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Abstract 

Background:  Improving the prediction ability of a human-machine interface (HMI) is critical to accomplish a bio-
inspired or model-based control strategy for rehabilitation interventions, which are of increased interest to assist limb 
function post neurological injuries. A fundamental role of the HMI is to accurately predict human intent by mapping 
signals from a mechanical sensor or surface electromyography (sEMG) sensor. These sensors are limited to measuring 
the resulting limb force or movement or the neural signal evoking the force. As the intermediate mapping in the HMI 
also depends on muscle contractility, a motivation exists to include architectural features of the muscle as surrogates 
of dynamic muscle movement, thus further improving the HMI’s prediction accuracy.

Objective:  The purpose of this study is to investigate a non-invasive sEMG and ultrasound (US) imaging-driven 
Hill-type neuromuscular model (HNM) for net ankle joint plantarflexion moment prediction. We hypothesize that the 
fusion of signals from sEMG and US imaging results in a more accurate net plantarflexion moment prediction than 
sole sEMG or US imaging.

Methods:  Ten young non-disabled participants walked on a treadmill at speeds of 0.50, 0.75, 1.00, 1.25, and 1.50 
m/s. The proposed HNM consists of two muscle-tendon units. The muscle activation for each unit was calculated as 
a weighted summation of the normalized sEMG signal and normalized muscle thickness signal from US imaging. The 
HNM calibration was performed under both single-speed mode and inter-speed mode, and then the calibrated HNM 
was validated across all walking speeds.

Results:  On average, the normalized moment prediction root mean square error was reduced by 14.58 % ( p = 0.012 ) 
and 36.79 % ( p < 0.001 ) with the proposed HNM when compared to sEMG-driven and US imaging-driven HNMs, 
respectively. Also, the calibrated models with data from the inter-speed mode were more robust than those from 
single-speed modes for the moment prediction.

Conclusions:  The proposed sEMG-US imaging-driven HNM can significantly improve the net plantarflexion moment 
prediction accuracy across multiple walking speeds. The findings imply that the proposed HNM can be potentially 
used in bio-inspired control strategies for rehabilitative devices due to its superior prediction.
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Background
Locomotion mobility accounts for a dominant part of 
human activities of daily living, like moving around the 
home and community, going to work or school, doing 
errands, visiting friends, etc. The human lower extrem-
ity plays an essential role in achieving locomotion mobil-
ity. The human ankle plantarflexors generate a large burst 
of “push-off” mechanical power during the late stance 
phase of walking, enabling forward and upward accel-
eration of the body’s center of mass. Due to neurological 
disorders or injuries like spinal cord injury, stroke, and 
multiple sclerosis, the weakened function or dysfunction 
of plantarflexors is likely to cause a dramatic decrease in 
the “push-off” power. Consequently, these mobility dis-
orders impair walking function and cause poor energy 
economy [1], as well as disrupt both physical and emo-
tional well-being [2].

Modern neurorehabilitation devices, such as powered 
ankle exoskeletons [3–5], soft exosuits [6, 7], and func-
tional electrical stimulation [8–12], may use assist-as-
needed control to actively engage and maximize recovery 
of users with mobility impairments [13, 14]. In turn, the 
efficacy of the control strategy depends on the accurate 
determination of continuous human volitional move-
ment intent (net joint moment). Mechanical sensors, like 
force or torque sensors, installed on a rigid and bulky 
frame, have been often used to measure the human 
intent for joints without direct interaction to the ground, 
but limit the system’s wearability. Also, inaccuracies 
may creep in easily due to the inevitable misalignment 
between the bionic joint center and human joint center, 
which may introduce undesired interaction force [15, 16]. 
Usually, it is challenging to directly measure the net ankle 
joint moment during walking overground with conven-
tional force or torque sensors setup. The standard way to 
measure the net ankle joint moment uses a motion cap-
ture system, ground reaction force (GRF), and inverse 
dynamics (ID) calculations. However, there are two 
shortcomings of the standard approach. First, the setup 
is constrained to a lab environment, and not applicable 
for field testing. Second, the results from ID do not reveal 
how skeletal muscles perform during walking from a 
neuromuscular perspective. Therefore, a forward dynam-
ics approach based on a neuromuscular model would be 
very instrumental when a motion capture system and 
GRF data are unavailable.

Surface electromyography (sEMG) measures electrical 
potentials during asynchronous muscle neurons firings, 

and its amplitude and frequency positively relate to mus-
cle activation levels. Therefore, sEMG-derived signals 
can be used in a Hill-type neuromuscular model (HNM) 
or to train a machine learning approach (model-free) to 
predict volitional joint moment [17, 18] and angular posi-
tion [19–21]. However, sEMG signals suffer from inter-
ference or cross-talking from the adjacent muscles, and 
an inability of measuring activations of deep-layer mus-
cles [22, 23]. Alternatively, two-dimensional brightness 
mode (B-mode) ultrasound (US) imaging allows one to 
see the musculature of the targeted muscle in vivo. Due 
to its ability to directly visualize superficial and deep-
layer muscles, US imaging may work as an alternative 
methodology to predict joint motion or motion intent. 
Potentially, US imaging overcomes the shortcomings of 
the sEMG measurements. Most frequently used archi-
tectural features from US images include pennation angle 
(PA) [24, 25], fascicle length (FL) [26, 27], muscle thick-
ness (MT) [28, 29], and cross-sectional area [30]. These 
features have been correlated with the joint kinetics and 
kinematics during isometric or isokinetic joint motion by 
using HNM-based or model-free approaches [25, 31–33].

Motivation also exists to use a dual-modal approach 
that combines the measurement from sEMG and US 
imaging. Potentially sEMG signals and US imaging pro-
vide complementary information, and the combination 
between them may (1) mitigate any cross-talking effect 
from neighboring sEMG signals and (2) lower US imag-
ing-derived features’ drift due to the accumulated errors 
from cyclic joint movement. Our recent studies have 
shown the advantages of using the dual-modal approach 
over uni-modal bio-signals (sEMG or US imaging) for 
ankle joint moment/motion prediction under isometric/
dynamic dorsiflexion studies [21, 25, 27] and isometric 
plantarflexion study [34, 35]. Similarly, Dick et  al. used 
both sEMG and US imaging to predict plantarflexion 
force during dynamic cycling tasks [32]. However, the use 
of the dual-modal bio-signals during more complex func-
tional tasks, like walking across different speeds remains 
unexplored.

In this study, we investigated a dual-modal approach 
that takes both processed sEMG and MT from US imag-
ing as inputs to a modified HNM, named sEMG-US 
imaging-driven HNM, to predict net ankle joint plan-
tarflexion moment during the walking stance phase 
across multiple speeds. We hypothesize that (1) the 
proposed HNM will achieve a better net plantarflexion 
moment prediction accuracy than sEMG-driven and 

Keywords:  Human intent prediction, Neuromuscular model, B-mode ultrasound imaging, Surface electromyography, 
Rehabilitative/assistive robotics, Sensor fusion



Page 3 of 20Zhang et al. Journal of NeuroEngineering and Rehabilitation           (2022) 19:86 	

US imaging-driven HNMs, (2) the net plantarflexion 
moment prediction performance is more robust if data 
collected from multiple speeds are included in HNMs’ 
calibration procedure.

In previous US imaging studies, visualized architec-
tural features, such as PA and FL, require high-resolution 
US imaging, which can be significantly affected by a US 
transducer placement site on the muscle. To mitigate the 
requirement of high-resolution US imaging, US imaging-
derived signals such as echogenicity [27, 36, 37], tissue 
displacement [38], and MT [29], are more preferable to 
correlate with muscle or joint mechanical functions. 
Because ankle plantarflexors: lateral and medial gastroc-
nemius and soleus muscles (LGS, MGS, and SOL) are not 
accessible in the same US image plane, this study chose 
to focus on LGS and SOL, which are in the same plane, 
and tracked their MT change during the walking experi-
ments across multiple speeds. Therefore, the contribu-
tions of the paper are: (1) the use of US imaging-derived 
MT changes and sEMG-derived changes of LGS and SOL 
muscles as surrogate variables of muscle activations dur-
ing walking, (2) development of a modified HNM that 
uses both sEMG and US imaging as inputs for single-
speed modes and an inter-speed mode, and (3) evalua-
tion of the sEMG-US imaging-driven HNM’s robustness 
across multiple walking speeds.

