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Background: Cucurbit chlorotic yellows virus (CCYV) is a recently reported bipartite crinivirus that causes chlorotic
leaf spots and yellowing symptoms on the leaves of cucurbit plants. The virus—host interaction of CCYV remains to
be elucidated, and the influence of criniviruses on the host gene transcriptome requires analysis.

Methods: We used transcriptome sequencing to analyse the differentially expressed genes (DEGs) caused by

Results: CCYV infection resulted in 865 DEGs. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis identified 67 pathways, and the three major enrichment pathways (according to the P-values)
were photosynthesis-antenna proteins (KO00196), phenylalanine metabolism (KO00360a), and phenylpropanoid
biosynthesis (KO00940). Of the 13 DEGs identified in phenylalanine metabolism, 11 genes encode disease
resistance-related phenylalanine ammonia-lyase (PAL) genes. Using quantitative real-time PCR, we validated the

Conclusions: Our study based on the CCYV-cucumber interaction provides comprehensive transcriptomic information,
and will improve our understanding of host—crinivirus interactions.

Background

Cucurbit chlorotic yellows virus (CCYV) is a newly
discovered cucurbit-infecting crinivirus of the family
Closteroviridae [1-7]. CCYV causes chlorotic leaf spots
and yellowing symptoms on the leaves of cucumber and
melon, resulting in lower yields and poorer quality fruit.
Like most members of the genus Crinivirus, CCYV
consists of a bipartite positive sense RNA genome: 8607-
nucleotide [nt] RNA1 and 8041-nt RNA2 [8]. RNAl
contains four open reading frames (ORFs): ORFla,
ORF1b, ORF2, and ORF3. ORFla encodes methyltrans-
ferase and RNA helicase, while ORF1b encodes an RNA-
dependent RNA polymerase motif. ORF2 and ORF3
encode P6 and P22, proteins with molecular masses of
approximately 6 and 22 kDa, respectively. The 3" ORFs
of RNA1 are quite variable among the criniviruses;
indeed, P6 and P22 show no significant similarity to
corresponding proteins from other criniviruses [5].
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RNA2 is predicted to encode eight proteins: P4.9,
HSP70h, P6.5, P59, P9, CP, CPm, and P26. The genes
encoding HSP70h, P59, CP, and CPm are conserved in
the family Closteroviridae as a “hallmark gene array,”
but the biological functions of the proteins encoded by
RNA1 and RNA2 have yet to be elucidated. As a newly re-
ported virus current studies were mainly focused on the
establishment of detection method [9, 10], construction of
infectious clone [11], and its transmission [12, 13].

Viral infection is a complex process involving an inter-
action between the virus and the host. Understanding
host responses during viral infection will help in the de-
velopment of effective strategies for virus control. Next-
generation sequencing (NGS) technologies have enabled
new approaches to transcriptome analysis [14, 15], and
have been applied extensively to uncover the responses
of plant hosts to viral infection [16-22].

This study used transcriptome analysis with a NGS
approach to identify differentially expressed genes
(DEGS) in cucumber after CCYV infection. The results
showed that 865 genes were differentially expressed
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Table 1 Primers used for gRT-PCR
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Gene name Gene primer for gRT-PCR (5" — 3')
Csa1G009810 S% ATTTGACCCGTTGGGATTAG
Csa1G009810 AP: GTTGACGACGAGGCGAAGTA
(C5a3G099680 S% GAGTTCCCTGGTGATTATGG
(Csa3G099680 AP TCTAAGACTTCGGGTGTTATG
Csa6G445760 S% CCTCTTCGTGGAACCATTAC
Csa6G445760 AP: AACAATAGAAGCCAATCCTG
(Csa3G645940 S% CTACTACCTCCGACAACGC
(Csa3G645940 AP: CACAGAGGCAGATTTCTCAT
(Csa3G730800 S% ATAATCACGCCAAGCCTCAG
(Csa3G730800 AP: CACCGACACCGAACAATCCT
(Csa3G836520 S% GGCTTTCCAATAACAACACT
(Csa3G836520 AP: ACCATTCGCCATATCTTCTG

