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Abstract

Human coronaviruses (HCoVs) are large RNA viruses that infect the human respiratory tract. The emergence of both
Severe Acute Respiratory Syndrome and Middle East Respiratory syndrome CoVs as well as the yearly circulation of
four common CoVs highlights the importance of elucidating the different mechanisms employed by these viruses
to evade the host immune response, determine their tropism and identify antiviral compounds. Various animal
models have been established to investigate HCoV infection, including mice and non-human primates. To establish
a link between the research conducted in animal models and humans, an organotypic human airway culture system, that
recapitulates the human airway epithelium, has been developed. Currently, different cell culture systems are available to
recapitulate the human airways, including the Air-Liquid Interface (ALI) human airway epithelium (HAE) model.
Tracheobronchial HAE cultures recapitulate the primary entry point of human respiratory viruses while the
alveolar model allows for elucidation of mechanisms involved in viral infection and pathogenesis in the alveoli.
These organotypic human airway cultures represent a universal platform to study respiratory virus-host interaction by
offering more detailed insights compared to cell lines. Additionally, the epidemic potential of this virus family highlights
the need for both vaccines and antivirals. No commercial vaccine is available but various effective antivirals have been
identified, some with potential for human treatment. These morphological airway cultures are also well suited for the
identification of antivirals, evaluation of compound toxicity and viral inhibition.
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Background
Respiratory diseases caused by human coronavirus infec-
tion are of both medical and socio-economic importance.
Currently, they are studied in various model systems, ran-
ging from cell lines to animal models. Originally, the im-
portance of HCoVs in the burden of human disease was
underestimated and as a result, no general therapy exists
to treat coronavirus induced disease in humans. Further-
more, no commercial vaccine is available leaving the hu-
man population vulnerable to emerging coronavirus
infections. Both the Severe Acute Respiratory Syndrome
and Middle East Respiratory Syndrome coronaviruses
have recently crossed the species barrier and entered the

human population to cause severe disease. In this review,
we summarize the current knowledge on human corona-
virus infection emphasizing the usefulness of organotypic
human airway cultures as a model system.

Coronaviruses
Coronaviruses (CoVs), a subfamily of the Coronaviridae
family, are positive strand RNA viruses with the largest
genome of all known RNA viruses (≥27 Kb). The gen-
omic RNA is capped, polyadenylated and associated with
nucleocapsid proteins within an enveloped virion. The
envelope is covered by the characteristic surface glyco-
protein that gives the virus particles their characteristic
crown-like (latin: corona) appearance [1].
All CoVs share a common genome organization where

the replicase gene encompasses the 5′-two thirds of the
genome and is comprised of two overlapping open read-
ing frames (ORFs), ORF1a and ORF1b that encode for
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up to 16 non-structural proteins. The structural gene
region, which covers the 3′-third of the genome, en-
codes the canonical set of structural protein genes in the
order 5′ - spike (S) - envelope (E) - membrane (M) and
nucleocapsid (N) – 3′. The structural gene region also
harbors several ORFs that are interspersed along the
structural protein coding genes. The number and loca-
tion of these accessory ORFs vary between the CoV
species [2, 3].
In animals, CoV infections are mainly associated with

respiratory and enteric disease and can have large eco-
nomical impact on the veterinary industry, e.g. Porcine
Epidemic Diarrhea Virus (PEDV) causes gastrointestinal
disease in pigs [4], Infectious Bronchitis Virus (IBV)
causes severe kidney and respiratory disease in chicken
[5] and Bovine Coronavirus (BCoV) causes both respira-
tory disease and diarrhea in cattle [6]. Additionally, CoV
infections can have other disease manifestations, such as
central nervous system (CNS) involvement, hepatitis and
peritonitis [7–10].
In humans, CoV infections are mainly associated with

respiratory diseases that are considered to have a large
impact on the economy due to reduced productivity of
the working population. Currently, 6 coronaviruses that
cause disease in humans have been discovered. Four of
those are commonly circulating and two have caused
epidemics of severe acute respiratory disease.

