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Abstract 

Introduction:  Conflicting results persist regarding the effectiveness of robotic-assisted gait training (RAGT) for 
functional gait recovery in post-stroke survivors. We used several machine learning algorithms to construct prediction 
models for the functional outcomes of robotic neurorehabilitation in adult patients.

Methods and materials:  Data of 139 patients who underwent Lokomat training at Taipei Medical University Hospital 
were retrospectively collected. After screening for data completeness, records of 91 adult patients with acute or 
chronic neurological disorders were included in this study. Patient characteristics and quantitative data from Lokomat 
were incorporated as features to construct prediction models to explore early responses and factors associated with 
patient recovery.

Results:  Experimental results using the random forest algorithm achieved the best area under the receiver operat‑
ing characteristic curve of 0.9813 with data extracted from all sessions. Body weight (BW) support played a key role 
in influencing the progress of functional ambulation categories. The analysis identified negative correlations of BW 
support, guidance force, and days required to complete 12 Lokomat sessions with the occurrence of progress, while a 
positive correlation was observed with regard to speed.

Conclusions:  We developed a predictive model for ambulatory outcomes based on patient characteristics and quan‑
titative data on impairment reduction with early-stage robotic neurorehabilitation. RAGT is a customized approach 
for patients with different conditions to regain walking ability. To obtain a more-precise and clearer predictive model, 
collecting more RAGT training parameters and analyzing them for each individual disorder is a possible approach to 
help clinicians achieve a better understanding of the most efficient RAGT parameters for different patients.

Trial registration: Retrospectively registered.
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Introduction
Neurological disorders are often chronic and debilitat-
ing, and place heavy burdens on families and society 
[1]. Improving mobility is one of the main goals of reha-
bilitation for patients with neurological disorders [2]. In 
neurorehabilitation, a high dose and intensity, sufficient 
practice, individualized goals, motivation, and special-
ist knowledge are all important factors for achieving 
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better outcomes [3, 4]. Compared to conventional ther-
apy, robotic-assisted gait training (RAGT) is expected 
to more effectively improve mobility, as it can provide 
a higher dose and more-intensive treatment than usual 
rehabilitation [5]. As early as 2009, randomized con-
trolled trials showed that RAGT combined with regular 
physiotherapy was more effective for improving the func-
tional ambulation capacity and neurological recovery 
than conventional therapy in patients after a subacute 
stroke [6].

Comparisons of the efficacy between RAGT and con-
ventional gait training (CGT) have garnered consider-
able attention in rehabilitation medicine. A review article 
revealed that RAGT applications demonstrated a bet-
ter effect than CGT in post-stroke patients [7]. Another 
review article provided evidence that RAGT improved 
walking function in patients that sustained a spinal cord 
injury within the past 6 months [8]. In contrast, other 
studies demonstrated non-superior results of the effec-
tiveness of RAGT for functional recovery of walking in 
survivors with different neurological disorders [9, 10]. 
Variations in the intensity, duration, and amount of train-
ing, as well as in the types of treatment, participant char-
acteristics, and measurements across trials may have 
contributed to different reported effectiveness levels. 
Nevertheless, specific applications using RAGT devices 
to obtain optimal effects for patients remain unclear.

Robot-assisted gait trainers operate by either end-
effector (non-portable) or exoskeleton (portable) prin-
ciples. One systematic review showed that operational 
robots, such as the Gait Trainer, were more cost-effec-
tive in achieving independence in walking than wear-
able robotics, such as Lokomat [11]. However, more than 
1000 Lokomat devices have been purchased and are in 
use worldwide to restore and improve walking function 
in patients with neurological disorders. The cost and 
availability of devices like Lokomat often put therapists 
and patients under considerable pressure as there is still 
uncertainty regarding their optimal protocol and appro-
priate timing of use. Further research on the efficient use 
of Lokomat-assisted therapy is needed.

Periodic outcome assessments and tracking are fun-
damental approaches for implementing effective medi-
cal practices, which are supported by guidelines issued 
for stroke rehabilitation [12]. A previous study stated 
that high-intensity step training applied during inpatient 
rehabilitation resulted in significantly greater walking 
and balance outcomes [13, 14]. Although RAGT pro-
vides highly intensive and repetitive task-specific train-
ing, training programs also need to be individualized 
and monitored for effective neurorehabilitation. How-
ever, data obtained from ongoing RAGT can be best 
used when organized into a predictive model to help 

clinicians, patients, and their families with decision-mak-
ing and planning robot-assisted rehabilitation manage-
ment as early as possible [15].

