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Abstract 

Background: Brain–computer interfaces (BCI), initially designed to bypass the peripheral motor system to externally 
control movement using brain signals, are additionally being utilized for motor rehabilitation in stroke and other 
neurological disorders. Also called neurofeedback training, multiple approaches have been developed to link motor-
related cortical signals to assistive robotic or electrical stimulation devices during active motor training with variable, 
but mostly positive, functional outcomes reported. Our specific research question for this scoping review was: for 
persons with non-progressive neurological injuries who have the potential to improve voluntary motor control, which 
mobile BCI-based neurofeedback methods demonstrate or are associated with improved motor outcomes for Neu-
rorehabilitation applications?

Methods: We searched PubMed, Web of Science, and Scopus databases with all steps from study selection to data 
extraction performed independently by at least 2 individuals. Search terms included: brain machine or computer 
interfaces, neurofeedback and motor; however, only studies requiring a motor attempt, versus motor imagery, were 
retained. Data extraction included participant characteristics, study design details and motor outcomes.

Results: From 5109 papers, 139 full texts were reviewed with 23 unique studies identified. All utilized EEG and, except 
for one, were on the stroke population. The most commonly reported functional outcomes were the Fugl-Meyer 
Assessment (FMA; n = 13) and the Action Research Arm Test (ARAT; n = 6) which were then utilized to assess effec-
tiveness, evaluate design features, and correlate with training doses. Statistically and functionally significant pre-to 
post training changes were seen in FMA, but not ARAT. Results did not differ between robotic and electrical stimula-
tion feedback paradigms. Notably, FMA outcomes were positively correlated with training dose.

Conclusion: This review on BCI-based neurofeedback training confirms previous findings of effectiveness in improv-
ing motor outcomes with some evidence of enhanced neuroplasticity in adults with stroke. Associative learning para-
digms have emerged more recently which may be particularly feasible and effective methods for Neurorehabilitation. 
More clinical trials in pediatric and adult neurorehabilitation to refine methods and doses and to compare to other 
evidence-based training strategies are warranted.
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Introduction
Neurofeedback training is a promising 
neurorehabilitation strategy for improving motor 
function that has emerged from the Brain Computer 
Interface (BCI) field. In contrast to bypassing voluntary 
motor control by linking the brain to a wearable device 
that provides movement, BCI-mediated neurofeedback 
training (BCI-NFT) in a rehabilitation context aims to 
harness and link brain activity during real or imagined 
movement to strengthen adaptive neural connections 
and thereby enhance motor capabilities. BCI applications 
were initially developed to enable individuals who are 
virtually unable to communicate or perform motor 
functional activities, e.g. those with locked  in syndrome 
or Amyotrophic Lateral Sclerosis, to generate reliable 
brain activation signals representing their intent in order 
to control assistive technology. While the possibilities of 
exploiting brain control of devices are remarkable, the 
current reality is that these systems are mainly capable 
of producing a reliable signal to control an external 
device such as a wearable exoskeleton (e.g. to take a step) 
[1] or to discriminate among a limited group of preset 
options (e.g. to move the right or left hand) [2], and often 
require extensive training for proficiency that not all 
who attempt this can achieve [3]. Advances in collection, 
processing and identification or classification of brain 
signals associated with motor intent gleaned from these 
assistive or substitutive BCI technologies have led to the 
design of rehabilitative or restorative BCIs to provide 
a means of motor training for those with some degree 
of, or potential for, voluntary motor ability. BCI-NFT 
may be a particularly effective approach for individuals 
with neurological disorders who have limited to no 
residual motor activity [4, 5] and may not yet be able to 
benefit from existing effective rehabilitation strategies 
that require a baseline amount of active movement [5]. 
These patients, however, can still imagine or attempt to 
move and the associated brain activity can be used as the 
control command for BCI-NFT systems.

While BCI-NFT paradigms have been an active area 
of research in neurorehabilitation for approximately 
the last 15 years, neurofeedback has been utilized for 
decades for many clinical applications such as the 
treatment of attention deficit hyperactivity disorder [6], 
anxiety [7], depression [8], schizophrenia [9], autism 
spectrum disorder [10], drug addiction [11], insomnia 
[12], seizures [13], and pain management [14], among 
others. Neurofeedback is defined broadly as “a kind of 

biofeedback, which teaches self-control of brain functions 
to subjects by measuring brain waves and providing a 
feedback signal” [15]. Generally, when treating different 
behavioral conditions, specific brain signals are identified 
as targets for modulation in a specified direction, e.g. up 
or down regulation, with the intended training-induced 
change in brain activity presumed to be linked directly 
to a positive change in the target behavior. Since most 
individuals have little if any inherent awareness of their 
success in modulating brain activity, neurofeedback 
training involves pairing their performance with an 
external, often visual, cue that gives them feedback on 
their success [16]. Based on the principle of operant 
conditioning, individuals gradually learn to reinforce 
the modulations that were deemed most successful and 
eliminate those that were less or unsuccessful. While 
some studies demonstrate that neurofeedback can be 
effective in certain disorders, the preponderance of 
evidence is inconsistent and neurofeedback for most 
applications is still largely considered an alternative 
treatment [15].

In neurorehabilitation, external neuromodulation 
using transcranial magnetic stimulation (TMS) or 
transcranial direct current stimulation (tDCS) paired 
with motor training has demonstrated effectiveness in 
stroke and cerebral palsy (CP) [17, 18]. Also a form of 
neuromodulation, BCI-NFT instead requires the user 
to activate their own neural pathways. This can be done 
using either a non-specific or specific approach. An 
example of a non-specific approach would be to identify 
any strategy that successfully modulates the desired 
rhythm and then use that conditioned response to control 
a cursor on a computer or a device, which is the classic 
approach to neurofeedback training. Although this type 
of neurofeedback, may activate central nervous system 
pathways, the induced plasticity is usually widespread 
and not specific to the target circuit and may also require 
much longer training [19, 20]. A second more task-
specific approach would be to think about or perform 
a target movement or movements which then couples 
movement-related brain-states to time-correlated 
sensory feedback; i.e. a component of the brain signal 
produced by the motor intention or attempt is extracted 
in real-time and used to activate an assistive device. 
This paradigm, also referred to as associative learning, 
aims to both augment the voluntary motor response 
and reinforce the link between motor function and the 
brain if the sensory feedback is appropriately timed to 
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arrive during the most active state of brain activation. 
Furthermore, this type of training has the potential to 
increase the intensity or efficiency of rehabilitation by 
providing high quality repetitive motion and augmented 
feedback [21]. Therefore, BCI-NFT systems are being 
increasingly deployed for motor training [22–27]. 
These are also reaching a level of technological maturity 
whereby they can provide faster and more reliable 
feedback for rehabilitation applications [28–32].

