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Abstract 

Background:  Many lower-limb exoskeletons have been developed to assist gait, exhibiting a large  range of control 
methods. The goal of this paper is to review and classify these control strategies, that determine how these devices 
interact with the user.

Methods:  In addition to covering the recent publications on the control of lower-limb  exoskeletons for gait assis-
tance, an effort has been made to review the controllers independently of the hardware and implementation aspects. 
The common 3-level structure (high, middle, and low levels) is first used to separate the continuous behavior (mid-
level) from the implementation of position/torque control (low-level) and the detection of the terrain or user’s inten-
tion (high-level). Within these levels, different approaches (functional units) have been identified and combined to 
describe each considered controller.

Results:  291 references have been considered and sorted by the proposed classification. The methods identified 
in the high-level are manual user input, brain interfaces, or automatic mode detection based on the terrain or user’s 
movements. In the mid-level, the synchronization is most often based on manual triggers by the user, discrete events 
(followed by state machines or time-based progression), or continuous estimations using state variables. The desired 
action is determined based on position/torque profiles, model-based calculations, or other custom functions of the 
sensory signals. In the low-level, position or torque controllers are used to carry out the desired actions. In addition to 
a more detailed description of these methods, the variants of implementation within each one are also compared and 
discussed in the paper.

Conclusions:  By listing and comparing the features of the reviewed controllers, this work can help in understanding 
the numerous techniques found in the literature. The main identified trends are the use of pre-defined trajectories 
for full-mobilization and event-triggered (or adaptive-frequency-oscillator-synchronized) torque profiles for partial 
assistance. More recently, advanced methods to adapt the position/torque profiles online and automatically detect 
terrains or locomotion modes have become more common, but these are largely still limited to laboratory settings. 
An analysis of the possible underlying reasons of the identified trends is also carried out and opportunities for further 
studies are discussed.
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Introduction
Powered lower-limb orthotic devices, also called powered 
exoskeletons, are often considered as tools in rehabilita-
tion and the assistance of the human gait. A significant 
amount of research in different fields has been dedicated 
to developing and improving the performance of these 
devices, and there are many challenges in this area of 
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research due to inherent requirements of portability and 
safe interaction with the user and the environment. One 
of the most important aspects for improving the perfor-
mance of these devices is their control [1].

Currently, there are two main types of exoskeletons 
for gait assistance: the ones for full mobilization, and 
the ones for partial assistance. Full mobilization exoskel-
etons are designed to move the legs of people suffering 
from a severe loss of motor control or motor disorders, 
typically in people with spinal cord injury SCI. The actua-
tors must have a high torque capability because they pro-
vide the entire torque required for the movement. Such 
devices are available commercially since 2011, when the 
ReWalk (ReWalk Robotics, Israel) was released on the 
market. They could be developed quickly because their 
control strategy can be simply position control over time. 
There is no need to collaborate with an existing voluntary 
movement of the legs, because there is none (or it is very 
weak) and thus the user’s legs are assumed to be passive. 
The start of the gait is often triggered by the upper body 
movements or buttons pressed by the fingers, which is 
simple to implement. These exoskeletons seem more suc-
cessful because they dramatically improve the bipedal 
ambulation capability (from no gait at all to some slow 
gait).

Partial assistance devices are generally lighter, targeting 
various less severe handicaps. These could be the loss of 
stamina because of aging [2], the loss of strength or coor-
dination because of incomplete spinal cord injury SCI, 
stroke, neurodegenerative diseases, etc. These devices 
can also assist the gait of healthy people, which can be 
useful for endurance augmentation purposes. This is 
more challenging because the device has to assist more 
than it is hindering its user, given the complex nature 
of the interaction with the user. People who can already 
walk independently also have higher expectations for the 
performance (e.g. higher gait speed). A major subcat-
egory of partial assistance exoskeletons are the devices 
that are intended for rehabilitation purposes.1 Here, the 
ultimate purpose is to train the users to become inde-
pendent of the assistance offered by the device. A funda-
mental distinction can thus be made between the desired 
outcomes of these exoskeletons versus the ones that are 
used to directly assist the mobility only when wearing 
the device. Actually, a training strategy for rehabilitation 
may consist in resisting the user movement [3]. Notwith-
standing this difference in the end goals, there is a lot of 

commonality between the two applications in terms of 
the techniques used for control.

Several reviews already exist on different aspects of 
exoskeletons and gait assistance devices, but very few are 
focused on control. The two most exhaustive reviews of 
control strategies to date are the ones of Tucker et al. [4] 
and Yan et al. [5]. However, these are already 5 years old 
at the time of writing this paper, and many new develop-
ments deserve to be mentioned, since this field is evolv-
ing fast. More than 190 new publications addressing 
control strategies have been identified since the publica-
tion of the two previous reviews in 2015, and advance-
ments have been  made with new control methods and 
device designs, resulting in major performance improve-
ments in terms of metrics such as metabolic cost reduc-
tion and capabilities such as crutch-less dynamic walking. 
The review of Tucker et al. is broad and considered both 
orthoses and prostheses. A “generalized control frame-
work” was proposed with a 3-layer hierarchical control-
ler, and also the environment, the user and the hardware 
of the device. But this review did not provide much detail 
on the mid-level layer of control. The article by Yan et al. 
focuses on the control of exoskeletons and orthoses, but 
it is mostly organized around the devices themselves, and 
how they are built (e.g. single/multi joints).