During Lokomat training, the body weight (BW) sup-
port system and guidance force (GF) provided by the 
robotic arms assist patients to follow a physiological gait 
pattern. Later, the support and guidance are accordingly 
reduced as the patient regains selective motor control. 
Positive relationships between training parameters and 
muscle activation were also reported. Specifically, dur-
ing Lokomat training, reducing BW support and GF was 
shown to increase gluteus muscle and anterior tibialis 
muscle activation, while increasing the training speed 
functions to enhance muscle activation in both legs [16, 
17]. However, no predictive model based on Lokomat 
training data has been established to help identify cost-
effective approaches for patients using this system to 
regain walking function.

Therefore, until the phenotypes for an effective inter-
vention are better clarified, Lokomat-based therapy still 
relies heavily on therapists’ clinical expertise. We hypoth-
esized that early assessment could accurately predict the 
effectiveness of RAGT for functional gait recovery based 
on parameters from the first few sessions. The purpose of 
this study was two-fold. First, we attempted to determine 
the most beneficial combination of RAGT parameters 
in adult patients with neurological diseases in different 
recovery phases. Second, we anticipated the develop-
ment of prediction models to assess improvements in 
the Functional Ambulation Category (FAC) for Lokomat-
based therapies in this population. FAC, a commonly 
used outcome measurement in gait-related studies, is a 
six-point categorical scale that assesses how much sup-
port a patient requires when walking. A score of 0 indi-
cates non-walking, while a score of 4 to 5 indicates an 
increasingly independent walking ability [18].

Materials and methods
Dataset
The analytical flowchart of this study is presented in 
Fig.  1. Data of 139 patients who underwent Lokomat 
training at Taipei Medical University Hospital were ret-
rospectively collected. After screening for data com-
pleteness, records of 91 adult patients with acute or 
chronic neurological disorders were included in the 
study. Clinical information and RAGT parameters of all 
sessions were incorporated as input variables to predict 
whether patients would show improvement by com-
paring the FAC of the 12th session with that of the first 
session. We incorporated continuous variables (i.e., 
age, days to complete 12 sessions, BW support, GF, and 
speed) and categorical variables (i.e., initial FAC, gender, 
entry point, extremity affected, and diagnosis) as inputs 



Page 3 of 12Kuo et al. Journal of NeuroEngineering and Rehabilitation          (2021) 18:174 	

into the prediction models. Among the final dataset, 60 
patients (65.9%) showed improvement after complet-
ing 12 RAGT sessions, and the remaining 31 patients 
showed no improvement. Given the importance of walk-
ing ability in stroke patients, the RAGT parameters 
extracted for analysis in this study included BW sup-
port, GF, and the speed at which the treadmill was run 
as they reflect responsive measures of gait ability. These 
three parameters can individually be adjusted according 
to a patient’s condition and the therapeutic goals of that 
patient. At our clinic, therapists develop individualized 
Lokomat training protocols for each stroke patient. As 
patients gradually regain strength in their lower extremi-
ties, therapists can reduce the weight supported to pro-
mote greater muscle activities. When patients regain 
more temporal muscle activation, the GF can be reduced 
to promote patients’ active participation in predefined 
gait patterns. Subsequently, when the performance of a 
patient adjusts well to the above two parameters, thera-
pists can increase the training walking speed to increase 
repetitions and challenges. This study was approved by 
the Institutional Review Board of Taipei Medical Univer-
sity (no. 202,005,039).

Descriptive statistical analysis
The descriptive statistics were compared between the 
improvement and non-improvement groups of patients 
undergoing RAGT treatments (i.e., 60 patients in the 
improvement group and 31 in the no-improvement 

group). Means and standard deviations (SDs) were com-
puted for continuous variables, and frequencies and 
percentages were calculated for categorical variables. 
Comparisons of baseline characteristics between groups 
with and without progress were analyzed by Student’s 
t-test for continuous variables and Chi-squared test for 
categorical variables. Between-group comparisons were 
considered statistically significant at p < 0.05. Statistical 
analyses were conducted using RStudio vers. 1.2.5001 
software (2009–2019 RStudio) and SAS 9.4 (SAS Insti-
tute, Cary, NC, USA).