Human coronaviruses
The first human coronavirus (HCoV), B814, was de-
scribed in 1965. In the following years, over 30 add-
itional strains were characterized. Ten of those strains
could only be isolated from primary embryonic tracheal
organ culture. Others were readily isolated from mono-
layer cultures and were antigenically related to the
prototype strain HCoV-229E. HCoV-OC43, for organ
culture 43, was isolated and found to be distinct from
the 229E prototype strain [11, 12]. In the subsequent de-
cades, research on HCoVs would center on these two
distinct viruses.
However, in 2002, an unknown respiratory illness,

termed Severe Acute Respiratory Syndrome (SARS), sur-
faced in Asia. Research determined it to be caused by a
novel coronavirus [13, 14]. At the end of the epidemic,
this virus had infected over 8000 people, most in China,
and caused 774 deaths [15].
Following the discovery of this virus, two additional

CoVs causing human disease were identified. HCoV-NL63
was isolated in the Netherlands in 2004 from an infant
with bronchiolitis [16] and HCoV-HKU1 in 2005 from a
patient with pneumonia in Hong Kong [17]. In 2012,
another respiratory HCoV, Middle East Respiratory
(MERS)–CoV, was isolated from a patient with pneumonia
in Saudi-Arabia [18]. Unlike SARS-CoV, this virus is still

intermittently present in the human population and most
recently caused a large outbreak in South-Korea [19]. To
date, there have been over 1600 cases and almost 600
deaths related to MERS-CoV infection [20].

Commonly circulating coronaviruses
Out of the 6 known human coronaviruses, HCoV-229E,
HCoV-OC43, HCoV-NL63 and HCoV-HKU1 are com-
monly circulating in the human population and usually
cause general respiratory illness and cold symptoms in
healthy individuals [21–23]. Like influenza, these viruses
are capable of causing more severe disease in the im-
munocompromised and the elderly [24]. They infect the
human airway from the luminal side and progeny viruses
are released from the same side facilitating spread
through coughing and sneezing [25, 26]. These corona-
viruses are responsible for approximately 5–10% of all
upper and lower respiratory tract infections [27–29] but
the interactions between them and their natural host
cells are poorly understood. Currently, it is hypothesized
that most of the human coronaviruses may have origi-
nated from bats [30, 31]. For example, HCoV-229E is
believed to originate from African hipposiderid bats pos-
sibly using camelids as intermediate hosts [32].

Emerging coronaviruses
In the last 15 years, two coronaviruses have crossed the
species barrier and caused severe and fatal disease in
humans. SARS-CoV surfaced in 2002 and MERS-CoV in
2012 [13, 14, 18]. As opposed to the commonly circulat-
ing viruses, which generally only cause mild respiratory
symptoms, these viruses presented with higher case fa-
tality ratios, around 10 and 20–50% respectively [33, 34].
Currently, there is abundant phylogenetic evidence for

the bat origin of SARS-CoV, based on sequences of
SARS-like viruses found among bats in the recent years
[35–37]. The initial transmissions of SARS-CoV from
animals to humans were traced back to the live animal
wet markets and it was hypothesized that the virus made
its way into the human population using the civet cat as
an intermediate host. However, successful isolation of
SARS-like viruses from bats [38] and the fact that a con-
temporary bat SARS-like virus can infect human airway
cultures [39] suggest that an intermediate host between
humans and bat might not have been needed for the
transmission of SARS-CoV.
The evolutionary origin of MERS-CoV is less clear but

it has been speculated to be bats as well. Characterization
of an African bat virus closely related to MERS-CoV
shows that both the human and camel strains belong to
the same viral species and phylogenetic analysis suggests
that MERS-CoV infection in camels predates that in
humans, suggesting that camels infect humans and not
the other way around. Furthermore, the bat virus roots
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the phylogenetic tree providing further evidence for the
bat origin of MERS-CoV [40]. Additionally, human-to-
human transmission, although not robust, seems to
happen simultaneously as camel-to-human transmis-
sion. Therefore, any further adaptation of MERS-CoV
to the human host must be monitored carefully and
intermediate hosts identified [41].
Many bat coronaviruses have been identified in the re-

cent years further highlighting the zoonotic potential of
this family of viruses [30]. Given the documented history
of coronaviruses overcoming the species barrier and
causing severe disease in humans, it is important to
investigate the zoonotic potential of close evolutionary
relatives of common HCoVs in a culture model that re-
capitulates the aspects of the human airway, e.g. morph-
ology and receptor distribution. It’s important to study
the mechanisms of pathogenesis and the evolution of
zoonotic viruses in detail in order to identify molecular
determinants that affect either transmission or patho-
genesis. It’s also important to elucidate whether corona-
viruses currently circulating in animals are a potential
danger to the human population.