Some reviews have also been recently published on 
gait assistance devices [6–9], but none of them compre-
hensively address the control aspect. A recent review by 
Sawicki et al. [7] focused on comparing the results of par-
tial assistance for the gait, and only considered the suc-
cessful orthoses with respect to metabolic cost reduction. 
This excludes all the devices that did not undergo such 
testing and also full mobilization exoskeletons. Also in 
this article, few details are given on the details of the con-
trol part. A more broad review by Kalita et al. [8] studied 
the existing exoskeletons and orthoses in the literature, 
categorizing them according to joint structure, actua-
tion and control strategy. Control strategies are roughly 
divided into 9 categories, each one only briefly explained 
without going into the details.

In this review, the various control approaches of gait 
assistance devices are thoroughly addressed, focusing 
on the lower-limb exoskeletons designed to enhance the 
locomotion of disabled or healthy people. Compared to 
the existing reviews, a stronger emphasis is placed on 
the control methods and separating them from the hard-
ware and implementation details as much as possible. 
Based on the existing control methods in the literature, 
a modular classification framework consisting of 3 layers 
is proposed. The purpose of the framework is to enable 
describing all of the existing control strategies with the 
minimum number of functional elements. This paper 
also shortly reviews the metrics used to characterize the 

1  Although for severely disabled patients, full mobilization is also used in the 
early stages of rehabilitation, most rehabilitation devices fit in the partial assis-
tance category better.
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performance of these robots when worn by a user. How-
ever, the assessment of the performance of the cited con-
trollers and their comparison are beyond the scope of 
this review.

Assistive strategies
From the control perspective, the main challenge for gait 
assistance is to contribute to the intended movement, 
since the device cannot directly communicate with the 
wearer to clearly recognize the intention and collaborate 
effectively. Effective collaboration can be interpreted in 
different ways, depending on the context and application. 
In general, for partial assistance it would mean synergy 
in forces or torques between the user and the device, and 
for full mobilization it would be coordination between 
the movements of the exoskeleton and those of the user’s 
upper body. Many strategies are used to identify the 
user’s intent, and apply an appropriate torque or motion 
accordingly. In the rest of this section, the existing strate-
gies will be reviewed and discussed. Before getting into 
the review of these strategies, the rationale behind the 
criteria that were used for screening the literature and 
the proposed classification method will be explained, and 
the methodological steps will be described.

Methods
Scope and methodological steps
The main question to be addressed in this part is: what 
approaches have been used in the literature up to now 
for controlling lower-limb exoskeletons with the purpose 
of directly assisting the wearer’s gait? Target devices for 
the controllers in this review do not need to provide an 
improvement of the user’s health. Although the devices 
are typically anthropomorphic, exceptions also exist 
(such as [10–13]). The so-called “soft exoskeletons” (exo-
suits) are included too, even if these are not really stiff 
“skeletons”, but closer to “tendons and muscles”. The 
papers that do not deal directly with an exoskeleton, but 
suggest a sensing method that could be useful for them 
are included as well. As explained previously, many gait 
assistance devices are presented in the context of reha-
bilitation. In light of the similarities from the control 
perspective, we did not limit the scope of this review to 
a specific application; as long as the described controller 
is supposed to assist the user during gait, the method was 
included in this review regardless of the long-term goal.

This review aims to address wearable gait assisting exo-
skeletons, because they have the potential to be used for 
real-life applications out of the laboratory. However, the 
articles involving fixed-frame devices designed to explore 
such control strategies (e.g. LOPES [14], ALEX [15], the 
exoskeleton emulator of Collins et al. [16], etc.) are also 
included in this review. In addition, if at least part of the 

control strategy proposed for a fixed-frame rehabilita-
tion device also assists the user’s gait and is applicable to 
assistive exoskeletons, it is included (for example [17]). 
The strength augmentation devices are excluded because 
they are not designed to enhance the walking mobil-
ity. The main consequence is that they are of no use for 
people affected with gait deficiencies, or healthy people 
willing to improve their ability to walk (higher speed 
and/or endurance) with no load. They also mainly focus 
on load lifting so the control strategies may be different, 
and may also involve upper limbs. The task of carrying 
a load while walking (e.g. [18]) is closer to the topic of 
this article, but such devices still do not assist in moving 
the user’s legs or relieve the user from the bodyweight. 
In addition, it makes comparing the performance even 
more difficult, because the assistance benefit depends on 
the amount of payload. However, a strength augmenta-
tion device that would enable its wearer to jump higher 
or run faster would have been included, but such refer-
ence could not be found. Similarly to the fixed-frame 
rehabilitation devices, a strength augmentation device 
can be still be included if at least part of the control strat-
egy could be applicable to the assistance of the gait with 
no carried load (e.g. [19]). The inclusion and exclusion 
criteria used in the screening process of this review are 
summarized in Table 1.

Most of the publications were found using the follow-
ing Google Scholar query:robot* assist* con-
trol* (exoskele* OR orthosis) and a similar 
query on Scopus: “robot* assist*” “control*” 
AND ( exoskele* OR orthosis ) AND NOT ( 
“upper limb*” OR “upper-limb*” OR “hand 
exoskelet*” ) among the records published since 
January 2000 up to the end of August 2020. The refer-
ences cited in the two previous review papers by Yan 
et al. [5] and Tucker et al. [4] were also included.