Imbalanced dataset handling
The original dataset was imbalanced (i.e., 65.9% of par-
ticipants showed improvement and 34.1% of them did 
not), and machine learning algorithms tend to predict 
outcomes of most samples to achieve a better predictive 
performance. However, one of the most important aims 
of our study was to identify patients who do not show 
improvement despite completing many RAGT sessions. 
Therefore, oversampling of the group with fewer sam-
ples, or under-sampling of the group with more samples 
can be used as an effective technique to handle imbal-
anced datasets [19]. Therefore, we applied an oversam-
pling technique to double the no-improvement group of 
patients to generate a final balanced dataset consisting 
of 60 improved and 62 non-improved participants for 
development of prediction models in this study.

Fig. 1  Analytic flowchart to develop models for predicting the effectiveness of robot-assisted gait training (RAGT) for patients with neurological 
disorders
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Machine learning algorithms
Machine learning is a research field in computer science 
that focuses on how algorithms learn from data [20]. 
These algorithms incorporate statistics to detect pat-
terns in order to make predictions about a dataset [21]. 
The use of machine learning algorithms has become 
increasingly common for obtaining reliable predictions. 
Compared to traditional methods, many machine learn-
ing techniques and algorithms discover more-sensitive 
and -specific screening algorithms and relax assumptions 
and restrictions of traditional regressions [22]. The aim of 
this study was to build the best prediction model to dis-
tinguish patients with and without improvement using 
RAGT for functional gait recovery. Five machine learning 
algorithms, including logistic regression (which is widely 
used in medical studies), decision tree (which generates 
a tree-like model to support decision making), support 
vector machine (SVM; which is used to perform nonlin-
ear classification by mapping input features to a higher-
dimensional space), random forest (RF), and extreme 
gradient boosting (XGBoost) to compare performances, 
were incorporated to predict changes in the FAC and 
develop prediction models. The logistic regression and 
SVM are two well-known statistical methods used for 
binary classification. Furthermore, we used tree-based 
machine learning algorithms to deal with binary classi-
fications as well. A decision tree is a fundamental tree-
based algorithm. RFs and XGBoost are two tree-based 
algorithms as well, but they fundamentally differ. RFs use 
bagging to generate each new dataset with replacement 
from the original dataset. XGBoost is a machine learning 
algorithm for tree boosting.

Cross-validation was incorporated to provide fair esti-
mations of our prediction model. We used ten-fold cross-
validation to evaluate our prediction performance using 
the balanced dataset (i.e., 60 in the improvement group 
and 62 in the no-improvement group). Since cross-vali-
dation can be a better approach for evaluating predictive 
performance without overestimation, ten-fold cross-val-
idation was also applied for evaluation of the balanced 
dataset. The balanced dataset was randomly divided into 
ten subsets; each time a subset was used as a test set, 
the remaining nine subsets were applied to develop the 
prediction model as the training set. We built prediction 
models and evaluated each model in the R environment.

Experimental design and prediction models
To investigate the effects of using different numbers of 
input sessions (i.e., i as the number of input sessions), the 
clinical information and raw parameters from the first 
i RAGT sessions were incorporated as input features in 
the five machine learning algorithms to predict whether 

there was an improvement in the 12th session (compared 
to the 1st session) for the balanced dataset. The number 
of input sessions with the highest area under the receiver 
operating characteristic (ROC) curve (AUC) in the test set 
was selected as the best feature for predicting the success 
of RAGT. After the optimal number of input sessions was 
determined, we applied the optimal number of input ses-
sions using ten-fold cross-validation to develop the predic-
tion model for the balanced dataset (i.e., denoted model 1).

Furthermore, instead of predicting whether changes will 
occur, we investigated whether using a finer granulation to 
predict the amount of FAC changes as the prediction out-
come would improve the performance. The FAC is a six-
point categorical scale that assesses the extent to which 
support is needed by a patient when walking. In addition, 
changes in the FAC of 0 and 1 accounted for 50.8% and 
33.6% (i.e., 62 and 41 patients with FAC changes of 0 and 
1, respectively) of the balanced dataset, respectively. There-
fore, few samples with FAC changes of ≥ 2 (i.e., 14, 3, 1, 
and 1 patients with FAC changes of 2, 3, 4, and 5, respec-
tively) were grouped together. We incorporated data from 
the optimal number of input sessions as features, and FAC 
changes at three levels (i.e., 0, 1, and ≥ 2) as our outcome 
target variables to develop a prediction model by ten-fold 
cross-validation (i.e., denoted model 2).