Human coronavirus receptors and cell tropism
All of the known cellular receptors of HCoVs belong to
the same protein family, the membrane ectopeptidases.
Interestingly, the catalytic activity of these peptidases is
not required for viral entry but rather the co-expression
of other host peptidases activates the HCoV spike pro-
teins [42, 43]. It has been established that the human
transmembrane serine proteases TMPRSSII and HAT
cleave and activate the HCoV-229E, SARS- and MERS-
CoV spike proteins during viral entry [44, 45].
Out of the four commonly circulating coronaviruses,

HCoV-229E is the only one that infects non-ciliated cells
using the human Aminopeptidase N (hAPN) as its re-
ceptor [46]. This peptidase is predominantly expressed
on non-ciliated cells in the human bronchus [47]. SARS-
CoV and HCoV-NL63 both utilize the Angiotensin Con-
verting Enzyme 2 (ACE2) for cellular binding [48, 49].
ACE2 is expressed on ciliated bronchial cells along with
endothelial cells and both type I and II alveolar cells [50].
MERS-CoV was found to use a different receptor than
SARS-CoV, namely the dipeptyl-peptidase 4 (DPP4) [51].
DPP4 is widely expressed in endothelial cells and various
epithelial tissues in the human body [52]. In ex vivo hu-
man lung organ cultures, different tropism of SARS- and
MERS-CoVs was observed. MERS-CoV can actively repli-
cate in both bronchial and alveolar tissue while SARS-
CoV primarily replicates in alveolar tissue [53]. The wide
cellular tropism of MERS-CoV might contribute to its as-
sociated disease severity and high mortality rate whereas
the alveolar replication of SARS-CoV would explain why
it generally presents with pneumonia.

The cellular surface receptors for HCoV-OC43 and
HCoV-HKU1 are currently unknown but receptor de-
terminants for these two viruses have been identified as
N-acetyl-9-O-acetylneuraminic acid and O-Acetylated
Sialic acid, respectively [54, 55].
All of these viruses can be successfully cultured and

investigated in HAE cultures [56, 57]. The discovery of
HCoVs, their receptor usage, cell tropism and receptor
binding domain (RBD) is summarized in Table 1.
Furthermore, established reverse genetic systems for

HCoV-229E [58], HCoV-OC43 [59] and HCoV-NL63
[60] allow for controlled virus mutation and fluorescent
transgene insertion to better understand the interaction
of these viruses with their pulmonary host cells.

Animal models for human coronaviruses
Traditionally, respiratory viruses are studied in animal
models, usually mice and ferrets [48, 61]. However, it is
not always possible to correctly recapitulate human in-
fection and disease in animal models. The establishment
of transgenic animal models for human disease is attain-
able when either the virus receptor has been identified,
which is not the case for all HCoVs, or when viruses can
be adapted to a different host. An adapted human virus
may not share the same properties as the original human
virus. SARS-CoV was found to replicate naturally in
various strains of inbred mice but to enhance clinical
signs of disease the hACE2 was introduced into these
mice. This resulted in murine models with varying
degree of human disease similarity. Since SARS-CoV
already replicated in mouse cells, adapting it to the mur-
ine host was quite successful. This resulted in three
mouse adapted strains that caused disease in mice simi-
lar to severe SARS-CoV cases in humans [62].
In an effort to establish a mouse model for HCoV-