First, the references were screened with the title, then 
the abstract, and finally the full-text to check if they fit 
the inclusion/exclusion criteria. Then, they were read 
entirely and entered in a database. The relevant articles 
cited by the ones already in the database were also added. 
A flowchart of the methodology is shown in Fig.  1. For 
each entry in the database, the following fields (as long 
as they were relevant/applicable) were entered: high-
level control method, mid-level control method, low-
level control method, type of actuator, short controller 
description, intended application, assisted joints, device 
name, and remarks.

Proposed classification
This review is centered on control strategies, being hard-
ware-agnostic as much as possible. To be accurate enough 
in describing the different control strategies features, but 
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with no redundancy in the descriptions, it was chosen to 
break the behavior into smaller functional units. Indeed, 
an initial assessment of the literature revealed that even 
among different control strategies, shared elements exist. 

Compared to describing each control strategy as an 
atomic entity, this classification method allows for reus-
ing the same elements to represent several strategies.

The literature shows a considerable number of differ-
ent controllers, with different structures, designs and 
actuation methods. However, the ultimate requirements 
in terms of performance and desired behavior are mostly 
similar. In an attempt to classify them, we will separate 
the controllers into smaller functional units that are 
comparable. Each functional unit can be used in sev-
eral different combinations to form various controllers. 
Therefore, these functional units can be considered as the 
building “blocks” of the controllers. Based on their role 
in the hierarchy of the control system, all of these blocks 
can be classified into three categories: high-level, mid-
level and low-level control (see Fig. 2). This hierarchical 
classification is similar to the one used in [4].

Within each level, various methods and approaches 
thus form the different blocks. Some of the blocks within 
the same level perform the same function (in terms of 
outputs) using different methods, while others have a dis-
similar functionality. Hence, even though the blocks in 
different levels may be used together, they are not always 
compatible. All of these blocks are shown in Fig.  3 and 
will be explained in detail later in the paper. It should 
also be noted that the reviewed control strategies do not 
necessarily cover all the three levels, with most of the 
research being focused on mid-level control. This review 
will then focus on mid-level control mostly.

Our analysis of the high- and mid-level layers is also 
implementation-agnostic, which means it focuses on 
the external behavior of the device rather than the way 
to program it or make the hardware design. Most of the 

Table 1  Summary of the inclusion and exclusion criteria used for screening the articles

Inclusion criteria Exclusion criteria

• Includes description of controller(s) applicable to lower-limb exoskel-
etons with the purpose of helping wearer’s gait, or detection methods 
applicable to such controllers

• Describes a controller that is specific to other devices such as prosthet-
ics, upper-limb exoskeletons, fixed-frame rehabilitation devices (such as 
Lokomat [326] and MotionMaker [327]) or portable devices that operate 
as external units rather than wearable robots (e.g. WalkTrainer [328]) or 
devices that were designed only for animals

• Date of publication: January 2000 to August 2020 • Describes a controller for devices that assist locomotion by using another 
movement than the natural movement of the human leg (such as rolling 
devices, jumping stilts in which the blade moves below the foot, jet-
packs [329] and portable inertial devices [330, 331])

• Language of publication: English • Describes a controller that is intended for assisting load-carrying or 
strength augmentation without significantly affecting the gait itself

• Type of publication: peer-reviewed journal or conference article, patent • Describes a controller that is impossible to apply outside of a simulated 
environment

• Does not give enough details about the control method to fully describe 
it (typically the case for papers reporting clinical trial outcomes)

• Gives inconsistent information about the controller and/or the device

• Only reviews control methods

Fig. 1  Flowchart of the methodology used for the search and 
screening process
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hardware-specific aspects will be separately discussed in 
the low-level layer.

The results obtained by all these controllers are not 
compared, because the target users are different (healthy, 
elderly, paraplegic, stroke, etc.), the tasks are different 
(walking, running, ascending stairs, etc.), and even for 
the same task, the experimental protocol is often differ-
ent. Such comparison is possible, but only with a nar-
rower scope. For example, the review of Sawicki et al. [7] 
focuses on the partial assistance for the gait, to decrease 
the metabolic cost of locomotion for healthy people.

High‑level control
The high-level control determines the general behavior of 
the exoskeleton. Exoskeletons can usually switch between 
several operating modes, depending on the desired type 
of activity, and the environment (e.g. walking on flat ter-
rain, climbing stairs, and sit-to-stand transitions). Often, 
this change of mode does not occur frequently, and there 
is typically a gap of at least several seconds between two 
consecutive changes. This makes it possible to be selected 
by the user.

Relatively few papers are dedicated to high-level con-
trol. For most research purposes, the focus is on a cer-
tain mode of operation, and the experiments take place 
in controlled lab settings and are based on well-defined 
scenarios. However, reliable high-level control is crucial 
for the usability of exoskeletons for people in real-world 

situations and everyday life, where a variety of move-
ments and gaits in different environments and ter-
rain types are required and short transition  times are 
necessary.

The inputs to the high-level controllers can come from 
the user (via input devices and/or sensors), the environ-
ment, or a combination of both. The output is usually a 
mode of operation. Artificial intelligence and machine 
learning methods are being increasingly used as a sub-
stitution for the user choice. The main motivation is to 
make the operation more automatic for the user, and pos-
sibly faster than manual input. Fundamental criteria for 
the usability of such methods are the real-time operation 
and short processing times, since decisions need to be 
made fairly quickly to allow enough reaction time for the 
lower-level controllers. Existing high-level control strate-
gies are discussed in more detail below.