Csa1G264550
Csa1G264550
CsalG423100
Csa1G423100
Csa2G179730
Csa2G179730
(Csa2G295430
(Csa2G295430
CsabG217470
CsabG217470
Csa6G318690
Csa6G318690

S CCCCTTTGCTAAGGAACCTA
AP TGTATGGCATCCCACTGTAT
S CCAACGGCCAAAGATTCTAC
AP: ATTGCAGCGATCATACTCGA
S AGGGAGGCGATAGTGGAATA
AP: GGCGGATAGTAATGACAGAACA
% ACGATGCGTGGGATGGGTAG
AP AGCGTGGCAGGTTCCAGAAG
S CACCACCGCTGACACTGACT
AP GGACGATGCTCGACCAAAG
S GAGCAGCCTCCAAGGATAAG
AP: TACGGACGCCAAGTTGTTAT

wm

CsUBIF S% CACCAAGCCCAAGAAGATC
CsUBIR AP: TAAACCTAATCACCACCAGC
S sense

PA antisense

after CCYV infection, with 554 up-regulated and 311
down-regulated. Based on the P-values, the three major
pathways involved were the photosynthesis-antenna pro-
tein (KO00196), phenylalanine metabolism (KO00360a)
and phenylpropanoid biosynthesis (KO00940) pathways.
The expression of genes involved in these three path-
ways was up-regulated. Using quantitative real-time

expression of 12 genes. Our study will improve our un-
derstanding of plant—virus interactions.

Methods

Plant growth and virus inoculation

Cucumber plants (Cucumis sativus) xinyou36 were
grown in a greenhouse under a 16 h light and 8 h dark

PCR (qRT-PCR), we validated the differential cycle at 25 °C. A CCYV infectious clone was allowed to
Table 2 Summary of the transcriptome results
Library CCYV-infected Mock-inoculated
CCYV-1 CCYV-2 CCYV-3 CK-1 CK-2 CK-3
Total clean reads 34158314 39138040 29823892 32161272 36948220 33314552

High quality clean reads 33769294 (98.86%)
31165849 (92.37%)

17842 (76.75%)

Unique mapped reads 35530271 (91.97%)

Number of mapped gene 18016 (77.49%)

38661136 (98.78%) 29444160 (98.73%)
26854505 (91.28%)
17803 (76.58%)

31754492 (98.74%)
29004918 (91.46%)
17729 (76.26%)

36473130 (98.71%)
33297555 (91.40%)
17732 (76.27%)

32946276 (98.89%)
30220259 (91.85%)
17717 (76.21%)

Total clean reads: the raw data after sequencing
High-quality clean reads: the reads after filtering

Unique mapped reads: the high-quality clean reads that can be mapped to the cucumber genome
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infiltrate cucumber cotyledons, as described previously
[12]. Cucumber plants inoculated with a mock solution
served as a control. At 18 days post-infiltration, the first leaf
tissue was collected from CCYV- and mock-infected plants.
Three biological replicates (three plants per replicate) were
processed independently.

RNA extraction

Total RNA was extracted from CCYV-infected leaves
using TRIzol reagent according to the manufacturer’s
instructions (Invitrogen, Carlsbad, CA, USA). The total
RNA was treated with RNase-free DNase I (Takara Bio,
Shiga, Japan) for 30 min at 37 °C to remove residual DNA.
The RNA concentration was determined by micro-
spectrophotometry analysis (NanoDrop 2000, Thermo
Fisher Scientific, Waltham, MA, USA), and the RNA
sample integrity was examined using Bio-analyzer 2100
equipment (Agilent Technologies, Germany).

RNA-Seq library construction and sequencing

The extracted total RNA samples were used for cDNA
synthesis. Poly (A) mRNA was isolated using oligo-dT
beads (Qiagen, Hilden, Germany). The mRNA was
broken into short fragments (~300 nt). First-strand
c¢DNA was synthesized using random hexamer-primed
reverse transcription. Second-strand cDNA was gener-
ated using RNase H and DNA polymerase I. The cDNA
fragments were purified and washed for end repair and
ligated to sequencing adapters. The cDNA fragments of
suitable size were purified and enriched by PCR to
obtain the final ¢cDNA library. The ¢DNA library was
sequenced using HiSeq™ 2500 equipment (Illumina, San
Diego, CA, USA). The same equipment was also used
for original image processing of sequences, base calling,
and quality value calculations.