Method
Hill‑type neuromuscular model of ankle joint
Below, we propose a modified sEMG-US imaging-driven 
HNM to directly build a relationship between the joint 
net PF moment and sEMG-US imaging-derived sur-
rogate signals of both LGS and SOL muscles. There are 
three sub-models involved in the HNM: (a) sEMG-US 
imaging-derived weighted muscle activation model, (b) 
muscle-tendon unit geometry model, and (c) muscle con-
traction dynamic model.

Weighted muscle activation model
The neural activation at tk time instant Ni(tk), i = 1, 2 , 
k = 1, 2, 3, ... , for SOL and LGS muscles, respectively, 
considers the electromechanical delay (EMD), τ , between 
the onset of an sEMG signal and a muscle contraction 
and utilizes a second-order recursive filter and is defined 
as [39]

where EMD, τ , is usually between 30 ms and 120 ms. 
ui(tk) represents the sEMG’s linear envelope normalized 
to the peak value of the specific task (with a constant peak 
value across all walking speeds on each subject in this 
study). The sEMG’s linear envelope was derived after raw 
sEMG signals’ band-pass filtering, full-wave rectification, 

(1)Ni(tk) = αiui(tk−τ )− β1iNi(tk−1)− β2iNi(tk−2)

and low-pass filtering. αi, β1i , and β2i are coefficients that 
define the recursive filter’s dynamics of each muscle [39], 
and the following set of constrains is employed to reach a 
positive stable solution, i.e.

where |γ1i| < 1 and |γ2i| < 1.
A nonlinear relationship between neural activation 

Ni(tk) and corresponding muscle activation a1i(tk) is given 
as [39]

where Ai represents the nonlinear shape factor for each 
muscle, which is allowed to vary between − 3 and 0, with 
Ai = −3 being a nonlinear and Ai = 0 being a linear 
relationship.

According to the reported results in [40–43], the MT 
change was found to correlate with the muscle contrac-
tion level or muscle activation through a linear function or 
piece-wise linear function. Therefore, in this work, the sec-
ond part of the LGS or SOL muscle activation is calculated 
from the US imaging-derived MT change. The MT values 
of LGS and SOL muscles are denoted as MTi(tk) . Accord-
ing to the preliminary results in [44], there is a positive 
relationship between MT change and the targeted muscle 
contraction level during the walking stance phase. After 
taking normalization of the MT with respect to the lower 
bound (at rest state) and upper bound (peak value of the 
specific task) on each participant, the US imaging-derived 
muscle activation, a2i(tk) , is proposed as

where MTimax and MTimin represent the constant sub-
jective MT values when the LGS and SOL muscles are at 
the walking task-specific maximum voluntary contrac-
tion and complete rest condition, respectively. For each 
individual, MTimax and MTimin are set as consistent val-
ues across different walking speeds. This normalization 
guarantees that the US imaging-derived muscle activa-
tions vary between 0 and 1.

By introducing an allocation gain between the sEMG- 
and US imaging-derived muscle activations, the synthe-
sized/weighted muscle activation levels for LGS or SOL 
muscle, ai(tk) , can be represented as

where δi ∈ [0, 1] represents the muscle activation alloca-
tion gain for LGS ( i = 1 ) and SOL ( i = 2 ) muscles.

(2)
β1i = γ1i + γ2i, β2i = γ1i · γ2i, αi − β1i − β2i = 1

(3)a1i =
eAiNi − 1

eAi − 1

(4)a2i =
MTi −MTimin

MTimax −MTimin

(5)ai = δia1i + (1− δi)a2i
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Muscle‑tendon unit geometry model
As presented in Fig.  1b, consider the ankle joint rotation 
center in the sagittal plane as O, the proximal and dis-
tal osteotendinous junction points of each each muscle-
tendon unit (MTU) near the knee joint and heel as Ai 
and Bi , and the angle between OAi and OBi as q(tk) , then 
each MTU length, lmti(tk) , is represented as the distance 
between Ai and Bi , and is calculated as

where lOAi and lOBi represent the distance of OAi and 
OBi obtained from OpenSim (National Institutes of 
Health for Biomedical Computation, Stanford, USA) 
[45], respectively. A generic OpenSim model (gait2392) 
was linearly scaled to each participant in OpenSim ver-
sion 4.1 [45] per [46]. According to the law of sines, the 
moment arm of each MTU, rmti(tk) , is calculated as

(6)lmti = l2OAi
+ l2OBi − 2lOAi lOBi cos(q)

The MTU generates contraction force only when it is 
stretched, which indicates the current tendon length 
lti(tk) is equal to or longer than the tendon slack length 
lskti  . From the perspective of muscle contraction dynamics 
that is shown in Fig. 1c, the overall MTU length, lmti(tk) , 
could also be expressed as

where lti(tk) and lmi(tk) represent the current tendon 
length and muscle fascicle length for LGS and SOL mus-
cles, respectively. φi(tk) represents the pennation angle 
that changes with instantaneous lmi(tk) . By assuming the 
individual muscle belly has a relatively small MT change 
and volume change [47, 48], φi(tk) can be approximately 
calculated as

(7)rmti =
∂lmti(q)

∂(q)
=

2lOAi lOBi sin(q)

lmti

.

(8)lmti = lti + lmi cos(φi)

Fig. 1  Schematic diagram of the muscle-tendon-unit (MTU) geometry model and contraction dynamic model of the plantarflexor muscles during 
treadmill walking tasks. a A human participant walking on a treadmill. b The MTU geometry model, where the ankle joint rotation center in the 
sagittal plane is denoted as O, and the proximal and distal osteotendinous junction points near the knee joint and heel are denoted as A and B. SOL 
and LGS muscles are referred as i = 1, 2 . c The MTU contraction dynamic model, where the anatomical structure and contraction force generation 
of the MTU are illustrated
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where the term φ0
i  denotes the constant pennation 

angle when the muscle is at optimal fascicle length l0mi
 . 

The work in [49, 50] has shown that the optimal fasci-
cle length increases as muscle activation decreases. Due 
to this coupling, the following relationship between the 
muscle activation and corresponding optimal fascicle 
length is given as

where � is the rate of change in the optimal fascicle 
length, and it is selected as 0.15 [39]. l0moi

 is the optimal 
fascicle length at the walking task-specific maximum 
voluntary contraction, and l0mi

(tk) is the optimal fascicle 
length at time tk and muscle activation ai(tk).

From the preliminary results of plantarflexors’ US 
imaging in [44], it is very challenging to capture the 
entire fascicle length lmi(tk) of LGS or SOL muscles by 
using the current US transducer with a small dimension 
(width of 38 mm). Therefore, the fascicle length param-
eters of either LGS or SOL muscles were not measured 
directly from the US images. Instead, an indirect calcula-
tion method was applied as detailed below. According to 
[51], the nonlinear nominal tendon force-tendon strain 
relationship is given as

where ξi =
lti (tk )−lskti

lskti

 represents the tendon strain and 

Fmax
i  represents the muscle contraction force at the walk-

ing task-specific maximum voluntary contraction. By 
considering Fti(ξi) = Fmti , where Fmti is defined in (13), 
lti(tk) can be numerically computed based on the Runga–
Kutta–Fehlberg algorithm. By substituting (6) and (9) to 
(8), the muscle fascicle length lmi(tk) will be calculated, as 
well as the muscle fascicle velocity vmi(tk) by taking the 
time derivative of lmi(tk).