The brain state used for generating the BCI generated 
feedback for motor training is either motor imagery 
(MI), i.e. imagining the target motion without execution, 
or motor attempt (MA), which may or may not result 
in overt movement depending on user’s capability. 
MI continues to be a commonly utilized option for 
the control of BCI-NFT systems [24, 25, 27, 33–35]. 
However, with MI, patients may have to actively suppress 
the movement of the target limb while imagining the 
movement, and it requires learning and prolonged 
concentration which might be difficult for very young 
or cognitively challenged individuals. A recent study 
in children with CP [36] used age-specific metaphoric 
instructions to simplify the MI task for the participants, 
indicating that this is possible; however, it has also been 
shown that even some healthy adults may not be able to 
learn how to control BCI systems using MI [37–39]. It is 
clearly more natural to attempt the movement as well as 
more verifiable [40]. When the goal of the neurofeedback 
therapy is strengthening or reestablishing a lost motor 
function, controlling the BCI system by attempting to 
move the target limb, rather than using MI, may improve 
outcomes because MA maximizes the similarities 
between the brain-state used to control the BCI and the 
functional task. Therefore, the plasticity induced by the 
training might be more pronounced and more likely to 
persist beyond the therapy period [41]. A recent review 
[42] concluded that using MA for BCI-NFT may be more 
effective than using MI (p=0.07) based on a comparison 
of two MA studies and seven MI studies. Although the 
sensorimotor loop is disrupted in patients with lost 
or limited voluntary movements due to neurological 
disorders, some accessible brain pathways may still exist 
[43]. Thus, rather than learning an effective MI strategy, 
MA appears to be a better approach where possible for 
motor rehabilitation to restore more normal timing of 
motor preparation, execution, and resultant peripheral 
input from the muscle effectors [43, 44] and to potentially 
form a stronger or new sensorimotor loop [4, 22].

Several narrative reviews have been published in 
recent years which discuss clinical outcomes, underlying 
mechanisms, or technical advances and challenges 
across a broad range of BCI and/or neurofeedback 
applications, many of which also mention their use for 

motor rehabilitation [21, 30, 45–48]. Other reviews 
have focused specifically on the effects of BCI-NFT in 
motor rehabilitation; including four systematic reviews 
addressing the stroke population. The review by Carvalho 
et al. focused on upper limb recovery and only included 
randomized controlled trials (RCTs) that reported at 
least one clinical outcome (n = 9 studies) [49]. Similarly, 
Bai et  al. performed a meta-analysis on the effects of 
BCI-NFT on the upper limbs from 33 studies including 
18 single-group studies and 15 with a comparison 
group [42]. Baniqued et al. reviewed 30 studies on BCI-
robots for hand rehabilitation, 19 of which were related 
to preclinical development of these systems and 11 of 
which were on their use in stroke [2]. Among these 
systematic reviews, the meta-analysis by Cervera et  al. 
[50] is the only one that reviewed the effect of BCI-NFT 
on both upper and lower limbs in the stroke population. 
Studies which used BCI for both control and intervention 
groups were excluded from their review, resulting in 
nine RCTs included in this review. Both of the meta-
analyses by Cervera et al. [50] and Bai et al. [42] focused 
on the Fugl-Meyer Assessment (FMA) score, showing 
positive trends in favor of the BCI-NFT group. Bai et al. 
showed a medium effect size favoring BCI-NFT for 
improving upper extremity function after intervention, 
while the long-term effects reported in five studies were 
not significant [42]. In Cervera et  al. the standardized 
mean differences in the FMA scores were higher in 
neurofeedback versus control groups, although the 
between group differences did not reach the threshold of 
clinical significance [50].

Although not definitive, the effectiveness of BCI-NFT 
in stroke as reported in these meta-analyses generally 
appears promising. However, it is also notable that results 
across studies within these reviews varied considerably 
as did the methods, with no one method touted as 
superior. The aim of this review, therefore, is to evaluate 
which BCI-NFT methods appear to be associated with 
greater or poorer effectiveness in improving motor 
skills, to potentially identify the key components for 
successful interventions. Since our primary focus is 
on methodological differences and their associations 
with outcomes, rather than clinical effectiveness per se, 
we decided to perform a scoping review. In contrast to 
previous reviews, here we chose to only include those 
studies where the participants were instructed to attempt 
the target movement (MA), not simply to imagine it. We 
also limited our focus to those using non-invasive brain 
imaging techniques such as EEG and functional near-
infrared spectroscopy (fNIRS) because these are far more 
accessible in clinical practice and more ecologically valid 
since everyday movements can be practiced in upright 
and more naturalistic settings. We aimed to include all 
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studies on populations with neurological conditions that 
are non-progressive and therefore have the potential to 
respond to rehabilitation strategies aiming to improve 
motor capabilities (e.g. adults and children post-stroke 
or with cerebral palsy, among others). The ultimate goal 
of this review is to provide recommendations to the field 
of neurorehabilitation on the neurofeedback techniques 
and protocols most likely to improve the outcome of 
motor rehabilitation in those with non-degenerative 
neurological disorders for future implementation into 
therapy settings.

Methods
This scoping review was registered in the Open Science 
Framework database (registration ID: DOI 10.17605/
OSF.IO/2KHRX). and was conducted according to 
the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses extension for Scoping Reviews 
(PRISMA-ScR) Checklist [51]. Our research question 
was formulated for scoping reviews to include the 
intended Population, Concept, and Context (PCC) [52]: 
For persons with non-progressive neurological injuries 
who have the potential to improve their voluntary 
motor control (Population), which non-invasive 
mobile BCI-NFT methods, if any, demonstrate or are 
associated with improved motor outcomes (Concept) for 
Neurorehabilitation applications (Context)?