229E infection transgenic hAPN mice were created.
However, the insertion of the hAPN into mouse cells is
not enough to establish robust HCoV-229E infection in
vivo. Nevertheless, cells isolated from these transgenic
animals could be infected in vitro [63, 64].
The emergence of both SARS- and MERS-CoVs empha-

sized the importance of establishing animal models for
human coronaviruses. Currently, a few animal models for
MERS-CoV have been established. Mice carry their own
variant of the viral receptor DDP4 that differs from the
human in regions important for MERS-CoV spike inter-
action and by replacing this receptor with the human one,
MERS-CoV can infect mouse cells but the method of
hDPP4 insertion has an effect on the degree of pathogen-
esis observed in these mice [65, 66]. Various non-human
primates (NHPs) can be naturally infected with both
SARS- and MERS-CoVs. However, disease presentation
and pathogenesis differs between the different subspecies
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and NHP models are expensive, although ideal to study
human infection due to their genetic similarity [62].
To establish a link between the research conducted in

animal models and humans, an organotypic airway cul-
ture system resembling the human airway epithelium
has been developed. This model is a universal platform
to study human respiratory viruses [67–70]. They have
been used successfully for infection studies with all
known human coronaviruses [56, 57]. Furthermore, the
cultures can be inoculated with a low infectious dosage
to mimic natural infection in the human airway.
Whereas, animal models often require both high dosage
and artificial inoculation routes.

Human airway epithelial cell cultures
Organotypic cell cultures are becoming increasingly
common. Different cell culture models exist to depict
different epithelial tissues [71]. These cultures closely re-
semble their tissue of origin and contain various differ-
ent cell types with distinctive roles in the polarized
tissue. Currently, various organotypic cell culture models
exist to represent the different areas of the human air-
ways. The human lungs span a long anatomical distance
and carry out different functions depending on anatom-
ical location [72, 73]. The structure of the epithelium
also differs the further you descend into the airways.
Tracheal and bronchial epithelium is columnar and
pseudostratified, with every cell in contact with the
basement membrane, while the epithelium in the
alveoli is comprised of a single cell layer to facilitate
air-exchange [74].
Tracheobronchial cells are one of the first targets of

human respiratory viruses and can be cultured in air-
liquid interface (ALI) where the apical side of the cell
layer is exposed to air while the basolateral side is sub-
merged in medium. Tracheobronchial cells cultured in
that way form a pseudostratified epithelial layer that
both morphologically and functionally resembles the hu-
man upper conducting airway (Fig. 1a) [75, 76]. After
differentiation, these cultures contain many different cell
types such as basal, ciliated and goblet cells. They also
produce protective mucus, much like in vivo epithelium.

When compared to primary bronchial cells in sub-
merged two-dimensional culture, the gene expression of
primary ALI cultures differs significantly. However, the
expression pattern of primary human bronchial ALI cul-
tures is comparable to that of in vivo epithelium. The
human bronchial cell line Calu-3 has been used as a cul-
ture model for respiratory epithelium but its gene ex-
pression in ALI cultures is more similar to submerged
bronchial cell cultures than differentiated epithelium
[77]. Additionally, Calu-3 cells respond differently to
MERS-CoV infection compared to primary HAE cul-
tures. During infection in Calu-3 cells, profound apop-
tosis was detected within 24 h of infection [78] while
infection of primary HAE cultures does not result in any
disruption of the cell layer [57]. Therefore, the primary
tracheobronchial ALI culture model is especially fitting
for human respiratory virus research since it accurately
recapitulates the primary entry point for these viruses.
By using these cultures, virus replication and host inter-
actions can be studied in natural target cells. Further es-
tablishing the usefulness of this system HCoV-HKU1
was propagated for the first time in ciliated cells of
bronchial HAE cultures in 2010 after culturing it in con-
ventional cell lines had failed [26].
Alveolar epithelial ALI cultures (Fig. 1b) can also be

used for virus-host interaction studies and are especially
applicable when a viral infection causes pneumonia and
alveolar damage [79]. HCoV-HKU1 has also been propa-
gated in alveolar HAE cultures and exhibits a strong
tropism for alveolar type II cells and causes large syn-
cytia formation upon infection [80].
When compared to traditional two dimensional cell cul-

tures, the HAE cultures are more cumbersome and their
preparation is time consuming but they do have an advan-
tage over traditional monolayer cell cultures when it comes
to virus-host interaction studies. Different types of ALI cul-
tures used for virus research are summarized in Table 2.