In addition to an accurate predictive performance, it is 
highly desirable if clinical insights can be interpreted from 
experimental results from an analytical study of the data. 
The RF algorithm estimates the importance of a specific 
variable by observing how much the error of prediction 
(i.e., the mean decrease in accuracy, MDA) increases when 
out-of-bag data for a specific variable are permuted and all 
other variables remain the same [23].

Evaluation measures
The accuracy, sensitivity, specificity, and the ROC curve, 
were used to evaluate the performance of each predic-
tion model. The accuracy, sensitivity, and specificity were 
defined as follows:

 where TP, TN, FP, and FN respectively denote numbers 
of true positives, true negatives, false positives, and false 
negatives.

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP
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The area under the ROC curve (AUC) is an indicator 
used to evaluate the performance of the classification 
prediction models. A previous study suggested that the 
AUC is a better indicator for comparing and measuring 
the performance of a classification algorithm [24] because 
it avoids the assumed subjectivity in threshold selection, 
while the continuous probability is converted into binary 
dependent variables and summarizes the performance of 
each prediction model under all possible thresholds [20]. 
Therefore, the AUC was used as an evaluation measure 
to compare different machine learning algorithms and 
select the classifier with the best performance.

Results
Significant differences observed in RAGT parameters 
in the two study groups
Descriptive statistical analyses of continuous and cat-
egorical variables of the 91 patients are shown in Tables 1 
and 2, respectively. It was observed that the age of the 
patient and time to complete one course (i.e., 12 sessions 
of Lokomat training, in days) did not significantly differ 
between the improvement and no-improvement groups 
(Table  2). For Lokomat parameters, all variables except 
the GF of the 1st session showed significant differences 
between the two groups. Our analysis also demonstrated 
that the entry point, extremity affected, and diagnosis 
showed statistically significant differences in outcomes 
(Table 1).

Machine learning models accurately predict improvements 
in the FAC using clinical data and RAGT parameters from all 
sessions
The predictive performances of different machine 
learning algorithms with ten-fold cross-validation 
using different numbers of input sessions to predict the 
improvement in FACs of the 12th session is shown in 
Additional file  1: Table  S1 in supplementary material. 
From Additional file  1: Table  S1, using all sessions as 
the input in the RF algorithm to predict the improve-
ment in FACs of the 12th session resulted in achieving 
the highest AUC of 0.981. In addition, using all ses-
sions as the input in both the logistic regression and 
XGBoost algorithms resulted in better performances 
than using other numbers of sessions as the input. 
Therefore, all sessions were selected as inputs for the 
machine learning algorithms to further compare pre-
diction performances as shown in Table  3a. The RF 
achieved high predictive performances of 0.879, 1.000, 
0.767, and 0.981 in accuracy, sensitivity, specificity, 
and AUC, respectively. To investigate whether there 
were significant differences in the means of the AUC, 
accuracy, sensitivity, and specificity between the clas-
sifiers, an analysis of variance (ANOVA) was incor-
porated to examine the differences, and our statistical 
analysis showed that there were significant differences 
(i.e., p < 0.05) in their means among the five classifiers. 
Detailed statistical results of the ANOVA and Tukey’s 

Table 1  Descriptive statistics of continuous variables for the improvement and no-improvement groups in RAGT​

SD, standard deviation; GF, Guidance force; BW, Body weight

p < 0.05, ”*”; p < 0.01, “**”; p < 0.001, “***”

Continuous variables No- improvement (n = 31) Improvement (n = 60)