Search strategy
A medical librarian at the National Institutes of Health 
was consulted to develop the optimal search strategy 
to address our research question. A title and abstract 
keyword search was conducted utilizing the following 
search terms and general strategy adapted as needed 
for the PubMed, Web of Science, and Scopus databases: 
“motor” AND “Brain Computer Interface” OR “BCI” 
OR Neurofeedback” OR “BMI” OR “EEG biofeedback”. 
Only articles published in the English language were 
considered. There was no restriction on the date of 
publication with April 15, 2021 as the final search date.

Eligibility criteria
All clinical studies on the application of non-invasive, 
mobile (i.e. EEG or fNIRS) BCI-NFT for motor 
neurorehabilitation of individuals (children or adults) 
with non-progressive neurological injuries (e.g., stroke 
or CP) were included. We excluded studies that only 
enrolled healthy participants or those with progressive 
neurological conditions such as Parkinson’s Disease or 
Amyotrophic Lateral Sclerosis. Studies using Magnetic 
Resonance Imaging (MRI) or magnetoencephalography 
(MEG) to deliver neurofeedback were excluded. 
Systematic or scoping reviews were not included; 

however, reference lists of relevant reviews were scanned 
for studies that may not have been captured in the 
initial search. Further criteria for inclusion were that the 
interventions had to utilize a feature of the participants’ 
cortical activity within the training session, and that 
participants had to be attempting to perform a voluntary 
motor task. Studies in which participants were using 
motor imagery or action observation to generate the 
brain activation signals used for neurofeedback were 
excluded. Finally, since the goal was to examine how 
methodological differences might affect motor outcomes, 
only studies that reported these measures were included.

Selection criteria and data charting
Duplicates were initially eliminated within ENDNOTE. 
Titles and abstracts were screened independently in 
EndNote by two authors (AB, DD) to remove additional 
duplicates and to identify studies that potentially met the 
inclusion criteria. Disagreements on which articles to 
retain were resolved through discussion. Full texts of all 
potentially eligible papers were independently assessed 
by the same two review authors, with disagreements 
again resolved through discussion. Reference lists of 
the final set of papers, as well as of relevant systematic 
reviews, were also scanned to ensure that no studies were 
missed. Then, three authors (AB, VH, WL) extracted 
data independently from the final group of studies 
satisfying all inclusion and exclusion criteria, with each 
assigned a group of articles to extract data from using 
a comprehensive pre-piloted data extraction form, 
in Google Sheets format, and a group to verify data 
extracted by another author.

Data items
Extracted information included: study population and 
participant demographics; number of participants 
in intervention and control conditions, motor task 
performed during BCI-NFT and whether it was an upper 
limb or lower limb task, control condition, dosage of BCI-
NFT, cortical activity feature(s) extracted to generate 
the feedback, cortical region(s) the feature was selected 
from, signal processing technique used for extracting 
the feature(s) and generating feedback, feedback timing, 
type of feedback (e.g., visual, robotic, functional electrical 
stimulation), whether any other additional training (e. 
g., conventional physical therapy) was provided before 
and/or after BCI-NFT , and finally, all reported motor 
outcome measures.

Statistical analysis
Where possible, mean differences in motor outcome 
measures across specific feature categories (e.g. feedback 
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types) were analyzed using a General Linear Model 
(GLM) or independent t-tests. Pearson correlation 
procedures were also used to relate specific training 
aspects or features to motor outcomes (p<0.05 for all 
analyses).

Results
Our search yielded 8707 citations across all databases 
(see Fig.  1 for details of the search result and entire 
screening process). After eliminating duplicates, 5190 
unique articles remained. After title and abstract screen-
ing, 5051 articles were excluded. The full texts of the 
remaining 139 studies were reviewed with respect to 
inclusion-exclusion criteria. The criterion requiring the 
closest examination and generating the most discus-
sion was whether participants were asked to attempt or 
imagine movement to elicit neurofeedback, regardless 
of whether or not they were able to perform the target 
movement on enrollment.

A total of 30 studies met all criteria and their data 
were extracted. During this process, it became apparent 
that some studies were from the same research 
group so were examined closely for any duplication 
of participants. Seven studies [41, 53–58] were 
conducted under the same clinical trial (registered 
at ClinicalTrails.gov, # NCT02098265) and used the 
same pool of subjects which varied by study; therefore, 
the most recent article with the most inclusive set of 
participants was retained, with the others excluded to 
avoid duplication. Similarly, outcome data from the 
original trial by Ramos-Murguialday et  al. [4] were 
repeated to some extent in their long term follow-up 
study on 28 of the 30 original participants [5], the latter 
of which was therefore excluded. In contrast, although 
similar protocols were utilized by Cisotto et al. [59] and 
Silvoni et al. [60], both were included in the final list of 
studies because participants were unique to each study. 
The 2016 and 2019 RCTs by Mrachacz-Kersting et  al. 
[26, 61] also used similar protocols but participants 

Fig. 1 The PRISMA flow chart of eligibility assessment based on inclusion/exclusion criteria



Page 6 of 23Behboodi et al. Journal of NeuroEngineering and Rehabilitation          (2022) 19:104 

differed in the two studies, so both were included. The 
level of evidence, as defined by Sackett [62], varied 
across studies with none in Level I, six in Level II (small 
RCT) [4, 23, 26, 41, 63, 64], two in Level III [22, 61], 
eight in Level IV [59, 65–71], and seven in Level V (case 
study) [60, 72–77].

Participants
Table 1 provides a summary of details extracted from all 
included studies. A total of 223 individuals participated 
across studies; 153 of whom were in the BCI-NFT 
condition. All participants were adults, with 153 males 
and 70 females. Except for one study, on 12 participants 
with incomplete spinal cord injury, seven of whom 
were in the experimental group [64], the rest were on 
the stroke population. Nineteen studies only included 
participants more than 6 months post-stroke, and three 
studies, all RCTs, only focused on participants within 
the first 6 months of stroke; with 24 [26], 14 [23], and 20 
participants [63]. Remsik et al., included four participants 
less than 6 months and 17 more than 6 months post-
stroke [41]. Thus, in all there were 149 participants more 
than 6 months post stroke and 62 participants less than 6 
months post stroke with 113 and 33 of those, respectively, 
participating in the BCI-NFT.