Innate immunity
Within the respiratory epithelium the innate immune
system has a major protective role as the first line of
defense against respiratory pathogens. In particular, the

Table 1 Human coronavirus overview

Name Discovery Protein Receptor Tropism Receptor Binding Domain (RBD) References

HCoV-229E 1966 Aminopeptidase N (hAPN) Non-ciliated cells S407-547 [46, 56, 57, 103, 104]

HCoV-OC43 1967 Unknowna Ciliated cells Unknown [56, 105]

SARS-CoV 2003 Angiotensin Converting Enzyme 2 (ACE2) Ciliated cells S303-537 [13, 14, 48, 57, 106]

HCoV-NL63 2004 Angiotensin Converting Enzyme 2 (ACE2) Ciliated cells S476 -616 [16, 49, 56, 107]

HCoV-HKU1 2005 Unknownb Ciliated cells Unknown [17, 56]

MERS-CoV 2012 Dipeptyl-peptidase 4 (DPP4) Non-ciliated cells S358-588 [18, 34, 51, 108]
aReceptor determinant identified as N-acetyl-9-O-acetylneuraminic acid
bReceptor determinant identified as O-Acetylated Sialic acid
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interferon (IFN) system orchestrates hundreds of differ-
ent cellular effector proteins that (i) protect the epithe-
lial barrier by altering the physiological and cellular
environment, (ii) impair virus propagation, spread and
transmission, and (iii) shape the host’s adaptive immune
response. Recent publications have demonstrated that
the innate immune system is functional in the HAE cell
culture system and that most pathogen recognition
receptors are expressed and up-regulated upon treat-
ment with exogenous stimuli [57, 81].
In general, HCoVs do not elicit a strong innate im-

mune response in primary target cells of the human air-
way early during infection. Despite the presence of all
major pathogen recognition receptors, no elevated ex-
pression of IFN beta, pro-inflammatory cytokines or
interferon stimulated genes can be observed up to 12 h
post-infection in HAEs infected with HCoV-229E,
MERS- or SARS-CoVs [57]. This is most likely due to
the intrinsic CoV properties harbored in the replicative
non-structural proteins that actively aid in avoiding rec-
ognition by the host innate immune system. For

example, the 5′ termini of the viral mRNA are capped
making them indistinguishable from the host cellular
mRNAs and no longer detectable by cellular sensors.
Furthermore, CoV replication is associated with the
appearance of double membrane vesicles (DMVs) in the
host cell cytoplasm, which might serve as a protective
shield for viral RNA to prevent recognition by cytoplas-
mic RNA sensors [82–85].
In addition to the non-structural proteins, various

CoV accessory proteins have been discovered to inhibit
interferon signaling at different stages of the host innate
immune response. For example, MERS-CoV accessory
protein 4a inhibits innate antiviral signaling by suppress-
ing the activation of MDA5 and RIGI [86, 87] whereas
4b inhibits the induction of the IFN-beta promoter [88].
While ORF 4a and 4b are IFN antagonists in the genome
of MERS-CoV, SARS-CoV ORF3b antagonizes IFN sig-
naling through MAVS/RIGI [89]. Whereas SARS-CoV
ORF6 disrupts IFN signaling by blocking the nuclear
translocation of STAT1 [89, 90]. These discoveries high-
light that HCoVs employ similar yet different strategies

Table 2 Different types of ALI cultures used in coronavirus studies

Cell types Origin HCoVs Features References

Primary bronchial Trachea, Bronchus All HCoVs Differentiated pseudostratified
epithelium, many cell types

[56, 57]

Calu-3 Sub-mucosal glands (adenocarcinoma) MERS-CoV, SARS-CoV Single or polarized epithelium,
one cell type

[109, 110]

Primary alveolar Alveoli MERS-CoV, SARS-CoV, HCoV-HKU1 Differentiated squamous epithelium,
two cell types

[79, 80, 111]

Fig. 1 Human airway epithelial cell culture models and HCoV receptor distribution. a: Schematic representation of human tracheobronchial cells
at air-liquid interface (ALI). They form a pseudostratified epithelial layer containing different cell types. b: Schematic representation of human alveolar
cells at ALI that form single squamous epithelium containing only two cells types, alveolar type I and II cells. c: Illustration of the mode of infection,
release and associated cell tropism of the six human coronaviruses (HCoVs) in the human airway epithelial cell culture model. SARS-CoV, HCoV-NL63,
HCoV-OC43 and HCoV-HKU1 infect ciliated cells but the receptors for HCoV-HKU1 and HCoV-OC43 are currently unknown. HCoV-229E and MERS-CoV
infect non-ciliated cells using different receptors
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to evade the innate immune response during infection in
the respiratory epithelium.