Mean SD Mean SD p-value

Age (years) 61.0000 13.6431 59.0167 15.5514 0.5498

Days of 12 Sessions Accomplished (days) 41.0645 18.7988 36.0833 20.8305 0.2672

GF 1st (%) 90.9677 11.4324 93.2500 9.3349 0.3093

GF 6th (%) 83.5484 13.3662 74.5000 17.3376 0.0128 *

GF 12th (%) 79.3548 17.0657 66.4167 20.6892 0.0036 **

BW support 1st (%) 60.8387 12.1493 50.7333 12.8602 0.0005 ***

BW support 6th (%) 48.2581 13.9115 33.7000 15.4988 0.0000 ***

BW support 12th (%) 42.0645 15.6545 26.2667 15.1343 0.0000 ***

Speed 1st (km/h) 1.4290 0.1216 1.4900 0.1374 0.0401 *

Speed 6th (km/h) 1.5290 0.1346 1.6367 0.0245 0.0024 **

Speed 12th (km/h) 1.5548 0.1748 1.7150 0.2483 0.0006 ***

GF 6th-GF 1st (%) −7.4194 11.0205 −18.7500 14.8045 0.0003 ***

GF 12th-GF 1st (%) −11.6129 14.9659 −26.8333 18.4796 0.0002 ***

BW support 6th-BW support 1st (%) −12.5806 10.6388 −17.0333 10.9312 0.0664

BW support 12th-BW support 1st (%) −18.7742 12.5531 −24.4667 12.9018 0.0471 *

Speed 6th-Speed 1st (km/hr) 0.1000 0.0931 0.1467 0.1282 0.0760

Speed 12th-Speed 1st (km/hr) 0.1258 0.1437 0.2250 0.1874 0.0116 *
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honest significant difference (HSD) tests are illustrated 
in Additional file  1: Tables S2a–S5a and S2b–S5b, 
respectively.

In addition, we incorporated the same set of features to 
predict FAC changes of the 12th session compared to all 
session in model 2. In Table 3b, the means of the AUCs 
from different machine learning algorithms evaluated 
by ten-fold cross-validation for three levels were ranked 
from the highest to the lowest as follows: RF, 0.814; 
XGBoost, 0.768; SVM, 0.724; logistic regression, 0.675; 
and decision tree, 0.485. Compared to Table 3a, experi-
mental results demonstrated that using three levels of 
FAC changes as a finer granulation to estimate whether 
an outcome variable performed worse than the binary 
classification of improvement or not were due to the 
greater number of classes used for the prediction.

Variable importance ranking and clinical interpretation
Since incorporating all sessions in the RF algorithm 
performed the best according to the above experimen-
tal results, further investigations of variable importance 
ranking and clinical interpretations in this section were 
in accordance with results of the RF using all sessions. 
Figure 2 demonstrates the importance of the ranking of 
variables according to their predictive power to distin-
guish the improvement and no-improvement groups 
using RAGT. From the ranking according to the MDA, 
BW support played a more-important role than the 
other variables of speed and GF with Lokomat. BW sup-
port levels of the fourth and fifth sessions were the most 
important variables to predict improvements in the FAC. 
For clinical variables, the diagnosis and days required to 
complete 12 sessions were two important variables for 
prediction.

In addition to the ranking of all input variables, a par-
tial effect analysis using the RF algorithm was also used 
to individually evaluate the influence of each variable 
on outcomes. Figure 3 illustrates partial effect plots that 
depict the effects of selected variables on improving 
functional gait recovery. Positive values on the y-axis 
indicate that the values of the independent variables are 
more likely to be positive, while negative values are less 
likely to be positive. Obviously, zero indicates the absence 
of an average influence on the class probability.

In Fig.  3(a), BW support variables showed nega-
tive non-linear associations with outcomes. This sug-
gests that if BW support of the 4th session was < 34%, 
i.e., reduced to nearly 1/3, the patient was more likely to 
show improvement in the FAC. In addition, as shown 
in Fig. 3(b), when the GF of the 6th session was < 70%, 
the patient was more likely to show improvement in the 
FAC, which indicated that the patient was more likely 
to see improvements. Moreover, as shown in Fig. 3(c), if 
the speed of RAGT was > 1.6 km/h, there was a higher 
propensity for progress in gait recovery. With regard to 
the diagnostic variables in Fig.  3(d), our results showed 
that patients with a traumatic brain injury (TBI) or other 
neurological disorders showed a higher propensity for 
improvements in FACs compared to those with a cardio-
vascular accident (CVA)-hemorrhagic, CVA-ischemic, 
or spinal cord injury (SCI). The initial FAC was another 
important variable. In Fig.  3e, patients with lower lev-
els (i.e., 1–3) of FACs had a better propensity for func-
tional gait recovery than those with higher levels (i.e., 4 
or 5). Finally, when analyzing the time to complete 12 
sessions (in days), spending fewer days to complete 12 
sessions showed a higher propensity for improvement 
of functional gait recovery in Fig. 3(f ). In summary, the 
experimental results demonstrated that our propensity 
analysis of RAGT parameters not only provides a medical 

Table 2  Descriptive statistics of categorical variables for the 
improvement and no-improvement groups in RAGT​

FAC Functional ambulation categories, n Number

p < 0.05, ”*”; p < 0.01, “**”; p < 0.001, “***”