Explicit/manual user input (MUI)
The user directly determines the mode of operation of the 
exoskeleton, using input devices such as buttons [20–34] 
or voice commands [35, 36]. These methods are currently 
the most common due to their ease of implementation, 
higher predictability, and lower risk of errors. However, 
these advantages come at the cost of additional participa-
tion required from the user, which makes the user expe-
rience less natural, increases the cognitive load, and can 
slow down the operation. Moreover, this method is also 
prone to human errors which are more likely to happen 
during demanding tasks, long operation times, or  with 
novice/distracted users. In this case, the challenge is both 
to make the user interface easy to use to minimize the 
learning time and the risk of manipulation errors, and 
also quick to use to avoid losing time in transitions. This 
is not trivial since the interface has to be used in a stand-
ing position, and the hands often have to hold crutches at 
the same time.

The explicit user input is commonly used in full-mobi-
lization exoskeletons for complete spinal cord injury 
(SCI) patients, because no input can be obtained from 
the legs. It is also the most predictable for the user, which 
is important for trusting the device. In this case, but-
tons on the crutch handle, or a special wristwatch can be 
used. Voice command is not common because it requires 
speaking, which may feel awkward in public spaces. It is 
also more error-prone in noisy environments.

Brain‑computer interface (BCI)
The user’s brain activity is measured using electrodes, 
amplified and analyzed to determine the mode of opera-
tion [37–39]. Among the different brain signal record-
ing methods, currently electroencephalography (EEG) is 
predominantly used since it is non-invasive and therefore 

Fig. 2  Simplified diagram of the proposed classification
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Fig. 3  Block diagram of the proposed classification of the control strategies subparts. The idea of this classification is that any controller in the 
literature can be represented by a path that joins the used control blocks. The path does not have to start from the high-level layer, and may start 
directly in the mid-level. A controller can have several parallel paths if the controller combines several strategies at the same time, or successively 
during the gait. Connecting lines show the common paths identified in the literature. However, it should be noted that the lack of a line between 
two blocks does not mean they cannot be related. For instance, the outcome of the high-level layer, the “operation mode”, could affect any of the 
blocks of the middle-level, but it is not connected to them for the sake of readability
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safer and easier to use. Despite the promising features of 
these methods, there are many practical challenges asso-
ciated with them, including high levels of concentration 
required from the user (and therefore limiting simul-
taneous cognitive activities such as speech), artifacts 
with muscular activation (EEG signals at the surface of 
the scalp have an amplitude close to 100 μV [40], while 
electromyography (EMG) signals are several millivolts), 
rather lengthy procedures for electrodes placement, the 
need of training for the user and the algorithm, and being 
very slow (in the order of seconds) or limited to very few 
commands [39, 41–44]. A thorough review of brain-
computer interfaces BCIs for lower-limb gait assistance 
devices in general can be found in [45], and an in-depth 
review of methods based on EEG in [46].

Movements recognition (MOV)
This type of controller changes the behavior automati-
cally depending on how the user moves or is intending 
to move. The main advantage of this method is that it 
does not require any cognitive load or direct input from 
the user, making the interaction more intuitive and nat-
ural. For this method, generally joint sensors and IMU 
data (often from the upper body in persons with paraple-
gia) are processed by a machine learning or fuzzy logic 
algorithm to recognize the situation [47–64], although 
simpler threshold-based methods have also been pro-
posed [65]. Sometimes, other types of signals such as 
the ground reaction forces or electromyography (EMG) 
are also used to infer the movement or the intention of 
the user [66–71]. Capacitive electromyography was also 
investigated [53]. In practice, often additional inputs are 
also required to complement these controllers (e.g. to dis-
able them when the user needs to perform other activities 
while standing still in the device) since the movements of 
the user are not always sufficient to correctly determine 
the intention. In [72], the discrimination between walk-
ing and jumping is performed with a threshold on the 
phase difference between the two legs (shank segment), 
computed with the angle-speed diagram. Moreover, 
standing is detected if the magnitude of the phase vectors 
for the two legs is below a certain threshold.

Terrain identification (TER)
Generally, the most decisive factor in determining the 
mode of operation and high-level behavior of gait assis-
tance devices is the terrain. Information about the terrain 
can hence be used to construct a high-level controller for 
such devices. In these controllers, embedded sensors are 
used to recognize the terrain type or obstacles in front of 

the user, in order to plan the steps accordingly [73].2 Sen-
sors used for these high-level controllers are most often 
cameras (either usual visible-light cameras [74, 75] or 
3D depth-sensing [41, 76–82]), but other sensors such as 
infrared distance sensors [83] or fusion of laser distance 
sensors and inertial measurement unit (IMU) [73, 84, 85] 
have also been utilized.

Terrain identification has recently gained attention in 
the fields of orthotics and prosthetics, and the body of lit-
erature exploring it is relatively small. Even the existing 
papers are limited to proof of concept implementations, 
demonstrating the performance of terrain identification 
algorithms without actually integrating them into the 
high-level controller of a device [73, 75, 79, 80, 83–85]. 
These techniques are usually computationally expensive 
because of the image or point-cloud processing. How-
ever, promising results have been demonstrated and with 
the advances in pattern recognition and machine learn-
ing methods, successful implementations of such con-
trollers are to be expected in future research.