Intervention
Motor task
The motor tasks targeted mostly involved the upper limb. 
Only four studies targeted the lower limbs [26, 61, 70, 
77], all focused on ankle dorsiflexion. The upper limb 
motor tasks included shoulder ab/adduction (n = 1) 
[63], reaching (n = 5) [59, 60, 65, 68, 74], grasping (n = 
5) [4, 41, 64, 66, 67], reaching and grasping (n = 2) [71, 
73], hand and wrist extension (n = 2) [22, 23], and finger 
extension (n = 4) [69, 72, 75, 76].

Comparison conditions
Eight studies [4, 22, 23, 26, 41, 61, 63, 64] had a control 
or comparison condition, six of which were RCTs [4, 23, 
26, 41, 63, 64]. The RCT by Remsik et al. used a delayed 
intervention period from 8 to 10 weeks as the control 
condition with nine participants then crossing over to 
the neurofeedback group [41]. In Chen et al., the control 
group attempted the motor task without BCI feedback 
[23]. In Jang et al. Functional electrical stimulation (FES) 
was delivered intermittently and was not driven by neural 
activity in controls with the target muscle group the same 
as for the experimental group [63]. In the Mrachacz-
Kersting et  al. 2019 RCT, both neurofeedback and 
control groups received electrical stimulation activated 
by the same cue-based BCI system, The intensity of 

stimulation in the control group, however, was much 
lower (%70 of motor threshold) than in the experimental 
group who received electrical stimulation at a functional 
level (at or above the motor threshold) [26]. In Ramos-
Murguialday et al., sham robotic assistance, i.e., random 
movement of the robot not linked to brain activity, 
was the control [4]. For the cohort studies, [22, 61, 
64] Mrachacz-Kersting et  al. and Biasiucci et  al. used 
“sham” FES, delivered randomly and not driven by neural 
activity, as the comparison [22, 61], whereas in Osuagwu 
et  al. FES was delivered at set time intervals in the 
comparison condition [64]. Notably, Mrachacz-Kersting 
et  al. changed the control condition from sham FES to 
low-intensity ES in their 2019 RCT. In two case reports 
by Takahashi et  al. [77] and Ono et  al. [76], subjects 
participated in both the neurofeedback (BCI driven FES) 
and comparison conditions (FES during motor attempt).

Dosage
The number of training sessions varied from 1 to 80 
sessions, with six studies below 10 sessions [60, 61, 68, 71, 
72, 77], 11 between 10 to 15 sessions [22, 23, 26, 41, 59, 
65–67, 69, 70, 75], and six with more than 15 sessions [4, 
63, 64, 73, 74, 76]. It is noteworthy that Takahashi et al. 
[77] and Mrachacz-Kersting et  al. [61] demonstrated 
improvements after only one session of BCI-NFT.

Feedback type
Visual, robotic, or functional electrical stimulation were 
used during the motor training to augment voluntary 
effort and as additional sensory feedback. Fourteen 
studies used functional electrical stimulation (FES) alone 
(n = 10) [22, 26, 61, 63, 68, 70, 73–76], or combined 
with visual feedback (n = 4) [41, 64, 72, 77]. In a unique 
approach, Remsik et  al. electrically stimulated the 
tongue along with visual and FES feedback to potentially 
enhance sensory input to cortical regions [41]. Robotic 
devices were used to provide proprioceptive feedback as 
well as motor assistance in seven studies, combined with 
visual feedback (n = 4) [59, 60, 66, 67] or alone in three 
studies [4, 23, 65]. Visual feedback was used alone in two 
studies [69, 71].

Neurofeedback paradigms
The summary of the experimental conditions and signal 
processing details can be found in Table 2. EEG was used 
in all 23 studies, likely due to its exceptional temporal 
resolution that enables this type of application. All stud-
ies had a calibration phase prior to training during which 
subjects attempted to execute the target task or to rest 
while EEG signals were recorded. These data were used 
to either identify the threshold between rest and motion 
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in the selected features (n = 8) [4, 26, 61, 63, 71, 73, 74, 
77], or to train a classifier (n = 15) using machine learn-
ing algorithms such as the linear classifier of BCI2000 
software package (n = 5) [41, 59, 60, 69, 72], linear discri-
minant analysis (LDA; n = 5) [23, 64, 70, 75, 76], support 
vector machine (SVM; n = 3) [65–67], Gaussian classi-
fier [22], or Logistic Regression Classifier [68]. During 
BCI-NFT, the trained classifiers or thresholds were used 
to detect when the brain activation indicated the motor 
attempt.

The BCI2000 software package, used in 5 studies, 
is a commercially available neurofeedback package 
which streamlines EEG processing by using the highest 
explained variance (r2) between the motor attempt and 
rest condition across all electrodes of interest and target 
brainwave frequency bins, i.e., a two-dimensional feature 
space. The electrodes (e.g., C3 and C4) and frequency bins 
(e.g., 10–12 Hz), that resulted in the highest r2 for each 
participant were selected and then fed into the BCI2000 
linear classifier to generate the feedback command. In 
studies that used classifiers, a high number of electrodes, 
12–47, were typically used to train the classifier. In 
studies not using BCI2000, a feature space was generated 
similarly with electrodes as one dimension and a range of 
frequency bins, often 2 or 3 Hz bins within the 8–30 Hz 
frequency band, as the other dimension for training the 
classifier, e.g., LDA or SVM. A subject-specific subset of 
this space would be used during the online classification 
for BCI detection of movement attempt.