Categorical variables No-improvement 
(n = 31)

Improvement 
(n = 60)

n % n % p-value

Initial FAC

 0 16 17.5824 19 20.8791 0.0708

 1 4 4.3956 12 13.1868

 2 3 3.2967 11 12.0879

 3 2 2.1978 12 13.1868

 4 4 4.3956 6 6.5934

 5 2 2.1978 0 0.0000

Gender

 Male 22 24.1758 44 48.3516 0.8106

 Female 9 9.8901 16 17.5824

Entry point

 Onset ≤ 3months 4 4.3956 21 23.0769 0.0252 *

 > 3 months 27 29.6703 39 42.8571

Extremity affected

 1 15 16.4835 48 52.7473 0.0020 **

 More than 1 16 17.5824 12 13.1868

Diagnosis

 CVA-hemorrhagic 10 10.9890 22 24.1758 0.0292 *

 CVA-ischemic 8 8.7912 22 24.1758

 SCI 12 13.1868 7 7.6923

 TBI 0 0.0000 3 3.2967

 Other neurological 
Disorders

1 1.0989 6 6.5934

FAC 6th-FAC 1st

 No-Improvement 31 34.0659 35 38.4615 0.0000***

 Improvement 0 0.0000 25 27.4725
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interpretation for treatment but also corresponded well 
with clinical insights.

Discussion
Clinical relevance and analysis of the prediction model
Most motor rehabilitation trials with acute and suba-
cute stroke patients reported equal improvements in the 
experimental and control groups, suggesting that newly 
onset stroke patients may spontaneously recover with-
out a specific neurological rehabilitation approach [25]. 
A longitudinal study revealed that the level of functional 
and motor performance at 5 years post-stroke was equiv-
alent to the level measured at 2 months [26]. In addition, 
that study indicated that a higher age and greater stroke 
severity negatively affected functional and motor recov-
ery. However, only 29% patients in that study had regu-
lar physical therapy at 5 years post-stroke [26]. One can 
question whether current practice provides sufficient 
rehabilitation to judge what is possible for chronic stroke 
patients. The Lokomat system is capable of providing del-
icate control to challenge patients from FACs 0 to 5. Not 
surprisingly, in an RAGT study of patients with different 
neurological diagnoses and disease durations from 5 to 9 
weeks at the baseline, those with low FAC scores showed 
the largest improvement in walking ability. Patients 
involved in our study were in the subacute or chronic 
stage. Among the 25 patients who showed an increased 
FAC at the 6th session, 48% had begun Lokomat training 
3 months after disease onset. In our clinical experience, 
these results suggest that entry point and age may be 
less-important variables when RAGT such as Lokomat is 
used for gait training.

Biomedical interpretation of selected discriminative 
variables
In this study, we provide a predictive model for ambula-
tory functional outcomes based on patients’ characteris-
tics from early-stage quantitative data of robotic-based 
therapy on reductions in walking impairment. Contrary 
to previous studies, our study showed no significant 
group differences regarding patients’ ages or total days 
that they received Lokomat training, suggesting a wider 
effective range of robotic-based therapy in neurore-
habilitation. Lokomat training often begins with 100% 
guidance to enforce a physiological gait pattern [27]. 
This could explain why only the GF of the 1st session 
showed no significant group differences. Findings from 
our descriptive statistics of categorical variables demon-
strated that the entry point and diagnosis showed sig-
nificant differences in outcome measures, which is in line 
with previous findings that early rehabilitation improves 
outcomes [28]. Human beings walk in a bipedal pattern; 
therefore, losing active control of more than one lower 
limb would require more assistive devices, and there 
would be less potential to progress to independent loco-
motion. The affected extremity may have different effects 
on the outcome measures.

Parameter 1: the effect of BW support on the FAC
No previous studies indicated which adjustable robotic 
parameters produced greater benefits for gait recovery, 
and our study revealed that BW support was the most 
important RAGT variable for outcome measures com-
pared to the GF and training speed. This result is sup-
ported by a previous study which reported that early 

Table 3  Performance for predicting effectiveness of RAGT using (a) Clinical data and all sessions for improvement or not by ten-fold 
cross-validation, and (b) Using clinical data and all sessions to predict three levels of FAC change by ten-fold cross-validation

XGBoost, Extreme Gradient Boosting

Algorithms Accuracy Sensitivity Specificity AUC​

(a) Prediction performance of model 2 using clinical data and all sessions for improvement or not by ten-fold cross-validation