Mid‑level control
The mid-level is defined here as the continuous behavior 
of the robot, which computes the joints target torque or 
position, at each timestep of the main control loop. The 
mid-level controller plays the most important role in 
shaping the interaction of the device with the user, and 
the majority of the research on the control of exoskel-
etons is dedicated to this level. Although the output of 
the high-level controller also affects the behavior, it often 
only changes some parameters of the mid-level controller 
without fundamentally altering the essence of the inter-
action with the user.

In the proposed classification, the mid-level control 
blocks have been separated in two sublayers. As shown in 
Fig. 2, the “detection/synchronization” sublayer estimates 
the gait phase or gait state, which is a piece of informa-
tion commonly needed by the “action” sublayer that actu-
ally computes the motor command. The first sublayer 
uses external inputs (from sensors and/or user interface) 
to determine the continuous phase or discrete state of 
gait. In the second sublayer, the desired physical output 
of the device is decided.

An exoskeleton controller can have a different con-
trol scheme for each joint. This is for example the case 
in [19], in which a simple spring is used for the ankle, an 
active damper for the knee, and torque control on the hip 
joint. Another example in [86] is an adaptive-frequency 

2  Many of the papers cited in this section are taken from prosthetics litera-
ture, but the fact that the terrain identification systems have been designed 
with a prosthesis in mind does not affect the outcome and all of the results are 
equally applicable for orthoses as well.
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oscillator AFO-based impedance control for the hip, 
fixed position or zero torque control for the knee 
(depending on stance/swing), and event-triggered torque 
sequence for the ankle.

Detection/synchronization sublayer
The desired outcome of this sublayer is either the accu-
rate gait phase (0–100%), or the gait state. Gait states are 
generally subphases of the gait cycle (e.g. stance/swing or 
finer divisions such as loading response/foot-flat/push-
off), the kind and the number of which depend on each 
controller.

Manual trigger by user (MAN) This lets the user explic-
itly trigger the movement. This block is usually followed 
by the “Linear increase of the gait phase” and “Position 
profile”. This method is simple and used frequently to 
trigger the steps of a full mobilization exoskeleton. The 
trigger is generally a button ([20, 24, 26–28, 31, 87, 88]), 
but steps can also be triggered by EEG [42], although very 
slowly. It is worth mentioning that controllers in which 
the user manually triggers the start and stop of locomo-
tion (and not the individual steps) such as [89, 90] do not 
belong in this category.

Impose the movement (IMP) Instead of synchronizing 
to the user, the robot imposes the movement continu-
ously. So, it is the user’s responsibility to stay synchro-
nized with the robot. This is sometimes the case with 
early-stage full-mobilization exoskeletons that test the 
continuous gait without providing a user interface to 
use them in real-use conditions [91–95]. Other common 
cases are brain-computer interface (BCI)-controlled exo-
skeletons that do not need crutches, with start and stop 
commands instead of having to trigger each step [41, 43, 
44]. As opposed to the rest of the blocks, this one does 
not represent an actual function in the controller, nor 
does it have an output for its following block. Rather, 
this block is only used to emphasize the lack of synchro-
nization. It is always followed by “Simple linear increase 
of the gait phase”, which then usually feeds the “Position 
profile” or “Torque profile” blocks.

Event trigger (EVT) This method can be found in many 
exoskeletons for partial assistance and full mobilization. 
It consists in using an event of the gait to start a step, a 
torque profile or to transition a state machine. The most 
common event is the heel strike, detected with a foot 
switch at the heel or (rarely) with an instrumented tread-
mill [96–107]. If the pressure sensor is located under the 
forefoot, the late stance can be detected instead of the 
heel strike [108]. The reference instant can also be rec-
ognized with an inertial measurement unit (IMU) on 
the shank, when crossing the zero angular speed [109]. 
A variant is to detect the point of “negative-to-positive 
power” of the ankle by looking at the ankle speed (one 

IMU on the foot, one IMU on the shank) [110], or with a 
classifier [111]. An alternative is to use an inertial meas-
urement unit (IMU) in the foot sole [112–114]. Simi-
larly, it is possible to detect the lift-off [48, 115]. A set of 
thresholds on the “analog” ground reaction force can also 
be used to discriminate several phases in the gait cycle 
[116–118].

Events in the kinematics can also be used. The peak 
value of the hip angle is used in [119–124], or simi-
larly the peak ankle dorsiflexion angle [125]. In [126] 
the state machine is transitioned with thresholds on 
the knee angle and velocity. In [10], there is a thresh-
old on the time-derivative of the pressure of the passive 
pneumatic actuator, which relates to the joint speed. In 
[127], a hidden Markov model is used to detect the gait 
phases from trunk and segment angles measured with 
an inertial measurement unit (IMU).

For full-mobilization exoskeletons, the steps can be 
triggered by weight shifting measured by the load cells 
under the feet [21, 128–130], by leaning toward the front 
or on the sides which is measured by the inertial meas-
urement unit (IMU) [30, 128, 131], with a combination 
of the crutches load cells and the feet load cells [32], or a 
combination of the trunk tilt and the feet load [29].