In 17 studies, detection of the motor attempt triggered 
the feedback without controlling its intensity (go-no 
go) [4, 22, 23, 26, 41, 61, 63–65, 68, 70–76]. In two of 
those, Osuagwu et al. [64] and Remsik et al. [41], which 
had both proprioceptive and visual feedback, the visual 
feedback was modulated in a finite number of steps based 
on each BCI detection result. In three other studies [66, 
67, 77], however, proprioceptive feedback intensity was 
increased in a finite number of steps, and in three studies, 
two proprioceptive [59, 60] and one visual feedback [69], 
feedback intensity was proportional to the brain signal 
intensity.

In Cisotto et  al. [59] and Silvoni et  al. [60] a robot 
provided assistive force proportional to ERD power of 
the selected subject-specific frequency band and, to 
promote concentration, visual feedback was provided 
based on the time it took participants to reach the target. 
In Norman et al. the brightness of a graphical object on 
the screen would change proportional to ERD power in 
the subject-specific frequency range [69]. In 2018 and 
2020 studies by Chowdhury et  al. [66, 67], detection of 
the hand opening and closing attempt, every 500 ms, 
triggered a robotic three-finger exoskeleton to open 
one step. Matching visualization of virtual hand motion 

was presented synchronously. Osuagwu et  al. used a 
novel feedback strategy that enabled experimenters to 
adjust the difficulty level of the neurofeedback training 
[64] by adjusting the number of consecutive movement 
detections required for triggering FES.

Here almost all of the included studies except 
Mrachacz-Kersting et  al. 2016 [61] and 2019 [26] and 
Bhagat et al. [65], which used MRCP (0.1–1 and 0.05–
10 Hz, respectively) included frequencies in the Mu 
and/or Beta bands. The frequency ranges considered to 
be Mu and Beta bands differed slightly across studies 
and were in some cases truncated for the application. 
The majority of them (n = 12) included both Mu and 
Beta bands, referred to by some as the sensorimotor 
rhythms, or portions of each [22, 23, 59, 64, 66–68, 70–
72, 75, 76]. Three studies only used the Mu band[4, 41, 
73], four only used the Beta band [60, 69, 74, 77], and 
Jang et  al. [63] used a combination of the Theta (4–7 
Hz) and Beta bands.

Unlike classic neurofeedback studies as well as the 
many studies included here which used an operant 
conditioning paradigm, Mrachacz-Kersting et  al. [26, 
61] deployed an associative learning paradigm instead. 
They used the timing of the peak negativity, also referred 
to as contingent negative variation, in movement-
related cortical potentials (MRCP), in the 0.05–10 Hz 
range of the EEG, to predict a dorsiflexion attempt and 
trigger FES assistance to the tibialis anterior muscle 
in a cue-based BCI-NFT system [78]. MRCP have 
several well-recognized and distinct features, including 
peak negativity, an electrical potential associated with 
movement planning around 500 ms before the motion 
[21]. Therefore, using this feature one can predict the 
movement, whereas in methods using ERD, detection 
usually occurs with the motor attempt, which may delay 
the triggering of a device. Predicting the movement 
as accurately as possible is a critical component of 
associative learning.

However, the protocol used in their studies [26, 61] also 
deviated from others in that the mean timing of the peak 
negativity was estimated in advance of the intervention 
and this fixed value was used during training, rather than 
real-time detection. An argument could be made that 
perhaps these studies should not have been included here 
because a feature of the brain activation was not utilized 
during the training sessions. However, we decided to 
retain them because the timing used in training was 
informed by individual brain data with the goal to 
improve the paradigm and these may offer a feasible and 
possibly more reliable solution than some alternatives for 
motor attempt paradigms, although the degree to which 
this improved detection was not assessed.
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Other studies utilized other solutions in an effort 
to increase detection accuracy when MRCP are used. 
Ibanez et al. used two classifiers, Naïve Bayes and Match 
filter in the frequency and time domains, respectively, 
and combined results using a Logistic Regression Clas-
sifier to detect the reaching and grasping attempt and 
thereby trigger FES assistance to the anterior deltoids, 
triceps and wrist extensor muscles [68]. The frequency-
domain classifier, Naïve Bayes, used ERD power in the 
6–30 Hz frequency range to classify the motor attempt; 
the match filter used 0–1 Hz EEG signals , i.e., MRCP, to 
predict a motor attempt in a self-paced BCI.

Bhagat et al. [65] and Chowdhury et al. [67] used elec-
tromyography (EMG) in combination with EEG to acti-
vate the feedback. Bhagat et al. trained an SVM classifier 
in the time  domain using low frequency MRCP signals, 
0.01 to 1 Hz, to detect motion; this detection, if corrobo-
rated by EMG activation, triggered the robotic assistive 
force [65]. Chowdhury et  al. used four EMG channels 
for detection along with 12 EEG electrodes to create 
their feature space [67]. Only EEG-EMG channel pairs 
that showed a statistically significant correlation were 
selected as features for training an SVM classifier and 
thereby activating the feedback.

Outcome analysis
Thirteen studies reported the mean FMA difference in 
the experimental group, pre to post intervention, rang-
ing from 0.77 to 17.0 across studies, six of which showed 
significant improvements (see Table 3). The mean change 
across the 13 studies was 6.53 ± 4.46. Four studies addi-
tionally reported the FMA pre-post change score differ-
ence between the control and experimental groups [4, 
22, 23, 26], two of which showed significantly greater 
improvements in the neurofeedback group [22, 26]. 
Mean change across the three studies was 4.06 ± 0.57. 
The mean Action Research Arm Test (ARAT) change 
score from pre to post intervention within the experi-
mental group, reported in six studies [41, 65–67, 73, 74], 
ranged from 1.3 to 23.8 with the ARAT improvement 
significant in three [65–67]. Mean change across the six 
studies was 8.34 ± 9.00.