Data analysis of RNA-Seq

Clean reads were selected after removing low-quality se-
quences (i.e., sequences in which more than 50% of the
bases had a quality rating below 20), reads containing
adaptor sequences, and reads with more than 5% un-
known bases. Then, the sequencing reads were mapped to
reference sequences using the Burrows—Wheeler Align-
ment Tool (http://bio-bwa.sourceforge.net/bwa.shtml). The
read coverage of one gene was used to calculate the
gene expression level, which was measured with the
reads per kilobase of exon model per million mapped
reads (RPKM) method.

Evaluation of differentially expressed genes

After annotation, the expressed genes were compared
between pairs of samples. The false discovery rate (FDR)
was used to determine the P-value in multiple tests. For
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the analysis, we used FDR <0.001 and a log, ratio>1 to
assess the significance of gene expression differences.

To determine the main biological functions and path-
ways of the DEGs, all DEGs were mapped to terms in
the Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) databases.

Quantitative real-time PCR validation

To validate the transcriptome results, qRT-PCR was
conducted using the total RNA for RNA-Seq. For re-
verse transcription, 1 pg of total RNA was used with the
PrimeScript RT reagent kit (Takara), according to the
manufacturer’s protocol. Twelve annotated unigenes
were selected for validation. Primer sets were designed
using Primer Premier software (ver. 5.0) (Table 1). The
qRT-PCR reactions were performed with 5 pL of SYBR
Green master mix, 20 ng of cDNA, and 200 nM each of
the sense and antisense primers, in a total volume of
10 pL (Takara). Ubiquitin was used as a reference for
calculating relative abundances using the 27°°CT
method. All qRT-PCR experiments were performed in
triplicate.

Results

Overview of transcriptome sequencing

To profile differential gene expression during CCYV in-
fection, RNA-Seq libraries were constructed for the
mock- and CCYV-inoculated cucumber plants. In total
29,823,892-39,138,040 clean reads of CCYV-infected
cucumber plants, and 32,161,272-36,948,220 reads of
mock-inoculated cucumber plants, were sequenced.
After filtering, 26, 854,505-35,530,271 unique reads
could be mapped to cucumber genes in the CCYV-
infected cucumber plants, and 29,004,918-33,297,555
unique reads were mapped to cucumber genes in the
mock-inoculated cucumber plants (Table 2).

Analysis of DEGs after CCYV infection
An FDR <0.001 and log, ratio > 1 were used to identify
DEGs. In total, 865 DEGs were identified, of which 311
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Fig. 1 The number of differentially expressed genes (DEGs) in response
to CCYV infection
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were down-regulated and 554 were up-regulated in re-
sponse to CCYV infection (Fig. 1). The fold change in
gene expression was mainly between 1 and 2 (Additional
file 1: Figure S1).

GO analysis

Further GO analyses of the DEGs classified the DEGs
into 75 cellular component, 240 molecular function, and
755 biological process genes (Additional file 2: Table S1,
Additional file 3: Table S2 and Additional file 4: Table S3).
Of these, 11 cellular component, 18 molecular function,
and 63 biological process genes were significant (Q < 0.05)
(Additional file 5: Figure S2, Additional file 6: Table S4).
The main categories identified for the cellular compo-
nents, molecular functions, and biological processes were

the cell and cell parts, binding and catalytic activity, and
metabolic and cellular processes, respectively (Fig. 2).