Adaptive frequency oscillators (AFO) AFOs are dynam-
ical systems with an oscillatory behavior that are capable 
of learning the features of a periodic input signal [132]. 
Due to the periodic nature of the gait, they can be used 
to determine the gait frequency and the phase. They can 
adapt quickly to a change of cadence, and do not need 
any prior knowledge on the shape of the gait pattern, 
except the fact that it is periodic. This makes them robust 
and makes the controller suitable for almost any user 
without the need for extensive parameter tuning or gait 
pre-recording. AFOs are usually fed with joints angles, 
but can also be used with any other periodic signal, such 
as the muscular activity, estimated using capacitive sens-
ing [133] or interaction forces between the device and the 
user [134, 135].

AFOs can produce several useful pieces of information: 
the current progress in the gait cycle (0-100%), the fre-
quency, and a filtered version of the input signal with no 
lag. Actually, the whole trajectory over the full gait cycle 
is modeled by the adaptive-frequency oscillator (AFO). 
These can be used in further action blocks, typically 
“Torque profile”, or “Impedance control”. The output has 
occasionally been directly used as a position reference as 
well [134, 135].

While AFOs are able to compute precisely the fre-
quency and the joint angle value function over the gait 
cycle, the reference moment (usually the heel strike 
at 0%) is unknown so the absolute gait cycle progress 
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cannot be determined. Several techniques exist to solve 
this issue:

•	 Foot switches can measure the instant of the heel 
strike [51, 136, 137]. This method is accurate, needs 
no heuristics, but requires an additional sensor. An 
inertial measurement unit (IMU) can also be used 
instead [138].

•	 A special feature in the joint trajectory (e.g. mini-
mum or maximum value, or maximum slope) at a 
known gait phase can also be recognized, but this is 
subject-dependant and less reliable [122] (and prob-
ably [50]).

•	 Instead of a sine wave as the first harmonic, a known 
average human gait trajectory can be used [139–141]. 
This is less accurate if the user is walking in a non-
typical way. Such an oscillator is called “PSAO” (par-
ticularly shaped adaptive oscillator) by the develop-
ment team of the GEMS exoskeleton [139].

•	 Finally, strategies that do not use the absolute gait 
cycle progress can be selected, so that there is no 
need to obtain this information. This is the case for 
force fields that attract the joint towards its predicted 
position [56, 86], or compensation from a physical 
model (weight, inertia) [142].3 Note that “attracting 
toward the predicted position” is equivalent to using 
an impedance controller with the AFO-identified 
movement with a time offset (to follow the future) as 
the reference.

In [143], AFOs are also used, but the reference deter-
mination method is not explained. The Honda Stride 
Management Assist is also using a special AFO method 
according to a patent [144], but the details are not clearly 
documented.

The AFOs strategy is limited to the partial assistance 
paradigm, since the user needs to be able to initiate the 
gait and maintain it at least for a few steps.

Simple linear increase of the gait phase (LNP) This is 
the simplest way to determine or impose the gait phase. 
It consists of increasing linearly the gait phase over time, 
knowing in advance the step duration. If the movement 
is imposed all the time (IMP), the gait phase is looping 
continuously [38, 90, 91, 145]. If triggered manually [26, 
35, 87] or with an event such as foot contact with the 
ground [97, 101, 146], lateral weight shifting [89], tilt-
ing the trunk [30, 147], or muscle activation (sensed via 

electromyography (EMG)) [82], it only runs once per 
trigger. The output of this block then feeds a position or 
torque profile.

Time-interpolated gait phase (TBP) This is the same 
as LNP, except that the gait cycle duration is determined 
automatically from the duration of the previous steps. 
This is very accurate if the gait is periodic and with a 
small inter-step variability. This method is very common 
for partial assistance [16, 96, 98–100, 102, 103, 105, 106, 
108, 110, 113–115, 121, 123, 125, 148–155]. An extension 
of this method is to use a Gaussian probability density to 
reject outliers [156].

Angle-speed plot phase (ASP) This technique consists in 
determining the gait phase from the angle and speed of 
a single joint. Intuitively, the function that maps a joint 
angle to the gait phase is surjective but not injective, 
because there are at least two solutions, due to the back-
and-forth movement. So at best, if the joint trajectory 
is not bouncing, there are two possible gait phases for a 
given joint angle. However, the speed has the opposite 
sign for the way back, so it gives enough information to 
disambiguate the gait phase. In practice, these states are 
plotted on an angle-speed graph, and the phase angle can 
be extracted (Fig.  4). The center of the trajectory must 
be defined by prior calibration. The main advantage of 
this method is that it keeps its accuracy even if the gait 
cadence changes rapidly. However, it is very sensitive to 
bouncing, and is inaccurate if a joint moves little during 
part of the gait cycle. This is why it is not used with the 
knee joint. This method is used in [72, 157].

Machine learning phase (MLP) The gait phase can also 
be estimated using machine learning, with techniques 
such as support vector machine (SVM) or neural net-
works. The machine learning methods are diverse and 
complex, so they will not be explained here. All the found 

Fig. 4  Example of angle-speed phase diagram. The data plotted 
is the hip angle during a few gait cycles of a test session with the 
exoskeleton SPRIINT (see [325])

3  This second variant should technically not be part of this review, because 
it was proposed for an upper-limb exoskeleton, even though the paper also 
addressed lower-limb assistance with another controller. It could probably be 
applicable to lower-limbs also, but no publication could be found with this 
principle.
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references used a different machine learning method and 
different inputs. A neural network fed with the trunk 
IMU data and hip encoder angles is used in [158].