Several other motor outcomes were reported less fre-
quently across studies. Grip strength (GS) was reported 
in five studies. Mean GS improvement, pre to post 
intervention, ranged from 3.87 kg [41] to 9.83 kg [67], 
both of which were statistically significant, p = 0.046 
and p < 0.005, respectively. Mean GS post intervention 
increases were not significant in the other three studies 
[65, 66, 72]. Muscle spasticity was assessed in five stud-
ies using the Modified Ashworth Scale (MAS); however, 

no statistically significant changes were reported. Active 
dorsiflexion range of motion (ROM) improved in two 
studies [70, 77]: in McCrimmon et al., 5 of 9 participants 
showed an increase of 2.5◦ or greater with a significant 
positive linear trend from pre to post intervention for the 
group as a whole (p < 0.01), and in Takahashi et al., the 
mean change of 8.7◦ was also significant (p < 0.001) [77]. 
Mean active wrist extension ROM was improved by 16.8◦ 
for the BCI-FES group versus 3.4◦ for the FES group in 
the study by Osuagwu et al.; however, no statistical com-
parison was reported [64].

Mean Stroke Impact Scale (SIS) improvements of 
5.4 [41], 10.5 [68] and 21.3 [71] were reported in three 
studies, none of which were significant. Despite no 
significant changes immediately post intervention, 
Remsik et al. [41] showed a significant SIS improvement 
of 6.2 (p = 0.05) at follow-up. A small, statistically 
significant improvement in gait speed of 0.08 m/s (p = 
0.007) was reported only in the neurofeedback group 
by Mrachacz-Kersting et  al. (2016), as measured by the 
10 Meter Walk Test (10mWT) after only 20 min (30 
pairs of MA and associative feedback) of neurofeedback 
training [61]. McCrimmon et  al. in contrast showed 
no significant improvement in walking speed in the 
neurofeedback group [70] after 12 training sessions; the 
linear trend from pre to post intervention, however, was 
significantly positive. Mrachacz-Kersting et  al. (2019) 
found significant 10mWT improvements in the control 
and neurofeedback groups (both p < 0.008) with no 
statistical between group difference [26]. Further, they 
reported that five participants in the experimental group 
and three in the control group who could not walk pre-
intervention were able to walk after 12 training sessions 
[26]. Significant 10mWT improvements were also found 
in the control group with no between group difference. 
All other motor outcomes reported in each study are 
listed in Table  1. The trends for these outcomes were 
mostly positive or unchanged except for reaction time, 
which worsened significantly after training [59, 60].

Statistical analyses
Independent t-tests were conducted to assess the effect 
of feedback type (robotic: n = 3, and FES: n = 9) and 
co-interventions (yes or no) on FMA differences within 
experimental groups in the 13 studies which reported 
these data. Despite higher mean FMA values for FES 
compared to robotic feedback (7.6 ± 4.8 vs 5.3 ± 2.8; p = 
0.47), outcomes were not significantly better. Conversely, 
the ARAT mean difference was higher for robotic (n = 3) 
vs FES feedback (n = 3) (11.59 ± 10.53 vs 5.10 ± 7.34), 
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but was also not significant. The inclusion of co-inter-
ventions showed no consistent or statistically significant 
effect on FMA and ARAT scores (for FMA: none=6.4 ± 
5.6 [n = 9], yes = 6.7 ± 2.04 [n=4]; p = 0.92, for ARAT: 
none=5.16 ± 6.32 [n = 4], yes = 14.7 ± 12.8 [n=2]; p = 
0.47). Mean FMA change also did not differ significantly 
by the level of evidence as assessed with a general linear 
model (II = 6.8 ±2.4 (n = 4), III = 0.77 (n = 1), IV = 4.8 
± 4.6 (n = 4), V = 9.5 ± 5.1 (n = 4); p = 0.27).

The effect of differences between classic versus associa-
tive learning paradigms on FMA within the experimental 
group was also assessed using an independent t-test. The 
two studies that used associative learning [26, 61] had a 
slightly lower mean FMA score when compared with 
studies that used operant conditioning (n=8) [4, 22, 23, 
65, 68, 70, 71, 75, 76] of 4.6 vs 6.9, respectively. The differ-
ence, however, was not significant (p = 0.54).

Pearson correlation between FMA improvement after 
BCI-NFT and the number of training sessions showed 
a moderate positive relationship (r = 0.67, p = 0.01). 
Despite a similar correlation value between ARAT score 
and the number of sessions; this was not statistically sig-
nificant (r = 0.70, p = 0.20).

Discussion
Similar to generally positive trends from other reviews 
assessing clinical effectiveness of BCI-NFT paradigms, 
all studies identified here reported largely positive, albeit 
not always statistically significant, motor outcomes. 
Our meta-analyses demonstrated that the FMA mean 
change in the experimental group exceeded the minimal 
clinically important difference (MCID) of 5.5 points as 
did 8 of the 13 studies reporting this; however, none of 
values from the 4 studies which subtracted the control 
group mean reached the MCID. Only one of six studies 
reporting the ARAT showed a value that exceeded the 
MCID (i.e. >17 points). We identified a dose response 
with a greater number of sessions directly and moder-
ately related to greater effectiveness with 12 sessions 
the maximal number of sessions in studies with FMA 
results. Given this, it is possible that more prolonged 
training would produce even larger effects. While out-
comes did not vary significantly based on level of evi-
dence, designs that include control groups should be 
strongly encouraged as should blinding of outcomes, so 
that there can be far greater confidence in the results that 
are reported. Another key consideration in rehabilitation 

Table 3 Summary of the Fugl-Meyer Assessment (FMA) results for the Upper Extremity (UE) and the Lower Extremity (LE) and the 
Action Research Arm Test (ARAT) results reported in the individual studies for the Neurofeedback Training (NFT) and Control (C) groups

FMA-UE Fugl-Meyer Assessment Upper Extremity, FMA-LE Fugl-Meyer Assessment Lower Extremity, ARAT  Action Research Arm Test, NFT Neurofeedback Training 
Group, C Control Group

Significant values (p < 0.05) indicated by Asterisk

Study FMA-UE (NFT) FMA-UE 
(NFT vs 
C)

FMA-LE (NFT) FMA-LE 
(NFT vs 
C)

ARAT (total, NFT) ARAT (sub-scores)