Muscle dynamic contraction model
In the sEMG-US imaging-driven HNM, the individual 
moment component produced by each muscle, Mi(tk) , 
can be represented as

where rmti(tk) is defined in the above geometry model 
and Fmti(tk) denotes the corresponding contraction force 
generated on each MTU and is represented as

(9)φi ≈ arcsin

(

l0mi
sin φ0

i

lmi

)

(10)l0mi
= l0moi

(�(1− ai)+ 1)

(11)

Fti(ξi) =







0, ξ ≤ 0

1480.3Fmax
i ξ2i , 0 < ξ < 0.0127

(37.5ξi − 0.2375)Fmax
i , ξ ≥ 0.0127

(12)Mi = Fmti rmti

where φi(tk) represents the pennation angle defined 
above. Fcei(tk) and Fpei(tk) denote the corresponded 
forces generated by the parallelly located contractile ele-
ment and the passive element, and can be calculated as

In (14), Fmax
i  of the LGS and SOL muscles will be iden-

tified based on optimization algorithm in the HNM 
calibration procedures. fli(lmi(tk)) , fvi(vmi(tk)) , and 
fpi(lmi(tk)) denote the generic muscle contractile force-
fascicle length, force-fascicle velocity, and passive elastic 
force-fascicle velocity curves. These curves were normal-
ized to Fmax

i  , optimal fascicle length l0mi
 , and maximum 

fascicle contraction velocity vmax
mi

 . The explicit expres-
sions of fli(lmi(tk)) , fvi(vmi(tk)) , and fpi(lmi(tk)) can be 
found in [25, 32, 52].

Experimental protocol, data collection and pre‑processing
The study was approved by the Institutional Review 
Board (IRB) at North Carolina State University (IRB 
number: 20602). Ten young participants (7M/3F, age: 
25.4 ± 3.1 years, height: 1.77 ± 0.10 m, mass: 78.0 ± 
21.1 kg) without any neuromuscular or orthopedic disor-
ders, were recruited in this study. Every participant got 
familiar with the experimental procedures and signed an 
informed consent form before participation.

Figure  2a summarizes the experimental setup for the 
participants to perform static anatomical poses and 
dynamic gait trials (walking speeds changing from 0.50 
to 1.50 m/s), and Fig.  2b presents the workflow of the 
data processing and sEMG-US imaging-driven HNM 
calibration procedures. During all walking trials, three-
dimensional coordinates of 39 retro-reflective mark-
ers positioned on the participant’s lower extremities 
following the instructions in [53] were recorded using a 
12-camera motion capture system (Vicon Motion Sys-
tems Ltd, Los Angeles, CA, USA) at 100 Hz. The GRF 
signals were collected at 1000 Hz synchronously with 
makers trajectories using in-ground force plates (AMTI, 
Watertown, MA, USA) mounted on an instrumented 
treadmill (Bertec Corp., Columbus, OH, USA) through 
the commercial real-time data capture software Nexus 
2.9. Both GRF signals and markers trajectories were 
low-pass filtered with a fourth-order Butterworth filter 
in Visual 3D software (C-Motion, Rockville, MD, USA), 
and the cut-off frequencies were set as 25 Hz and 6 Hz, 
respectively. The markers trajectories and GRF signals 
from static poses and dynamic gait trials were used for 
joints kinematics and net joint moment calculation by 
using inverse kinematics and ID algorithms in Visual 3D. 

(13)Fmti = (Fcei + Fpei) cos(φi)

(14)
Fcei = Fmax

i fli(lmi)fvi(vmi)ai
Fpei = Fmax

i fpi(lmi)
.
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During all trials, four wired sEMG sensors (SX230, Biom-
etrics Ltd, Newport, UK) were attached to the shank skin 
through a double-sided tape to non-invasively record the 
electrical signals from tibialis anterior (TA), LGS, MGS, 
and SOL muscles at 1000 Hz synchronously through 
Nexus 2.9. The locations for sEMG sensors were deter-
mined following the instructions in [54]. A US transducer 
(38-mm of length, 6.4 MHz center frequency, L7.5SC 

Prodigy Probe, S-Sharp, Taiwan) setup was applied in the 
walking experiments as described in [34]. The US radio 
frequency (RF) data were recorded at 1000 frames per 
second synchronously with markers trajectories, GRF, 
and sEMG signals, using a pulse sequence trigger signal 
generated from Nexus 2.9.

sEMG signals were band-pass filtered with the band-
width between 20 Hz and 450 Hz, and then full-wave 
rectified and low-pass filtered with a cut-off frequency 
of 6 Hz. The resulting linear envelopes were normalized 
to the peak processed sEMG values obtained from all 
sets of dynamic gait trials with different speeds. The US 
radio frequency data were converted to B-mode images 
through beamforming and logarithmic compression, 
and then a commercial US imaging processing toolbox 
UltraTrack [55] was applied to determine the temporal 
sequences of the LGS and SOL muscles’ thickness based 
on the adaptive optical flow tracking algorithms. First, 
one region of interest (width by height: 336 × 400 pixels) 
that encompassed the LGS and SOL muscles was selected 
as the area between the superficial and deep aponeuro-
ses. Then, 10 vertical lines were manually defined with 
evenly distributed distances in the LGS’s region and SOL’s 
region on the first US imaging frame for each recorded 
waking trial, as shown in Fig.  2b. Key-frame correction 
[55] was applied to minimize the time-related drift of 
MT’s cyclical pattern over multiple gait cycles, where the 
key frames were selected to be at heel-strike and toe-off 
time points. After each correction, the new key frames’ 
vertical lines positions were determined by applying an 
affine transformation to the key-frame before it. Finally, 
the temporal sequence of the mean value of those 10 
vertical lines’ lengths from LGS and SOL muscles were 
calculated for LGS’s MT and SOL’s MT, respectively. The 
MT signals were then low-pass filtered with a cut-off fre-
quency of 30 Hz.

Before data collection, participants practiced dynamic 
walking steadily with all sensing devices attached to the 
lower extremities on the treadmill for at least 30 s for 
each speed. The duration of each walking trial was set 
as 2 min, and data from the middle 20 s were collected 
for analysis. In the current study, there were five differ-
ent walking speeds, 0.50 m/s, 0.75 m/s, 1.00 m/s, 1.25 
m/s, and 1.50 m/s, and the order was selected randomly 
for each participant. The participants were provided with 
at least 2 min for rest between two successive dynamic 
walking trials to avoid muscle fatigue.

Data post‑processing
HNM model calibration
To determine the values for a set of parameters, includ-
ing the shape factor Ai , the tendon slack length lskti  , the 
muscle contraction force at the walking task-specific 

Fig. 2  The treadmill walking experimental setup, data collection, 
processing, and Hill-type neuromuscular model calibration. 
a Illustration of walking experimental setup. (1) Instrumented 
treadmill with two split belts and in-ground force plates. (2) 39 
retro-reflective markers on participant’s lower body for lower limb 
kinematics measurements. (3) Four sEMG sensors to record signals 
from LGS, MGS, SOL, and tibialis anterior (TA) muscles. (4) A single US 
transducer to image both LGS and SOL muscles with the appropriate 
probe placement. (5) Ultrasound imaging machine to collect radio 
frequency data. (6) Computer screen to show B-mode ultrasound 
imaging. (7) Computer screen to show live markers and segment links 
of the participant. (8) 12 motion capture cameras to track markers’ 
trajectories. b Schematic illustration of the proposed sEMG-US 
imaging-driven HNM calibration. The weighted muscle activation for 
LGS or SOL combines both sEMG signals and US imaging. Red solid, 
black solid, and blue dashed lines with an arrow represent the input 
signals to HNMs, the intermediate sub-model output signals, and the 
unknown parameters adjustment, respectively
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maximum voluntary contraction Fmax
i  , and the muscle 

activation allocation gain δi , the HNM model calibra-
tion was performed with the initial parameters obtained 
from the literature [56]. The summarized calibration pro-
cess of the sEMG-US imaging-driven HNM is presented 
in Fig.  2b. Indeed, the model calibration is a nonlinear 
optimization problem, where the above parameters set 
needs to be found for minimizing the designated objec-
tive function. During calibration, the parameters were 
subsequently adjusted within the predefined boundaries, 
which ensured the muscle-tendon unit always operated 
within the physiological range [39]. Except for the alloca-
tion gains δi were set the range between 0 and 1, other 
parameters were set with the lower and upper bounds as 
50% and 150% of the literature-referred values, while the 
initial guess of the set of parameters were set as the mid-
dle value of each parameter. Other HNM parameters, like 
muscle-tendon unit length lmti , optimal muscle fascicle 
length l0moi

 , and optimal pennation angle φ0
i  were assigned 

using OpenSim and the scaling method as references. 
The Matlab function ’lsqcurvefit’ with the Levenberg-
Marquardt algorithm was applied to solve the nonlinear 
least-squares optimization problem until the following 
objective function was minimized during the calibration

where 
∑2

i=1Mi(j) represents the net PF moment esti-
mation from both LGS and SOL muscles during stance 
phase at time instant j, Mw(j) represents the net PF 
moment measurement from ID at time instant j, and N 
represents the length of the data used for the calibration.

