden on the dairy cattle industry. In this review,
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we summarized currently available detailed informa-
tion on BLV infection worldwide, and indicated that
BLV has spread to most countries except for some
countries which are completely free of BLV by
successful BLV eradication. We also outlined at least
ten different BLV genotypes circulating in various
geographical locations worldwide and the distribution
of these BLV genotypes worldwide. This should be
useful information to those investigating BLV for the
potential development of diagnostic methods and
vaccines, and for reducing the incidence of BLV in
herds.
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Russia 4 7 8 Rola-Luszczak et al., 2013 [99]

Ukraine 4 7 8 Rola-Luszczak et al., 2013 [99]

Croatia 8 Balic et al., 2012 [97]

Poland 4 7 Rola-Luszczak et al., 2013 [99]

Belgium 4 Mamoun et al., 1990 [85]; Zhao & Buehring, 2007 [142]

France 3 4 Mamoun et al., 1990 [85]

Germany 1 4 Fechner et al., 1997 [90]

Italy 7 Molteni et al., 1996 [143]

Australia Australia 1 Coulston et al., 1990 [89]

America USA 1 3 4 Derse et al., 1985 [144]; Mamoun et al., 1990 [85]; Zhao & Buehring, 2007 [142]

Caribbean 1 Yang et al., 2016 [145]

Costa Rica 1 5 Zhao & Buehring, 2007 [142]

Argentina 1 2 4 6 Dube et al., 2000 [146]; Licursi et al., 2003 [92]; Monti et al., 2005 [94]; Dube et al.,
2009 [147]; Rodriguez et al., 2009 [96]

Brazil 1 2 5 6 7 Camargos et al., 2002 [121]; Camargos et al., 2007 [122]; Moratorio et al., 2010 [126]

Chile 4 7 Felmer et al., 2005 [93]

Bolivia 1 2 6 9 Polat et al., 2016 [75]

Peru 1 2 6 Polat et al., 2016 [75]

Paraguay 1 2 6 Polat et al., 2016 [75]

Uruguay 1 Moratorio et al., 2010 [126]

Asia Korea 1 3 Lim et al., 2009 [148]; Lee et al., 2015 [100]

Japan 1 2 3 Licursi et al., 2003 [92]; Zhao & Buehring, 2007 [142]; Matsumura et al., 2011 [98];
Inoue et al., 2011 [149]

Philippines 1 6 Polat et al., 2015 [74]

Thailand 1 6 10 Lee et al., 2016 [101]
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Jordan 1 6 Ababneh et al., 2016 [150]
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