Bhagat 2020 [65] 3.92* – – – 5.35* –

Biasiucci 2018 [22] 6.7* 4.6* – – – –

Chen 2020 [23] 8.42* 3.71 – – – –

Chowdhury 2018 [66] – – – – 5.66* –

Chowdhury 2020 [67] – – – – 23.75* –

Ibáñez 2017 [68] 11.5 – – – – –

Jovanovic 2020 [73] 17* – – – 14* Grasp: 3; Grip: 8; Pinch: 1; Gross Move: 4

Marquez- Chin 2016 [74] 6 – – – 0 –

McCrimmon 2014 [70] – – 2.44 – – –

Mrachacz- Kersting 2016 [61] – – 0.77* – – –

Mrachacz- Kersting 2019 [26] – – 8.5* 4.5* – –

Mukaino 2014 [75] 8 – – – – –

Ono 2013 [76] 7 – – – – –

Ramos- Murguialday 2013 [4] 3.40 3.45 – – – –

Remsik 2019 [41] – – – – 1.3* Grasp: 0.7; Grip: 0.1; Pinch: 0.4; Gross Move: 
0

Vourvopoulos 2019 [71] 1.25 – – – – –

Mean 7.32 3.92 3.90 4.5 8.34 –

Standard Deviation 4.46 0.60 4.07 – 9.00 –
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is the persistence of effects beyond the training period. 
Long term effects were assessed in only four studies [22, 
41, 65, 70]; overall the improvements persisted at fol-
low up, which ranged from 1 [70] to 36 weeks [22]. The 
improvement in ARAT lasted at least 4 weeks in Remsik 
et  al. [41]. Bhagat et  al, demonstrated that FMA-Upper 
Extremity (UE) and ARAT scores remained significantly 
higher than baseline 2 weeks and 2 months post inter-
vention [65]. More notable, however, was the follow-up 
period in Biasiucci et al., where significant improvement 
in FMA-UE and Medical Research Council were main-
tained 9 months post intervention [22]. In addition to 
the included studies, Ramos-Murguialday et al. [5] con-
ducted a follow-up study to their 2013 study [4] (included 
in this review) using the same participants and demon-
strated significant FMA, Motor Activity Log and Goal 
Attainment Scale improvements which lasted more than 
6 months post intervention.

There were no clear study design features other than 
session number that altered the magnitude of positive 
effects. We were particularly interested in whether the 
type of feedback provided influenced the motor outcome. 
In animal models, the role of muscle spindle feedback 
is crucial for locomotor recovery and spinal circuit 
reorganization, and is presumed to also be important in 
humans [79]. Both FES and robotic movement assistance 
during BCI-NFT paradigms provide proprioceptive input 
because they elicit or augment muscle stretch which 
thereby activates muscle spindles, Golgi tendon organs 
and cutaneous receptors [5, 24, 26, 33, 80]. However, 
in unloaded conditions, (e.g. weight support provided 
by a robotic device), proprioceptive signaling relies 
almost exclusively on muscle spindles [79]. Ono et  al. 
[81] showed the superiority of proprioceptive feedback, 
provided by a hand robot, to visual feedback in a cohort 
study of 12 stroke patients. Although robotic feedback 
can provide afferent proprioceptive feedback and has 
been used extensively [4, 24, 33] FES depolarizes more 
motor and sensory axons, thus should provide greater 
proprioceptive feedback [82]. Therefore, we expected 
to find that FES feedback was superior; however, in our 
sample, there was no difference in effectiveness between 
FES and robotic feedback. This is in contrast with 
the Bai et  al. systematic review, which demonstrated 
that FES had a significantly larger effect on functional 
recovery than visual and robotic feedback [42]. Some 
of the studies here also incorporated visual feedback 
of detection success which can further upregulate the 
reward system in the brain and thereby enhance motor 
learning [83]. The presence of cointerventions also did 
not significantly augment effectiveness, suggesting that 
these alone did not account for the positive outcomes. 
The more recent associative learning paradigms failed to 

demonstrate better outcomes. No other training features 
were prevalent enough for statistical comparisons.

Most studies on BCI-NFT for motor rehabilitation are 
focused on the stroke population, despite their potential 
benefit for other nondegenerative neurological disorders 
such as CP, which is the most common motor disor-
der in the pediatric population. It has been shown that 
individuals with CP can self-regulate their brain activ-
ity to control BCI systems to activate assistive devices 
[84, 85]. Two BCI-NFT studies on the CP population, 
excluded here because they utilized motor imagery, 
aimed to improve hand function by self-regulation, i.e., 
reduction of mu band activity. Bobrov et  al., utilizing a 
hand exoskeleton for feedback, trained 14 children with 
CP [36]. Significant gains in hand function were found 
for the FMA, ARAT and Jebsen-Taylor Test, after 7–10 
weeks of training. This protocol was previously used by 
their group for training patients post-stroke in multiple 
studies [86–88]. The second study in CP [89] showed a 
decrease (improvement) in a serial reaction time task 
with the non-dominant hand, after only three sessions 
of BCI-NFT (8 min each) using visual feedback. Motor 
attempt paradigms that directly link movement associ-
ated brain signals to external devices and do not require 
them to actively try to modulate brain activity or to con-
sistently imagine a specific movement make BCI-training 
far more feasible and accessible to a broader range of 
patients, even very young children.

One observation from our review is that the terminol-
ogy used across studies to describe the intervention is 
not consistent. The term “neurofeedback” has been used 
extensively in clinical applications, including motor reha-
bilitation, particularly those that involve operant condi-
tioning [34, 48, 56, 59, 61, 63, 66, 71, 89–92]; however, 
this term alone was not sufficient for a comprehensive 
literature search. We found it necessary to also search 
for BCI and BMI terms, which greatly increased the yield 
of our search strategy but also resulted in a very large 
numbers of excluded studies. BCI systems have a broad 
range of applicability including for activating robotic, 
prosthetic or communication devices and enhancing cog-
nitive functioning in disorders such as attention deficit 
hyperactivity disorder (ADHD) [16] or post-stroke [46] 
by training them to self-regulate their cortical activity. 
Some authors referred to motor training applications as 
rehabilitative or restorative BCIs, to contrast these with 
assistive BCI for those who lack movement capabilities. 
One very recent study included here [21] did not use 
either term (neurofeedback or BCI) but instead used the 
term “brain state-dependent stimulation” to describe 
their system for retraining motor function that did not 
include the BCI component in this case to illustrate that 
it is the precisely timed afferent volley that is the essential 
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component for changes in cortical excitability. Here 
they used a pre-determined timing of peripheral nerve 
stimulation delivery with respect to the cue, instead of 
real-time detection, calculated from previously collected 
MRCP data. While we used the term “BCI-neurofeed-
back” here to encompass the two main terms used in the 
preponderance of studies on rehabilitation applications, 
motor rehabilitation paradigms have diverged from clas-
sic operant conditioning neurofeedback paradigms and 
as they continue to evolve, may warrant new more rel-
evant descriptors.