It should be noted that the HNM calibration is subjec-
tive, and for each participant, the calibration procedure 
was repeated for both single-speed modes and inter-
speed mode. In the current study, single-speed modes are 
defined as the HNM calibration only with data collected 
from one single speed (five single-speed modes here), 
while the inter-speed mode is defined as the HNM cali-
bration with all data collected from five different speeds 
(one inter-speed mode here). In HNM calibration, col-
lected data, including ankle joint’s kinematics, kinetics, 
sEMG signals, and US imaging from the stance phase of 
10 steady gait cycles, were used to minimize the objec-
tive function in (15). For the single-speed modes, the 10 
steady gait cycles were all from one speed, while for the 
inter-speed mode, the 10 gait cycles were composed of 
two steady cycles from each of five speeds. Similarly, by 
manually setting the muscle activation allocation gain 
δi to be 1 and 0, we could also conduct the calibration 
procedures of the sEMG-driven and US imaging-driven 
HNMs. After the HNM calibration with different modes, 

(15)Eobj =
1

N

N
∑

j=1

((

2
∑

i=1

Mi(j)

)

−Mw(j)

)2

new data sets (five gait cycles not involved in the calibra-
tion procedures) from walking trials at different speeds 
were used as input of the calibrated HNMs to predict 
net PF moment. The prediction results were evaluated 
through the comparison to the measured net PF moment 
from ID.

Statistical analysis
The validation procedures comprised three tests to assess 
the sEMG-US imaging-driven, sEMG-driven, and US 
imaging-driven HNMs’ calibration and prediction abili-
ties of the net ankle joint PF moment during the stance 
phase. In each type of HNM test, the root mean square 
error (RMSE), RMSE normalized to individual peak net 
PF moment ( N − RMSE ), RMSE normalized to indi-
vidual body mass ( BM − RMSE ), and coefficient of 
determination ( R2 ) values between the calibrated/pre-
dicted net PF moment and ID-calculated net PF moment 
were calculated to evaluate the calibration/prediction 
performance. The rational of using these three tests is 
given here. From a mathematical perspective, the pro-
posed sEMG-US imaging-driven HNM is a model-based 
regression problem. Given that the corresponding data 
were all collected continuously and synchronously, and 
the ground truth from the ID calculation and the predic-
tion from different HNMs are all continuous, the most 
intuitive metric to evaluate the prediction accuracy is to 
use the RMSE between the ground truth and prediction. 
However, due to the weight, height, and walking pattern’s 
variations among subjects, the capability (peak value) of 
net plantarflexion moment generation during treadmill 
walking at the same speed is different, which would affect 
the prediction RMSE directly. Therefore, the direct RMSE 
values comparison among subjects is likely to introduce 
high deviations. An effective way to reduce the subjec-
tive variation of the prediction RMSE is to take the nor-
malization to a subjective characteristic, like the body 
mass and peak net plantarflexion moment as we selected. 
The relationship between N − RMSE and BM − RMSE 
is that in the normalization calculation, they have same 
numerators but different denominators for the same sub-
ject. Although N − RMSE and BM − RMSE might pro-
vide potential redundancy information as can be seen 
from subsequent calibration and prediction summary 
results, they show different sensitivities to the walking 
speeds ( BM − RMSE is more sensitive). Another useful 
metric to evaluate the prediction accuracy is the coef-
ficient of determination, known as R2 , which ranges 
from 0 to 1 and measures the proportion of variation in 
the data that is accounted for in the model. In the cur-
rent study, R2 is used as a parallel evaluation metric as 
N-RMSE and BM-RMSE, and it is relatively not sensi-
tive to the walking speeds. Although R2 and N − RMSE 
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might provide potential redundancy information, it is not 
always true that lower N − RMSE corresponds to higher 
R2 , so we keep both to provide potential supplementary 
information.

Shapiro-Wilk parametric hypothesis test was used 
to determine the normality of the corresponding 
N − RMSE , BM − RMSE , and R2 values of each calibra-
tion step under the single-speed modes and inter-speed 
mode, and each prediction step. According to the results 
of the Shapiro-Wilk test, two-way repeated-measure 
analysis of variance (ANOVA) or Friedman’s tests fol-
lowed by a Tukey’s honestly significant difference tests 
(Tukey’s HSD) was applied to evaluate the effect of 
HNMs’ category and walking speed on different evalu-
ation criteria, including N − RMSE , BM − RMSE , and 
R2 values, during both calibration and prediction pro-
cedures. The significant difference level was chosen as 
p < 0.05 for all statistical tests. Effect sizes were reported 
as η2p and Cohen’s d for main effects from ANOVA or 
Friedman’s tests and pairwise comparisons from Tukey’s 
HSD, respectively.

Results
Ankle joint kinematics and kinetics, and plantarflexors 
neuromuscular features
The treadmill walking speed’s effect on human ankle joint 
kinematics, kinematics, and lower extremities’ muscles 
activities has been extensively investigated and discussed 
in a recent study [57], but without results related to the 
architectural change of those muscles. In this study, the 
time sequences of both LGS and SOL’s muscle thickness 
during the recorded walking duration were extracted 
by using UltraTrack. Take the SOL muscle of Partici-
pant Sub08 as an example, Fig.  3 shows the MT track-
ing results throughout the 20 s walking duration at each 
walking speed. The red solid and blue dashed curves 
represent the MT change of the SOL muscle with and 
without key-frame correction, respectively. The results 
demonstrate that the key-frame correction could sig-
nificantly reduce the time-related drift, which is due to 
the tracking error accumulation along with the walking 
duration (exampled US imaging video with the LGS and 
SOL’s MT tracking results at multiple walking speeds can 
be referred to Additional files 2, 3, 4, 5, 6). The reported 
results here are consistent with the studies mentioned in 
[55].

The continuous results of the ankle joint kinematics 
and kinetics throughout the recorded 20 seconds at each 
speed were segmented as a percent of gait cycle from 0 
to 100% according to the GRF measurements, which are 
shown in Fig. 4. The solid lines and light shadowed areas 
report the mean and one standard deviation (SD) values 
of the right ankle joint angular position, velocity, and net 

PF moment changes across all gait cycles at each walk-
ing speed on Sub01 (data from other participants can be 
found in the Additional file 1: Fig. S1–S5), where 0% and 
100% represent the time instants when the heel-strike 
occurred in the current and consecutive gait cycles, 
respectively. By comparing the ankle joint moment calcu-
lated from ID, the averaged peak net PF moment across 
all walking gait cycles within each walking trial mono-
tonically increased with the increase of walking speeds 
on each participant, indicating more power was needed 
for faster walking speed. The continuous results of neu-
romuscular features throughout the recorded walking 
duration were segmented as a percent of stance cycle 
from 0 to 100%, which are shown in Fig. 5. The solid lines 
and light shadowed areas report the mean and one SD 
values of the processed sEMG signals and US imaging-
derived MT signals from the LGS and SOL muscles on 

Fig. 3  SOL muscle thickness tracking results by using UltraTrack 
at different walking speeds on Participant Sub08. Each subplot 
represents the tracking results during the recorded 20 s experiments 
under each walking speed, and the red solid and blue dashed 
lines represent the results with and without key-frame correction, 
respectively
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the right leg during multiple stance phase cycles at each 
walking speed on Sub01 (data from other participants 
can be found in the Additional file  1: Fig. S11–S15), 
where 0% and 100% represent the time instants when 
the heel-strike and toe-off occurred in the same gait 

cycle, respectively. The upper two rows present the LGS 
and SOL MT changes during the stance phase, while the 
lower two rows present the muscle’s low-pass filtered 
sEMG changes. The results show small variations of MT 
and sEMG for both LGS and SOL muscles at heel-strike 

Fig. 4  Results of joint kinematics and kinetics during the treadmill walking experiments at different speeds on Participant Sub01. The mean and 
one SD values on the right ankle joint during recorded gait cycles (between the heel-strike instants in the current and the consecutive gait cycles) 
are represented by the solid lines and the light shadowed areas, respectively

Fig. 5  Results of processed sEMG signals and US imaging-derived MT signals from both LGS and SOL muscles during the treadmill walking 
experiments at different speeds on Participant Sub01. The mean and one SD values of the plantarflexor muscles on the right shank during recorded 
stance phase cycles (from the heel-strike instant to the toe-off instant in the same gait cycle) are represented by the solid lines and the light 
shadowed areas, respectively
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across all walking speeds, but relatively high variations of 
sEMG for both LGS and SOL muscles at toe-off, where 
the sEMG signals increase with increased walking speed. 
For all five walking speeds, we observe that MT of LGS 
or SOL muscle is almost identical at heel-strike and toe-
off, however, the processed sEMG signals of LGS or SOL 
muscle show higher value at toe-off than at heel-strike. 
By comparing the shadowed areas of the same feature 
across speeds, we observed that features’ deviations are 
higher at a slower speed, like 0.50 m/s, than those at 
higher speeds. This implies that keeping a steady mus-
cle contraction pattern at a slower speed is more difficult 
than at a higher speed.