An online Gaussian process regression is fed with the 
joints angles and interaction forces with the thigh cuffs 
in [59]. In [159], the gait phase is estimated with a deci-
sion tree, from the segments IMU data and the feet 
loads. In [160], deep learning is used on the shank and 
thigh IMU data and feet loads. In [111], a SVM is used 
with the shank IMU data. In [53], a quadratic discrimi-
nant analysis allows to get the gait phase from capacitive 
sensors measuring the thigh muscles contraction. Finally, 
in [161], a computer vision classifier can estimate the 
gait phase from the data of depth cameras located on the 
crutches.

Other gait phase estimator (OTP) The gait phase can 
also be estimated by other less common methods. One 
of the controllers proposed in [162] (“State Estimation” 
controller in the paper) estimates the gait phase by fit-
ting the recorded joint angles and the foot loads to a ref-
erence model, using least-square regression based on the 
method from [163]. In addition to this method, another 
variant is also suggested for comparison in [163], which 
determines the gait phase based on minimizing the 
squared error between the instantaneous ankle angle and 
contact forces at toe and heel with those of a reference 
model (the first method is called “cross-correlation” and 
the second “k-nearest neighbors” in the original paper). 
However, the estimated gait phases have not been used in 
a controller, but have only been compared to evaluate the 
estimation accuracy.

State machine (FSM) Controllers can switch behav-
ior depending on transitions triggered by events. This 
may be useful because some states of the gait are non-
continuous. The best example is the foot contact, which 
is binary (swing/stance) and changes the dynamics of the 
leg. Many controllers use a state machine and different 
criteria have been utilized for transitioning between the 
states.

Most commonly, the ground contact state of the feet, 
or equivalently the ground reaction force (GRF), is used 
either for the entire foot to only distinguish between 
stance/swing [164–169] or considering local components 
(e.g. at the heel and under the toes) to further differenti-
ate between stance subphases [48, 67, 86, 117, 148, 162, 
163, 170–174]. The gait state can also be determined by 
computing the center of pressure (CoP) position of the 
stance leg with four load cells per foot, then applying a 
threshold to identify four states [175, 176]. In one paper, 
the subphases of stance were detected only based on the 
total ground reaction force (GRF) [116]. For some state 
machines, the ground contact status has been used as the 
only factor for transitioning the states [67, 117, 162–166, 

171, 172], but it has also been used in combination with 
joint angle(s) [116, 167, 170], joint angular velocities 
[173], segment angles and angular velocities [48, 168], 
or the relative position of the feet [177]. In [148], the 
linear acceleration of the shank is also used in addition 
to ground contact data to improve the accuracy of heel-
strike detection. The amount of time elapsed since the 
onset of swing has also been used in addition to ground 
reaction force (GRF) data to further detect subphases of 
swing [169].

Joint angles and angular velocities have also been used 
without the ground contact information to transition 
states [126, 178–182]. In [47], in addition to the angle 
and angular velocity of the knee joint, the moment at the 
joint and the angular velocity of the leg are involved in 
state transitioning. The authors in [19] have augmented 
joint angles with the forces and moments sensed in the 
exoskeleton segments to transition the state machine. 
In an alternative method, the difference between left 
and right joint angles (hip and knee) are used along with 
zero-crossing events of hip angular velocity to transition 
between the states [151, 152].

In [10], thresholds on the derivative of the pneumatic 
actuator pressure (which indicates the direction of move-
ment intended by the user) are used for the transition-
ing. Surface electromyography (EMG) has also been used 
as another indicator of user’s intention to transition the 
states [66]. In [89], the estimated projection of the center 
of mass (CoM) on the ground relative to the feet is mostly 
used to transition between the states, but direct user 
input (via buttons) is required for transitioning in and out 
of the initial and final states, while transitioning between 
others (e.g. between shifting the weight to the stance leg 
and swing of the opposite leg) is initiated automatically.

Different states may only change the parameters and/
or inputs to a controller (for example [48, 89, 117, 172, 
183, 184]) or change the control strategy completely (for 
example [19, 61, 66, 86, 173, 185, 185]). It is also worth 
mentioning that sometimes the state machine does 
not involve any electronics, and is implemented using 
mechanical components only [164, 178, 179].

Action sublayer
The goal of this second sublayer is to generate a motor 
command, that can either be kinematic (angle or speed), 
or kinetic (torque or force).

Position profile (PPR) The goal of the position profile is 
to assist the user to move according to a predefined tra-
jectory, supposed to be the intended one. The trajectories 
can be described in joint space or Cartesian space, often 
called “foot locus” for this second case. These trajecto-
ries are usually completely predefined based on recorded 
gait data from healthy people [48, 89, 91, 145, 186–188]. 
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Databases of recorded trajectories from different healthy 
people have also been used in some strategies, where the 
controller chooses which trajectory to use depending on 
the situation [67]. In another approach, the trajectories 
have been recorded as a therapist manually guided the 
subject’s legs to achieve a desired gait pattern [187]. In 
[189], recorded trajectories from each subject walking in 
the exoskeleton in passive mode are averaged and used as 
reference. Some small modifications are generally neces-
sary to account for user-specific and device-specific dif-
ferences before actually using the trajectories recorded 
from healthy people for patients.