Motor attempt paradigms demonstrated several 
consistent features across studies. Although fNIRS is 
commonly used for mobile brain imaging, all studies here 
used EEG. Even within the 139 full texts we reviewed, 
only three used fNIRS for their BCI [90, 91, 93]. This 
is similar to a recent review by Mane et al. [46] on BCI 
application for stroke rehabilitation, in which 47 of 50 
studies used EEG alone with one using EEG plus MEG 
[94], one used MEG [95] and one used fNIRS [90]. EEG 
benefits from a far higher temporal resolution than fNIRS 
[48, 96],and less expensive and more accessible than 
MEG, and therefore, it has been used almost exclusively 
in BCI-NFT applications.

The precise temporal association between the afferent 
sensory feedback and the motor command was deemed 
to be the reason for significant functional improvements 
in several studies [22, 61]. The effect of stimulation timing 
was evaluated by Mrachacz-Kersting et al. using healthy 
participants [97] and they found that when the timing of 
stimulation delivery was either before or after the motor 
planning phase of the MRCP, which typically occurs 
within 500 ms of movement onset [21], no plasticity was 
induced. Using precise temporal association, this group 
demonstrated significant functional improvements after 
a single session consisting of 30–50, motor attempt-
FES pairings for about 20 min [61] in those more than 6 
months post stroke which is remarkable since the median 
range for BCI-NFT protocols here was 10–15 sessions. 
For FMA-Lower Extremity (LE), significant changes were 
even larger and reached the MCID after 12 sessions of 
training [26], in their later (2019) study. The synchronous 
activation of the motor cortex and peripheral effectors 
may induce plasticity using the principle of Hebbian 
associativity; and thereby, strengthen the connectivity 
of the corticospinal tract with the sensory and motor 
cortices. This was evaluated in both of their studies, by 
measuring the motor evoked potential (MEP) using TMS; 
corticospinal excitability was significantly higher only 
in the experimental group 30 seconds post-intervention 
[26, 61]. Although associative learning paradigms were 
not shown here to be more effective, the numbers of 
studies are limited; therefore, the jury is still out and 

more comparative data are needed. Biasiucci et  al. [22] 
also considered the time contingency between motor 
decoding and FES as the main reason for their impressive 
clinical improvement, which lasted at least 30 weeks post 
intervention. Using EEG data as an outcome measure 
they verified the hypothesized enhanced functional 
connectivity in the affected sensorimotor cortex 
post-intervention.

Recommendations for the field
The small number of studies with the same functional 
outcomes included in this review limited the ability 
to identify specific protocols or features with superior 
efficacy or effectiveness. Many paradigms aimed to 
produce reliable (minimal false positives or negatives) but 
varied in the timing of activation of an external assistive 
device with movement onset, ideally recommended to 
occur within a 300 ms window [98]. Therefore, it seems 
reasonable that paradigms that use EEG activity prior 
to movement to predict movement intention rather 
than real-time detection of movement onset would be 
preferable, if not essential, considering the time delays 
related to EEG processing and communication between 
system software and hardware. MRCP contain signals 
that precede movement; however, the time between 
these and movement onset or device activation can 
fluctuate within and across individuals, and perhaps 
are even more variable for those with brain injuries. To 
account for this, machine leaning algorithms, such as 
the Gaussian classifier utilized by Biasiucci et  al. [22], 
and Naïve Bayes deployed by Ibanez et al. [68] that can 
predict or classify the motor attempt online, might be a 
more precise alternative than relying on the consistency 
of the MRCP signals such as peak negativity timing 
with respect to motor onset. These could reduce the 
calibration time and thereby optimize therapy time, and 
account more effectively for individual variability, This 
could perhaps be improved even further using transfer 
learning algorithms to train a predictive model once and 
then transfer this across participants, thus eliminating 
the calibration phase [99]. Proprioceptive feedback was 
used almost exclusively for these motor rehabilitation 
applications, rather than visual feedback alone, which is 
logical since these also serve assistive as well as sensory-
enhancing roles. More data on the short- and longer-
term efficacy of FES compared to robotic feedback are 
still needed. Modulation and progression or weaning of 
feedback over time are important future considerations 
to maximize motor learning and neuroplasticity. While 
we did not compare effectiveness of motor imagery to 
motor attempt, the latter is more intuitive and clearly 
more feasible across a broader range of patients.
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Limitations
Some limitations are that this scoping review did 
not, by design, include all studies on the use of BCI-
NFT, but it does provide a comprehensive review 
on the current state of the science on motor attempt 
paradigms for neurorehabilitation. Another possible 
limitation is that we did not restrict the studies by the 
level of evidence; however, significant mean differences 
in outcomes across levels were not found. The limited 
use of consistent outcomes across studies also restricts 
the number of studies included in any meta-analysis, 
reinforcing the need for greater efforts in rehabilitation 
research to enable the accumulation of larger datasets 
with common data definitions and outcomes. Still, given 
the limitations, several studies demonstrated clinically 
significant functional changes after short durations of 
training, far shorter than typically needed for producing 
the same magnitude of effects with motor training 
alone.

Conclusion
In conclusion, the specific focus on enhancing 
neuroplasticity within a task-specific paradigm 
with BCI-NFT provides a solid neurophysiological 
mechanism for potential behavioral changes that 
we believe are only beginning to be realized. Future 
efforts should be directed towards deploying these in 
younger patient populations with greater neuroplastic 
potential and designing these systems for broad clinical 
implementation and for larger efficacy trials that 
compare these to other forms of neuromodulation or 
other evidence-based motor training approaches at 
equivalent doses.
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