KEGG pathway enrichment analysis

To further understand the molecular and biological
functions of the DEGs, the genes were mapped to the
KEGG database. Pathway enrichment analysis identified
67 pathways, of which 10 were enriched using the criterion
P<0.05 (Fig. 3a, Additional file 7: Figure S3). Further en-
richment analysis of up- and down-regulated genes showed
that genes involved in photosynthesis-antenna protein
synthesis, phenylalanine metabolism, phenylpropanoid bio-
synthesis, nitrogen metabolism, porphyrin and chlorophyll
metabolism, photosynthesis, and the regulation of autoph-
agy were up-regulated (Fig. 3b), while genes involved in
carotenoid  biosynthesis, plant  hormone  signal
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Fig. 3 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. a All pathways were enriched using the criterion P < 0.05;

b Pathway enrichment analysis of up-regulated genes. ¢ Pathway enrichment analysis of down-regulated genes
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transduction, zeatin biosynthesis, alpha-linolenic acid me-
tabolism, fatty acid elongation, and tryptophan metabol-
ism were down-regulated (Fig. 3c). Of the 13 identified
phenylalanine metabolism DEGs, 11 genes encode
phenylalanine ammonia-lyase (PAL) genes, which are as-
sociated with disease resistance.

Validation of the transcriptome data by qRT-PCR

To validate the DEGs, 12 unigenes were selected for
qRT-PCR analysis: four unigenes from the top 10 path-
ways with the most significant differences, and eight
unigenes selected randomly from other pathways. The
results indicated that the qRT-PCR data were consistent
with the transcriptome results (Fig. 4).

Discussion

The recently reported CCYV virus can reduce cucurbit
quality and yield, and is become increasingly important
worldwide [23]. In this study, we used NGS approaches

to investigate the DEGs associated with CCYV infection
in cucumber plants. RNA-Seq analysis identified 19,192
known, and 532 new genes compared with the existing
23,248 cucumber reference genes, of which 865 genes
were differentially expressed. KEGG pathway enrichment
analysis revealed that photosynthesis-antenna protein
pathway, phenylalanine metabolism, and phenylpropa-
noid biosynthesis showed the most significant difference
based on the Q-value. Further analysis of the top 10
most significantly enriched KEGG pathways showed that
8 out of 10 were related to metabolism, while the other
two regulated autophagy and insulin resistance.
Phenylpropanoids play important roles in plant responses
towards biotic and abiotic stress [24, 25]. Phenylalanine
ammonia-lyase (PAL) contributes to several pathways
including phenylpropanoid biosynthesis and is an import-
ant interface between primary and secondary metabolism
[24, 26]. PAL plays an important role in plant defence, and
PAL gene expression was upregulated in response to



Sun et al. Virology Journal (2017) 14:18

different pathogen infection [27-29]. Here we found
that 11 DEGs encoding PAL gene were upregulated im-
plying the involvment of PAL gene in the defense
against CCYV infection. In our study genes involved in the
“plant-pathogen interaction” pathway were up-regulated
during CCYV infection. These defense-related genes in-
cluded WRKY transcription factors, calcium binding
protein, and respiratory burst oxidase homolog protein.
Here seven cucumber WRKY transcription factors were
found to be induced after CCYV infection. Previous
studies have shown that various WRKY genes from dif-
ferent plants are induced in response to the infection
by bacterial [30], fungal [31-33], and viral pathogens
[34, 35].

The repression of genes related to photosynthesis has
been reported in chlorotic tissues [36—40]. Here, we found
that genes involved in pathways related to photosynthesis
were up-regulated. This difference may be due to the time
point at which the samples were collected, because Pepino
mosaic virus strongly repressed photosynthesis-related
genes 4 days post inoculation, while several genes involved
in chlorophyll binding and light harvesting were induced
at 12 days post inoculation [41]. Besides, In Arabidopsis
leaves infected with fungi Albugo candida and in tomato
plants infected with Botrytis cinerea, enhanced photosyn-
thesis was oberved surrounding the area with decreased
photosynthesis at the infection site [42]. The stimulation
of photosynthesis maybe due to the defence strategy of
the plant.

Conclusion

Using transcriptome sequencing, we obtained a genome-
wide transcript profile of cucumber plants infected by
CCYV, and genes involved in the plant defense system
were found to be differentially expressed after CCYV in-
fection. The information obtained in this study will help
investigations of the detailed mechanisms of the CCYV-
host interaction and could identify resistance genes.
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