 Random Forest 0.879 ± 0.079 1.000 ± 0.000 0.767 ± 0.161 0.981 ± 0.043

 Logistic Regression 0.853 ± 0.101 0.933 ± 0.141 0.767 ± 0.141 0.918 ± 0.061

 Support Vector Machine 0.836 ± 0.124 0.855 ± 0.166 0.850 ± 0.123 0.919 ± 0.120

 Decision Tree 0.618 ± 0.087 0.626 ± 0.208 0.717 ± 0.284 0.695 ± 0.160

 XGBoost 0.854 ± 0.072 0.933 ± 0.141 0.817 ± 0.166 0.937 ± 0.070

(b) Prediction performance of model 3 using clinical data and all sessions to predict three levels of FAC change by ten-fold cross-validation

 Random Forest 0.747 ± 0.074 0.567 ± 0.077 0.846 ± 0.049 0.814 ± 0.093

 Logistic Regression 0.535 ± 0.114 0.441 ± 0.147 0.732 ± 0.065 0.675 ± 0.127

 Support Vector Machine 0.522 ± 0.132 0.391 ± 0.106 0.720 ± 0.084 0.724 ± 0.131

 Decision Tree 0.499 ± 0.065 0.329 ± 0.043 0.667 ± 0.029 0.485 ± 0.038

 XGBoost 0.731 ± 0.079 0.580 ± 0.116 0.842 ± 0.051 0.768 ± 0.119
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treatment with partial weight-supported treadmill train-
ing could facilitate lower-extremity motor function and 
balance, and significantly improve kinematic data, such 
as hip flexion and extension angles, on gait recovery in 
stroke patients in the subacute phase [29].

To the best of our knowledge, no previous studies dem-
onstrated relationships between BW support of RAGT 
and functional outcomes on a temporal basis. Our results 
indicated that the FAC was more likely to have progressed 
by the end of the 12th session if BW support gradually 
decreased as RAGT continued, and an improvement in 
the FAC at the end was also more likely. This result is in 
line with previous reports that during Lokomat training, 
reducing BW support and GF increased gluteus muscle 

and anterior tibialis muscle activation, while increasing 
the training speed enhanced muscle activation in both 
legs [16, 17].

Parameter 2: the effect of guidance force on FAC
One case report of a stroke survivor showed that the self-
selected and fast walking speed, 6-min walk test, timed 
up and go test, and lower extremity Fugl-Meyer score 
changed minimally after full-guidance robotic train-
ing, but improved considerably after 4 weeks of guided 
robotic training [30]. However, no specific cutoff points 
for training settings have yet been established. In our 
study, when the guidance force of the 6th session was < 
70%, the FAC was likely to progress. Clinically, Lokomat 

Fig. 2  Variable ranking based on the discriminative power to predict the effectiveness of robot-assisted gait training (RAGT) for functional gait 
recovery
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training often begins with 100% guidance to enforce a 
physiological gait pattern, and it usually takes four ses-
sions for a patient to regain kinematic control and add 
more activity to their movements [27]. Our results also 
suggested that the guidance force of the 6th session needs 
to be reduced to 70% to have more opportunity to pro-
gress in FACs after 12 sessions of RAGT.

Parameter 3: the effect of speed on FAC
One of the most widely accepted facts in neuroreha-
bilitation is that a high number of repetitions and fre-
quent training sessions are crucial to reach the optimal 
recovery potential [31–33]. A previous study demon-
strated that a high walking velocity resulted in a more-
physiological gait pattern, and that variations in walking 
speed increased a patient’s attention and concentration 
[34]; however, no outcome-related analysis was done in 
that experiment. In our study, a novel and innovative 

relationship between speed and FAC progress was iden-
tified: a faster speed in the early sessions was correlated 
with a positive effect on the FAC. Our study also indi-
cated that the best treatment frequency for FAC improve-
ment was 12 sessions completed within 23 days.