Correlation analysis results
Overall, in Fig. 5, both temporal MT and sEMG signals 
from LGS and SOL muscles show a fairly strong correla-
tion with the net ankle joint PF moment calculated from 
ID. For each participant, it was assumed the step-to-step 
variation is negligible, so we segmented all periods of the 
ankle joint net plantarflexion moment during the walk-
ing stance phase at each walking speed, and then cal-
culated a correlation coefficient value between the net 
plantarflexion moment time sequence and each neuro-
muscular feature time sequence during the same stance 
cycle. Therefore, for a specific neuromuscular feature 
and walking speed, if the stance cycles are n1, n2, ..., n10 
for all ten participants, the number of correlation coef-
ficients would be 

∑10
i=1 ni . To address the person-to-per-

son variation and to get each entry in Table 1, we applied 
the Fisher transformation to yield approximately nor-
mally distributed correlation coefficients. After the Fisher 
transformation, we calculated the mean and one SD val-
ues of the correlation coefficients for each walking speed 
and the neuromuscular feature, as listed in Table 1. The 
results show that a positive relationship exists between 
the processed LGS or SOL’s sEMG signal and net PF 
moment, and between the LGS or SOL’s MT and net PF 

moment. All the mean values of correlation coefficients 
are higher than 0.8 except for the SOL’s sEMG signal at 
1.50 m/s walking speed. From the results of a two-way 
repeated-measure ANOVA, we did not observe a sig-
nificant difference in the correlation coefficient values 
among the four neuromuscular features ( p = 0.201 ) or 
among the walking speed ( p = 0.112 ), which indicates 
the MT and sEMG signals might have comparable capa-
bilities to predict net PF moment across speeds.

Results of HNM calibration and net PF moment prediction
In the HNM calibration procedures shown in Fig.  2b, 
one essential input component is the muscle activation 
levels of both LGS and SOL muscles, either only based 
on sEMG signals, US imaging-derived MT signals, or 
data fusion between them. The representative demon-
stration of three types of muscle activation levels of both 
LGS and SOL muscles during the walking stance phase 
at 0.75 m/s on Participant Sub03 are shown in Fig.  6. 
The left and right column subplots represent the time 
sequence points of muscle activation levels that are used 
in the model calibration and prediction procedures. It is 
observed that the data fusion could balance the muscle 
activation levels from both sEMG signals and MT signals 
and further compensate for the activation level drift from 
only MT signals, which is potentially beneficial for the 
accuracy improvement of the net plantarflexion moment 
prediction. Fig.  7 presents the representative results of 
HNMs calibrations on Sub05 with data collected from 
each individual walking speed, where each solid centered 
line and the shadowed area represent the mean and one 
SD values of the measured and calibrated net ankle joint 
PF moment, and each curve is composed of 10 stance 
cycles at each walking speed. For this participant, the 
mean calibration RMSE values are 8.70 N · m, 9.10 N · m, 
and 7.90 N · m by using sEMG-, US imaging-, and sEMG-
US imaging-driven HNMs under walking speed of 0.50 
m/s, respectively. Results from other walking speeds also 
showed that the sEMG-US imaging-driven HNM could 
effectively reduce the calibration RMSE under either 
single-speed modes or inter-speed mode. To quantita-
tively evaluate the calibration performance by using dif-
ferent HNM categories and under different speed modes, 
the mean RMSE and R2 values between the benchmark 
moment values from ID and calibrated moment values 
on each participant are summarized in Table  2. Based 
on the observation from Fig. 7, it appears that the rela-
tive error may be inflated during specific areas of the 
stance cycles. The current outcomes (i.e., N − RMSE , 
BM − RMSE , and R2 values) may not be directly sensi-
tive to those specific areas, because the three evaluation 
metrics report an averaged performance across the entire 
stance cycle. This limitation of the current outcome 

Table 1  Correlation coefficients (mean ± SD) between each 
neuromuscular feature and the net PF moment across all stance 
phase cycles and ten participants at each walking speed

Neuromuscular features

LGS sEMG SOL sEMG LGS MT SOL MT

Speed [m/s]

0.50 0.886 (0.019) 0.876 (0.086) 0.857 (0.052) 0.867 (0.053)

0.75 0.890 (0.058) 0.905 (0.054) 0.842 (0.024) 0.865 (0.032)

1.00 0.892 (0.066) 0.896 (0.056) 0.883 (0.063) 0.892 (0.056)

1.25 0.835 (0.096) 0.857 (0.076) 0.840 (0.034) 0.833 (0.033)

1.50 0.801 (0.124) 0.785 (0.081) 0.847 (0.018) 0.844 (0.022)
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metrics can be addressed in future work by identifying 
systematic changes in the prediction accuracy through-
out the stance phase cycle rather than across the entire 
cycle.

Overall, the calibration RMSE/R2 values by using 
the sEMG-US imaging-driven HNM are lower/higher 
than those by using the sEMG-driven and US imag-
ing-driven HNMs, respectively, for both single-speed 
modes and inter-speed mode on all participants. Addi-
tionally, 97.5 % of R2 values are higher than 0.80, which 
indicates a strong linear correlation between the cali-
brated and ID-calculated net PF moment values. After 
calculating the N − RMSE and BM − RMSE values, the 
summarized calibration performance across all partici-
pants under both single-speed modes and inter-speed 
mode is presented in Fig.  8. Shapiro-Wilk tests show 
that all N − RMSE , BM − RMSE , and R2 values under 
the single-speed modes and inter-speed mode in both 
calibration and prediction are normally distributed. In 
calibration, results across participants from the two-
way ANOVA show BM − RMSE values systematically 
changed in response to changes in speed (main effect, 
p < 0.001 , n2p = 0.268 ) and applied HNMs (main effect, 
p < 0.001 , n2p = 0.162 ). N − RMSE values systemati-
cally changed in response to changes in speed (main 
effect, p < 0.001 , n2p = 0.089 ) and applied HNMs 
(main effect, p < 0.001 , n2p = 0.193 ). R2 values were 
significantly affected by speed (main effect, p < 0.001 , 
n2p = 0.153 ) and applied HNMs (main effect, p < 0.001 , 
n2p = 0.186 ). However, there is no evidence of an inter-
action effect of the speed and HNM on BM − RMSE 
values ( p = 0.679 ), N − RMSE values ( p = 0.948 ), and 

R2 values ( p = 0.279 ), respectively. Additionally, the 
results from the post hoc Tukey’s HSD are also marked 
in Fig. 8, where letters and asterisks represent the sta-
tistically significant difference.