Therapy
Despite that respiratory infections with HCoVs can re-
sult in severe respiratory disease there are currently no
effective prophylactic or therapeutic treatment options
available. However, the emergence of novel corona-
viruses has emphasized the need to develop effective
treatment options. For example, vaccines using the
spike proteins of both SARS- and MERS-CoVs have
proven protective in animal models [91, 92] suggesting
that a vaccine against HCoVs for human use might be
achievable.
Additionally, various drugs that inhibit HCoV infec-

tion at different stages of the replication cycle have been
reported and some could potentially serve as treatment
options for HCoV associated severe respiratory disease.
For example, patients presenting with severe respiratory
disease, caused by SARS- or MERS-CoVs, are generally
treated with steroids and interferon, sometimes in com-
bination with the antiviral drug Ribavirin [93–96]. This
treatment, however, is not especially effective highlight-
ing the need for HCoV specific antivirals. Many different
compounds have been determined to have anti-HCoV
activity. For example, protease inhibitors which suppress
HCoV entry [97–99], Cyclosporin A (CsA) treatment
blocks the replication of coronaviruses from all sub-
groups [100] and non-immunosuppressive derivatives of
CsA represent a possible therapeutic option for both hu-
man and animal CoV infections.
HCoV infection can also be inhibited by pre-treating

HAE cultures with either recombinant IFN alpha or
lambda [57]. Similar effect has also been shown for re-
combinant IFN alpha and beta which could inhibit
MERS-CoV in ex vivo lung cultures [53]. As previously
described, IFN treatment of active HCoV infection is not
particularly effective in vivo. Therefore, the use of IFN in
humans might be limited to prophylactic treatment of
exposed persons and/or health care workers treating in-
fected patients.
Screenings of compound libraries have also resulted in

the identification of some HCoV specific antivirals. For
example, a novel small compound inhibitor (K22) has
been identified, and showed to be effective against a
broad spectrum of CoVs and could inhibit both HCoV-
229E and MERS-CoV in HAE cultures [101]. Addition-
ally, HCoV-NL63 has been inhibited in HAE cultures
with polymer-based compounds [102].
To date, most treatment and inhibitor studies have

been conducted in HCoV susceptible cell lines. However,
the HAE cultures represent an ideal system to test the
application and efficacy of those already identified, and
new, antiviral compounds against HCoVs in cells that

represent the primary site of replication. Furthermore,
the HAE cultures are heterogenous, containing many
different cellular sub-populations, and would allow for
the evaluation of compound toxicity and effect in a dif-
ferentiated layer similar to human airway epithelium.
Compounds already shown to inhibit HCoVs in cell lines
should be applied to HAE cultures as well before any
animal or human trials.

Conclusions
HCoV induced respiratory diseases are of both medical
and socio-economic importance. The emergence of
SARS- and MERS-CoV and the yearly circulation of the
four common HCoVs highlight the importance of eluci-
dating the different mechanisms employed by HCoVs to
evade the host immune system as well as identifying
antiviral compounds and human vaccine candidates. The
HAE culture system is based on primary human cells of-
fering a unique platform to study respiratory viruses in
cells representing the primary entry point of these vi-
ruses, bronchial epithelial cells, or investigate the inter-
action of HCoVs and the distal airways, in type I and II
alveolar cells. Additionally, the inclusion of airway epi-
thelial cultures for other species enables the study of
zoonosis and animal-to-human transmission. Currently,
many aspects of HCoV infection and pathogenesis re-
main to be determined. The HAE culture system, both
tracheobronchial and alveolar, represents a unique plat-
form to study virus-host interaction in natural target
cells at the molecular level. These cultures are becoming
more common and more relevant to HCoV research.
Especially, for those viruses for which there is no animal
model, as they provide an organotypic substitute for
virus – host interaction studies.
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