Clinical utility of the prediction model
Our results could support the concept that reductions in 
BW support and GF within the first few training sessions 
will increase the chance of seeing an improvement in the 
FAC. Due to the limited size of our input data, the pre-
sent study demonstrates a general methodology of build-
ing a predictive model based on clinical and Lokomat 
data, but no specific guidelines can yet be established. 
The result can be seen as a proof-of-concept with an out-
look as to what and how we would be able to use the algo-
rithm in the future if we collected more data to separate 
patients into groups. The classifier is not to be used to 

Fig. 3  Partial dependence plots of important variables
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stop a patient from RAGT training, but to inform and aid 
in planning further effective rehabilitation efforts with 
other strategies. At present, RAGT therapists can adjust 
the BW support, GF, and speed according to a patient’s 
progress while considering our prediction models (Figs. 2 
and 3) at the same time. When patients gradually regain 
strength and control of their lower extremities, thera-
pists can reduce the amount of weight supported and GF 
to promote more muscle activities as soon as is possible. 
When patients regain more temporal muscle activation, 
the GF can be further reduced to promote patients’ active 
participation in predefined gait patterns. Subsequently, 
when the performance of a patient is well adjusted to 
the above two parameters, the therapist can increase 
the training walking speed to increase repetitions and 
challenges.

Study limitations
The current study has several limitations. First, we only 
analyzed whether three parameters of RAGT settings 
had positive effects on FAC outcomes. The Lokomat sys-
tem is categorized as an exoskeletal-type stationary gait 
training system, and also provides delicate control of the 
range of motion and symmetrical or asymmetrical posi-
tions of the bilateral hips and knees depending on the 
patient’s condition and user management [35]. These set-
tings also impact a patient’s progress. Developing mod-
els to predict more classes could make the estimates 
more impactful. However, due to the limited number 
of patients who could afford Lokomat treatment in this 
study, dividing the small dataset into additional classes 
to develop prediction models would have decreased 
the predictive performance. Second, all of the train-
ing parameters were collected at a median time point 
despite the fact that these settings are often dynamic and 
vary throughout the training sessions in clinical prac-
tice to challenge patients’ limits. Therefore, our results 
might not fully indicate the actual clinical situations. 
Third, in this study, the diagnoses and the onset of neu-
rological diseases of the included patients ranged widely. 
Although our results indicated that a patient’s diagnosis 
was not among the top 10 most important variables, neu-
rological patients substantially differed; therefore, each 
patient likely requires a personalized approach, which 
also includes individualized goals. In connection with 
this, the combination of RAGT parameters may be too 
diverse to obtain a clear picture of the prediction model 
for functional outcomes. We cannot elucidate the reason 
why some of our patients did not improve their walking 
capacity despite engaging in RAGT. The development of 
predictive biomarkers may help select patients who most 
likely will respond to a specific motor rehabilitation pro-
tocol in the future [36]. Fourth, conventional treatment 

plans and other interventions (i.e., repetitive transcra-
nial magnetic stimulation [rTMS], injections for spastic-
ity modulation) were not analyzed. Additional treatment 
approaches may affect patient outcomes to some extent. 
Another limitation of this study is that we only used FACs 
as a clinical outcome. Other measures such as the 6-min 
walking test (6MWT) or Berg balance scale may reflect 
relevant improvements achieved by RAGT. However, 
one study showed the concurrent validity of changes in 
FAC scores with changes in the 6MWT and was a good 
indicator of progress in walking function [36]. Finally, the 
no-improvement group was skewed toward the 0 FAC 
owing to fewer samples and higher fees for patients. In 
Taiwan, implementation of 12 sessions costs around 
US$2600, and this resulted in a lack of samples because 
some patients could not afford the fee. In the future, we 
will collect more patient data for analysis.

The prediction model with all sessions based on the 
random forest had the best performance, which may have 
been due to the relatively small sample size of our data. 
However, the results also showed that some of prediction 
models with fewer sessions had similar performances 
(shown in Additional file  1: Table  S1). It was promising 
that the prediction model with fewer sessions probably 
had a potentially better performance, which will be con-
firmed in the future when more data are available.

Conclusions and recommendations for future work
RAGT is a customized approach for patients with differ-
ent conditions to regain walking ability. We developed 
a predictive model for ambulatory outcomes based on 
patient characteristics and quantitative data from early-
stage robotic neurorehabilitation. In summary, this study 
offers possible adjustments of RAGT settings for Loko-
mat users to help patients with neurological disorders 
achieve their full potential in a relatively short period. 
Our results indicated that reducing body weight support 
and the guidance force within the first few training ses-
sions increased the chance for improvements in the FAC. 
To obtain a more-precise and clearer predictive model, 
collecting more RAGT training parameters and analyzing 
them for each individual disorder is a possible approach 
to help clinicians achieve a better understanding of the 
most efficient RAGT parameters for different patients.
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