To verify the net PF moment prediction performance 
of the proposed sEMG-US imaging-driven HNM and 
compare the new HNM to both sEMG- and US imag-
ing-driven HNMs, the three calibrated HNM categories, 
shown in Fig. 8, were applied to walking scenarios of five 
different speeds. Similarly, BM − RMSE , N − RMSE , and 
R2 values between the predicted and ID-calculated net 
PF moments were evaluated and compared. Due to the 
space limitation, the detailed RMSE and R2 values at each 
walking speed on individual participant in prediction can 
be found in Additional file 1: Tables S2 to Table S4. The 
summarized results in Fig. 9 show the mean and one SD 
of BM − RMSE , N − RMSE , and R2 values in prediction 
at each of five speeds by applying three HNM categories. 
The subplots from the first column to the fifth column 
represent the applied calibrated HNMs were from five 
single-speed modes, while the subplots from the sixth 
column represent the inter-speed mode. In each subplot, 
the x−axis labels represent the prediction scenarios at 
five different speeds. Table 3 summaries the mean values 
of BM − RMSE , N − RMSE , and R2 in the prediction 
by using the proposed sEMG-US imaging-driven HNM, 
where the bold numbers represent the cases that the cali-
bration speed mode is the same as the prediction speed 
scenario, which always results in the lowest RMSE and 
highest R2 values. From Fig. 9 and Table 3, we observed 
that BM − RMSE , N − RMSE , and R2 values are opti-
mal when the applied calibrated single-speed mode is 
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Fig. 6  Muscle activation levels of both LGS and SOL during the walking stance phase by setting the allocation gain as 0, 1, and the optimal value, 
respectively. The blue solid, red dashed, and orange centered curves represent the muscle activation levels by using only sEMG signals, only US 
imaging-derived MT signals, and the fusion between sEMG and MT signals with the optimal allocation gain in both model calibration (left column) 
and prediction (right column) procedures. Data shown in the figure are from Participant Sub03 when walking on the treadmill at 0.75 m/s
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close to the current prediction speed scenario, regardless 
of HNM categories. Furthermore, the calibrated inter-
speed mode can effectively constrain the BM − RMSE , 
N − RMSE , and R2 values within a small variation range 
among all prediction speed scenarios, regardless of HNM 
categories.

The results of two-way repeated-measure ANOVA 
show that in prediction BM − RMSE values are sig-
nificantly affected by the calibration speed mode (main 
effect, p < 0.001 , η2p = 0.104 ) and applied HNM cat-
egory (main effect, p < 0.001 , η2p = 0.141 ), N − RMSE 

values are significantly affected by the calibration speed 
mode (main effect, p < 0.001 , η2p = 0.101 ) and applied 
HNM category (main effect, p < 0.001 , η2p = 0.164 ), 
and also R2 values are significantly affected by the cali-
bration speed mode (main effect, p < 0.001 , η2p = 0.103 ) 
and applied HNM category (main effect, p < 0.001 , 
η2p = 0.164 ). The pairwise comparisons show that across 
all prediction scenarios with every speed mode calibra-
tion, the proposed sEMG-US imaging-derived HNM 
could significantly reduce the BM − RMSE values by 
14.49% ( p = 0.029 , d = −0.348 ) and 36.94% ( p < 0.001 , 
d = −0.930 ), significantly reduce the N − RMSE val-
ues by 14.58% ( p = 0.012 , d = −0.389 ) and 36.79% 
( p < 0.001 , d = −1.021 ), and increase the R2 values by 
9.71% ( p = 0.023 , d = 0.713 ) and 17.86% ( p < 0.001 , 
d = 1.010 ) compared to sEMG-driven and US imaging-
driven HNMs, respectively. Furthermore, the pairwise 
comparisons also show that across all prediction sce-
narios with every HNM category, the inter-speed mode 
calibration could reduce the BM − RMSE values by 
38.74% ( p < 0.001 , d = −0.922 ), 18.86% ( p = 0.180 , 
d = −0.590 ), 8.87% ( p = 0.826 , d = −0.237 ), 9.84% 
( p = 0.785 , d = −0.299 ), and 26.57% ( p = 0.004 , 
d = −0.836 ), reduce the N − RMSE values by 
35.73% ( p < 0.001 , d = −1.002 ), 17.20% ( p = 0.201 , 
d = −0.403 ), 9.11% ( p = 0.881 , d = −0.254 ), 11.44% 
( p = 0.715 , d = −0.326 ), and 28.08% ( p < 0.001 , 
d = −0.817 ), and increase the R2 values by 16.76% 
( p < 0.001 , d = 0.810 ), 5.33% ( p = 0.307 , d = 0.342 ), 
0.40% ( p = 0.896 , d = 0.044 ), 0.31% ( p = 0.921 , 
d = 0.033 ), and 6.51% ( p = 0.127 , d = 0.487 ) compared 
to single-speed mode calibration at 0.50 m/s, 0.75 m/s, 
1.00 m/s, 1.25 m/s, and 1.50 m/s, respectively.

Discussions
For the first time, this study investigated net ankle joint 
PF moment continuous prediction during the walking 
stance phase based on an HNM approach that combines 
both sEMG-induced and US imaging-induced muscle 
activation components. We defined this approach as 
sEMG-US imaging-driven HNM for the net PF moment 
prediction. The modified HNM was validated with quasi-
periodic data, including sEMG signals and US imaging-
derived MT from plantarflexors, ankle joint kinematics, 
and kinetics measurements from multiple treadmill walk-
ing stance phases gait cycles at five different speeds. 
We focused on two plantarflexor muscles, e.g., LGS and 
SOL, when characterizing the PF function during walk-
ing. The basic objective was to establish a modified HNM 
for either LGS or SOL muscles, including (1) a weighted 
muscle activation model component, (2) a muscle-ten-
don unit geometry model component, and (3) a muscle 
dynamic contraction model component. This study also 

Fig. 7  Calibration results by using three HNM categories on 
Participant Sub05 under single-speed modes. The calibration 
performance by using sEMG-, US imaging-, and sEMG-US 
imaging-driven HNMs under 5 single-speed modes on Sub05. 
The red lines and light shadowed areas represent the mean and 
SD of the net PF moment from the ID calculation, the blue, green, 
black lines and light shadowed areas represent the mean and SD 
of the net PF moment from calibrations by using sEMG-driven 
HNM, US imaging-driven HNM, and sEMG-US imaging-driven HNM, 
respectively. a–e represent the results at each walking speed from 
0.50 to 1.50 m/s
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Table 2  Calibration results with three HNM categories in both single-speed modes and inter-speed mode on each participant

Subject HNMs Single-speed modes

0.50 m/s 0.75 m/s 1.00 m/s

RMSE R
2 RMSE R

2 RMSE R
2

Sub01 sEMG 12.16 0.954 11.28 0.956 12.75 0.954

US imaging 14.49 0.921 14.62 0.926 12.94 0.951

sEMG-US imaging 11.79 0.965 10.25 0.964 11.77 0.960

Sub02 sEMG 5.96 0.932 6.93 0.936 7.70 0.934

US imaging 5.91 0.932 6.44 0.943 7.07 0.945

sEMG-US imaging 4.94 0.953 5.10 0.964 6.91 0.947

Sub03 sEMG 9.86 0.924 8.38 0.964 11.28 0.949

US imaging 13.68 0.857 11.17 0.937 12.29 0.940

sEMG-US imaging 8.33 0.946 6.49 0.979 9.81 0.962

Sub04 sEMG 12.04 0.820 17.14 0.842 13.79 0.904

US imaging 16.60 0.661 20.49 0.771 16.38 0.865

sEMG-US imaging 11.64 0.834 16.89 0.847 13.48 0.908

Sub05 sEMG 8.70 0.903 9.43 0.904 9.01 0.921

US imaging 9.10 0.894 9.77 0.897 9.54 0.911

sEMG-US imaging 7.90 0.920 8.96 0.913 8.97 0.921

Sub06 sEMG 6.36 0.963 6.15 0.974 9.35 0.953

US imaging 7.08 0.954 12.42 0.897 18.34 0.823

sEMG-US imaging 5.53 0.972 6.02 0.976 9.28 0.954

Sub07 sEMG 5.76 0.923 6.75 0.921 6.84 0.949

US imaging 6.22 0.911 8.34 0.879 7.31 0.942

sEMG-US imaging 5.46 0.932 6.48 0.927 6.67 0.951

Sub08 sEMG 4.98 0.973 6.64 0.957 9.20 0.936

US imaging 4.97 0.973 6.97 0.953 8.34 0.946

sEMG-US imaging 4.61 0.977 6.35 0.961 8.24 0.948

Sub09 sEMG 7.37 0.926 8.65 0.919 7.76 0.941

US imaging 8.99 0.894 9.55 0.901 8.13 0.936

sEMG-US imaging 7.22 0.929 8.27 0.926 7.24 0.949

Sub10 sEMG 9.31 0.935 7.27 0.973 12.24 0.940

US imaging 13.85 0.856 11.97 0.927 12.56 0.937

sEMG-US imaging 8.25 0.949 5.78 0.983 9.72 0.962

Subject HNMs Single-speed modes Inter-speed mode

1.25 m/s 1.50 m/s All speeds

RMSE R
2 RMSE R

2 RMSE R
2

Sub01 sEMG 13.40 0.955 14.59 0.953 14.42 0.936

US imaging 13.85 0.952 13.38 0.960 18.79 0.893

sEMG-US imaging 12.61 0.960 12.76 0.964 12.95 0.949

Sub02 sEMG 13.47 0.823 11.29 0.874 10.62 0.862

US imaging 16.86 0.724 13.76 0.816 12.28 0.818

sEMG-US imaging 13.41 0.822 8.79 0.922 10.01 0.877

Sub03 sEMG 11.55 0.950 12.07 0.946 13.53 0.924

US imaging 11.62 0.950 13.01 0.938 16.19 0.916

sEMG-US imaging 9.38 0.967 11.30 0.952 11.38 0.951

Sub04 sEMG 14.91 0.893 14.89 0.913 17.14 0.848

US imaging 17.26 0.857 15.13 0.911 23.52 0.723

sEMG-US imaging 14.87 0.894 14.86 0.914 17.12 0.849
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Table 2  (continued)

Subject HNMs Single-speed modes Inter-speed mode

1.25 m/s 1.50 m/s All speeds

RMSE R
2 RMSE R

2 RMSE R
2

Sub05 sEMG 6.79 0.963 8.15 0.954 10.60 0.892

US imaging 6.87 0.961 8.51 0.949 12.97 0.840

sEMG-US imaging 6.67 0.964 8.08 0.954 10.48 0.895

Sub06 sEMG 8.74 0.964 18.06 0.884 13.13 0.905

US imaging 13.54 0.915 15.99 0.908 17.32 0.832

sEMG-US imaging 8.37 0.967 13.91 0.931 11.76 0.922

Sub07 sEMG 7.66 0.941 10.59 0.898 9.46 0.890

US imaging 7.38 0.946 9.37 0.920 10.41 0.868

sEMG-US imaging 7.04 0.951 9.02 0.927 8.64 0.909

Sub08 sEMG 11.74 0.912 14.98 0.864 14.98 0.864

US imaging 10.82 0.925 14.27 0.877 14.27 0.877

sEMG-US imaging 10.44 0.931 13.76 0.886 13.76 0.886

Sub09 sEMG 7.55 0.925 8.02 0.954 10.58 0.929

US imaging 9.64 0.878 8.28 0.923 14.38 0.870

sEMG-US imaging 6.87 0.955 7.92 0.955 10.08 0.933

Sub10 sEMG 12.10 0.946 10.85 0.956 13.14 0.939

US imaging 12.89 0.939 11.86 0.948 17.26 0.906

sEMG-US imaging 10.19 0.962 10.08 0.962 12.37 0.960

(RMSE unit: N ·m)

Fig. 8  Calibration performance across all participants by using three HNM categories. The mean and SD of BM− RMSE , N − RMSE , and R2 values 
across all participants under both single-speed modes and inter-speed mode are displayed in upper, middle, and lower plots, respectively, 
during calibration procedures. Blue, red, and yellow bars represent the results by using sEMG-, US imaging-, and sEMG-US imaging-driven HNMs, 
respectively. Letters and asterisks represent the statistically significant difference from the two-way repeated-measure ANOVA followed by a Tukey’s 
HSD, where letters stand for the evaluation of the walking speed factor (significant difference only exists between each two bar groups out of the 
left six groups without any overlap of letters) and asterisks stand for the evaluation of the applied HNM type factor (significant difference exists 
between each two bars out of the most right group when the asterisk is there)
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investigated the effects of HNM categories (sEMG-, US 
imaging-, and sEMG-US imaging-driven) and calibra-
tion speed modes (single-speed modes and inter-speed 
mode) on the net PF moment prediction performance 
during the walking stance phase. The ID-calculated net 
PF moment worked as the benchmark in both calibra-
tion and prediction. The results support our hypothesis 
that compared to sEMG-driven and US imaging-driven 
HNMs, the sEMG-US imaging-driven HNM accurately 
predicts the net PF moment. Further, the HNMs, when 
calibrated with the inter-speed mode, robustly predict 
the net PF moment.

The evaluation of the proposed HNMs’ calibration 
and prediction performance was based on three cri-
teria: BM − RMSE , N − RMSE , and R2 . In general, as 
reported in [58], the results were considered excellent if 
the N − RMSE values were smaller than 15%. For the cal-
ibration, the results in Fig. 7 presented a good calibration 
performance by using each of three HNMs on Sub05. 
Furthermore, from results across participants shown in 
Fig. 8, we observed that the mean N − RMSE values were 
all less than 10.92% regardless of the calibration speed 
modes and applied HNM categories. Primarily they 
were less than 8.30% irrespective of the calibration speed 

modes when applying the proposed sEMG-US imaging-
driven HNM. For the prediction, as shown in Fig. 9 and 
Table  3, by applying the inter-speed mode calibrated 
sEMG-US imaging-driven HNM, the N − RMSE mean 
values were all less than 11.40% throughout those five 
walking speeds scenarios, which validated the prediction 
results were all excellent. Therefore, both calibration and 
prediction results present consistent findings that the 
N − RMSE values can be constrained within a satisfacto-
rily small region by using the proposed sEMG-US imag-
ing-driven HNM with the inter-speed mode calibration.

The superior net PF torque prediction of the sEMG-US 
imaging-driven HNM can be mainly due to the reason 
that the fused signals capture complementary mechani-
cal and neural aspects of the muscle contraction [25]. 
information [25]. Specifically, sEMG signals measure 
electric potentials generated by muscle motor units. The 
amplitude and density of sEMG signals linearly correlate 
with the number of firing neurons, which offers a physi-
cal measurement of the microphysiological response 
[59]. US imaging directly visualizes muscle change at the 
macrophysiological performance [60], when the same 
group of neural motor units is activated. Thus, sEMG 
features and US imaging features provide information 

Fig. 9  Prediction performance across all participants by using three HNM categories. The mean and SD of BM− RMSE , N − RMSE , and R2 values 
across all participants under both single-speed modes and inter-speed model are displayed in upper, middle, and lower row plots, respectively. 
Blue, red, and yellow bars represent the prediction results by using sEMG-, US imaging-, and sEMG-US imaging-driven HNMs, respectively. Column 
subplots from left to right represent that these applied HNMs were calibrated under single-speed modes (0.50 m/s, 0.75 m/s, 1.00 m/s, 1.25 m/s, 
and 1.50 m/s) and the inter-speed mode
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from electrical and mechanical aspects, respectively, in 
response to the same physiological stimulus.

As a preliminary study of the sEMG-US imaging-
driven HNM for walking on a treadmill across multiple 
speeds, the results are promising and can help overcome 
the challenges of joint motion intent detection in voli-
tional control of assistive devices. However, there are still 
some limitations in the current study. First of all, only a 
few US imaging-derived parameters, MT from both LGS 
and SOL, measured muscle activation levels indirectly 
(a macrophysiological perspective). Other US-derived 
parameters, like FL and PA [21, 25, 27, 35], of the MTU 
geometry model may further enrich the neuromuscular 
model. A potential difficulty here is the inability to cap-
ture a larger region of interest that contains entire mus-
cle fascicles, mainly due to the small dimension of our US 
transducer. Another difficulty is to continuously track the 
muscle fascicles of the plantarflexors within the visual-
ized region of interest during dynamic tasks, like walk-
ing. If always visualized, more geometry parameters from 
US imaging signals will likely further improve the HNM 
accuracy. Second, the US imaging-derived muscle activa-
tion was defined as a normalization function in (4). We 
also assumed a linear monotonic relationship between 

the MT of LGS or SOL and net PF moment change dur-
ing the stance phase in Table  1. However, in [29, 61], it 
was observed that despite an increase in MT of the LGS 
and SOL muscles during the stance phase, their muscle 
activations decreased in the last 10 to 20% of the stance 
phase. Also, in fast walking, MT of SOL was observed 
to decrease in the first 10% of stance, while the muscle 
activation increased. The above inconsistency may result 
from the difference in experimental setup, sEMG sensor 
or US transducer placement on the targeted muscles, MT 
tracking approach from US imaging signals, etc. In future 
work, a further comparison will be conducted to evaluate 
the muscle geometry parameters change and sEMG sig-
nals change during the same walking tasks. As detailed in 
the pre-processing data section, a key-frame correction 
[55] was applied to reduce the gait cycle-related drift of 
MT tracking results significantly. However, a subjective 
error in the manual operation is inevitable. Therefore, 
it was not practical to altogether remove the gait cycle-
related drift of US imaging-derived MT. This work has 
extended the preliminary results of voluntary isomet-
ric ankle PF studies [34, 35] to dynamic walking studies 
on non-disabled participants. Further experiments on 
patients with impaired plantarflexors are needed to verify 

Table 3  Metrics of BM− RMSE , N − RMSE , and R2 mean values of the net PF moment prediction across all participants by using the 
proposed sEMG-US imaging-driven HNM

The diagonal elements with bold numbers represent the situations that the calibration speed mode is the same as the prediction speed scenario. ( BM− RMSE unit: 
N ·m/kg, N − RMSE unit: %)

BM− RMSE Prediction scenario (m/s)

0.50 0.75 1.00 1.25 1.50

Calibration 0.50 m/s 0.119 0.154 0.221 0.276 0.333

0.75 m/s 0.151 0.121 0.171 0.221 0.284

1.00 m/s 0.216 0.162 0.127 0.176 0.275

1.25 m/s 0.254 0.182 0.159 0.148 0.214

1.50 m/s 0.271 0.226 0.215 0.214 0.155
Inter-speed 0.161 0.126 0.150 0.163 0.217

N − RMSE

Calibration 0.50 m/s 8.36 9.78 12.72 14.66 16.35

0.75 m/s 10.75 7.75 9.75 11.71 14.04

1.00 m/s 15.29 10.29 7.39 9.39 13.54

1.25 m/s 17.97 11.52 9.01 7.89 10.87

1.50 m/s 19.22 14.33 12.36 11.44 7.71
Inter-speed 11.40 8.01 8.60 8.65 10.84

R
2

Calibration 0.50 m/s 0.909 0.895 0.876 0.854 0.794

0.75 m/s 0.863 0.943 0.930 0.908 0.845

1.00 m/s 0.838 0.933 0.948 0.920 0.855

1.25 m/s 0.809 0.912 0.928 0.940 0.904

1.50 m/s 0.769 0.855 0.877 0.899 0.946
Inter-speed 0.881 0.933 0.943 0.935 0.899
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the practicability of the proposed sEMG-US imaging-
driven HNM for net ankle joint PF moment prediction. 
We also observed that the calibrated HNMs with the 
inter-speed mode increased the net PF moment predic-
tion robustness across different speed scenarios. The 
development of inter-speed HNM modeling is crucial 
because it will potentially allow a consistently accurate 
prediction performance of the net PF moment across 
multiple walking speeds. Furthermore, it will enable pre-
dicting and analyzing the dynamics of a more extensive 
set of walking speeds than was possible with a single-
speed mode, resulting in a deeper understanding of the 
neuromuscular dynamics during the human walking 
stance phase. Finally, it may open up to the development 
of robust neuromuscular human-machine interfaces for 
the simultaneous and proportional control of wearable 
assistive devices such as powered orthoses and prosthe-
ses under different walking speeds.

In this preliminary study, although the combination 
of US imaging and sEMG data in the model improved 
the prediction of the ankle moment, it was unknown if 
the prediction was better only because in this combina-
tion the solution space was higher by adding parameters 
in the optimization problem. To address this ambigu-
ity, we have conducted additional model calibration and 
prediction procedures for comparison, where the time 
sequence of the US imaging-derived muscle activation 
was replaced by a randomly generated signal between 0 
and 1. In this way, we could reproduce the same solution 
space just like the proposed sEMG-US imaging-driven 
HNM, so we would be able to investigate if the prediction 
benefits still exist or not. We took a representative partic-
ipant as an example, and present the calibration perfor-
mance and prediction performance by using five different 
HNMs, as shown in the Additional file 1: Fig. S18. It was 
observed that when the random signal (RS)-derived mus-
cle activation levels of LGS and SOL muscles were intro-
duced, although the solution space was increased, just 
like the proposed approach to fuse sEMG and US imag-
ing signals, the calibration and prediction performance 
were both deteriorated when compared to the case where 
only sEMG-derived muscle activation levels were used. 
Therefore, based on the additional analyses, we believe 
that the better net plantarflexion moment prediction by 
using the proposed sEMG-US imaging-driven HNM was 
not only because in this combination the solution space 
was higher by adding parameters in the optimization 
problem, but more importantly, the US imaging-derived 
muscle thickness feature introduced complementary 
mechanical deformation characteristics during the mus-
cle contraction, which dominantly resulted in the better 
prediction performance.

Limitation and future work
The key point to implement the proposed sEMG-US 
imaging-driven HNM is to find the allocation gain δi for 
both LGS and SOL muscles through solving the non-
linear least square optimization problem. However, one 
possible limitation of this optimization process is that 
the allocation gains are speed-dependent and subject-
dependent, which means that the optimal values of 
those two allocation gains vary along with the model 
calibrations when using data collected from different 
walking speeds on the same participant or from differ-
ent participants at the same walking speed. So it is rela-
tively challenging to generate a constant allocation gain 
for either LGS or SOL muscles across multiple speeds 
or general participants. The US imaging-derived mus-
cle thickness signal is potentially sensitive to the posi-
tion and orientation of the US transducer relative to the 
shank segment, which may affect the prediction accu-
racy of the proposed approach. In the current study, 
we did not track the position and orientation of the 
US transducer relative to the shank segment due to the 
assumption that the relative motion of the US trans-
ducer is negligible because a customized US transducer 
holder with an arc structure and elastic velcro straps 
were used to stabilize the position and orientation of 
the US transducer during the dynamic walking tasks. 
However, one possible limitation of this study is that 
the assumption may not hold for a faster walking speed. 
Therefore, a further study would be to investigate the 
effect of the relative position and orientation change 
between the US transducer and the shank segment to 
the prediction accuracy of the proposed sEMG-US 
imaging-driven HNM approach.

Another limitation of the current study is that we only 
considered the agonist LGS and SOL muscles to predict 
the ankle joint net PF moment, and the effects of the 
MGS and TA muscles were not considered. Although 
in the experiments we collected the sEMG signals from 
LGS, MGS, SOL, and TA muscles, ultrasound imaging 
data was collected from the LGS and SOL muscles only. 
Therefore, the fusion results were only based on these 
two muscles. The main reasons that we did not consider 
the effects from the MGS and TA muscles are (1) exist-
ing evidence suggests that sEMG signals from LGS and 
MGS are comparable [62], and similar results in the cur-
rent study also can be seen in the Additional file 1: Fig. 
S19; (2) during the walking stance phase, plantarflexor 
muscles (LGS and SOL) are the dominant muscles that 
generate the net ankle joint moment. Results of the pro-
cessed sEMG signals showed that the activation of the 
TA muscle are relatively small during the walking stance 
phase compared to the plantarflexor muscles, as can be 
observed in the Additional file 1: Fig. S19. However, even 
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though the TA muscle activation is low during the walk-
ing stance phase, the effect from the passive contraction 
from this antagonist muscle needs to be further investi-
gated in future work.

Conclusion
This paper investigated the feasibility of an sEMG-
US imaging-driven HNM to predict net ankle joint PF 
moment during the stance phase across multiple walk-
ing speeds. The results showed that on average, the net 
PF moment prediction RMSE, normalized to peak net 
PF moment/body mass, was significantly reduced when 
using the sEMG-US imaging-driven HNM, compared 
to sEMG-driven and US imaging-driven HNMs. The 
results also showed that the calibrated HNMs with the 
inter-speed mode were more robust for net PF moment 
prediction at different speed scenarios than HNMs with 
single-speed modes. The improved net ankle joint PF 
moment prediction during the dynamic walking tasks at 
different speeds could potentially lead to improved voli-
tional control of assistive devices with more advanced 
and intelligent algorithms.
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