In many cases, the trajectories are significantly changed 
or fully generated at runtime, and some papers are 
completely dedicated to the problem of optimization/
generation of trajectories [190–193]. In some studies, 
model-based computations [194–197] or polynomial 
minimum jerk trajectory generation methods [94] have 
been used to generate the trajectories offline. Trajectories 
can be generated so as to reach a certain target position/
orientation in task space as well [191, 198]. For simpler 
implementations, the trajectory may also be defined 
approximately by a final target angle and a speed limita-
tion instead of the complete path, and has been used for 
pneumatically actuated exoskeletons [88, 174].

However, the trajectories are not necessarily fixed or 
predefined. Online modifications can be applied to the 
baseline trajectories, as is the case in [199] and for the 
hip trajectories in [20] and [89] (only abduction/adduc-
tion angle in the latter). In [181], the user is free to move 
the legs during stance, and the baseline swing trajectory 
(from healthy subjects) is adapted at every step to match 
the leg configuration at the end of stance. More advanced 
methods have recently been proposed to automatically 
adapt the recorded gait trajectories from healthy people 
to the environment, and generate new trajectories for dif-
ferent types of terrain [82].

The trajectories could also be generated online, for 
example synthetic and parametrized trajectories can be 
used to adapt the foot clearance, step length and dura-
tion, peak joint flexion, etc. [77, 200]. The authors in 
[130] have proposed to generate the leg movement online 
to match the step length measured by a walker which 
is moved manually by the subject. In [192], a method 
is proposed to calculate the joint trajectories as a func-
tion of the movement of the crutches by the user’s arms, 
based on synergies extracted from the data of healthy 
subjects walking with crutches. Some controllers that are 
based on AFOs predict the joint trajectories online based 
on the estimated gait frequency and phase [190], and the 
future positions could be used as the reference for the 
actual joint [13, 56, 142]. Phase information estimated by 

AFOs has also been used to generate a custom trajectory 
in order to approximately achieve the desired power out-
put [137]. In a different approach, the trajectory is gener-
ated online before each step based on the spring-loaded 
inverted pendulum (SLIP) model, taking the dimensions 
of possible obstacles into account [201]. For exoskeletons 
targeted at hemiplegic people, the movement of the non-
paretic side at each step has also been recorded and used 
as the reference trajectory for the paretic leg [202, 203]. 
In a similar approach, kernel-based nonlinear filters have 
been used to learn the movements of the nonparetic leg 
as a function of gait phase online, and the learned func-
tions are then used to generate the reference trajectory 
for the paretic leg [204].

Using position profiles is often associated with rigid 
position control in the full mobilization case. Then, the 
position profile is simply played back over time [27, 32, 
33, 131]. The challenge is then to generate a set of gait 
trajectories that are comfortable, stable and able to over-
come obstacles. For partial assistance, it is associated 
with impedance control [13, 145, 182, 205–207]. These 
trajectories can be played back over time [89, 205], or 
may be time-invariant (a tunnel or force field around 
the nominal path) [17, 181, 197, 208–211]. In [137], the 
reference profile is artificially generated and tuned to 
achieve a certain pattern of assistance. A combination of 
rigid trajectory tracking for some degrees of freedom and 
partial assistance around a trajectory for others has also 
been used [196].

The major drawback of the fixed-position-profile-based 
methods is their lack of flexibility, especially in the case of 
full mobilization. Even with many of the online modified 
or generated trajectories, the user is still forced to walk 
with the given gait pattern, which may not be suitable, 
and the trajectories are often specific to a particular ter-
rain. For the partial assistance paradigm, even though the 
user has the freedom to diverge from the profile, it is still 
imposed and the controller will try to push in that direc-
tion, which might not necessarily help the user.

Torque profile (TPR)  Using a torque profile is the most 
simple and common method for partial assistance. A 
torque profile can be played back over time when it is trig-
gered by an event [48, 96–100, 104, 111, 115, 119, 121, 
123, 125, 151, 154, 165]. As the timing is very important, 
the torque profile may have (possibly online) tunable delay 
at the beginning of the torque profile. The torque profile 
itself may change over time, and be optimized online 
[105]. The torque profile can be as simple as a square pulse 
[103]. In some studies, the torque profiles are fine-tuned 
offline based on subjective feedback from the users [136, 
212] or previous measurements from the users [169]. 
In others, they are optimized online for metabolic cost 
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reduction [105, 213, 214]. The gait phase can also be esti-
mated continuously, so the torque is applied as a direct 
function of the phase, independently of the time [50, 122, 
136, 138–140, 143, 215–217], or combined with other 
inputs [51, 137, 141].

Probably the simplest case is the constant extension 
torque profile applied to the knee joint, when the leg is in 
single stance [176].

Impedance controller (ZCT) Impedance control is a 
widely used method in rehabilitation robotics and many 
other fields where the mechanical interactions with 
the user and the environment are significant [218]. As 
already mentioned, this method is used mostly in par-
tial assistance paradigms where the human limbs are 
considered as active elements. Impedance control is 
often implemented such that the user gets the assistance 
torque only in case of a large deviation from the intended 
movement. This is usually called “assist-as-needed” and is 
mainly used for rehabilitation training, since it is believed 
to induce more active participation from the user com-
pared to constant assistance or full mobilization, thus 
improving the learning and recovery.

In practice, impedance control can be implemented 
as an M/K/B (inertia/stiffness/damping) based dynami-
cal system relating joint angles to torques [47, 49, 89, 
127, 137, 153, 210, 219–223]. Either a reference target 
trajectory is played back over time [38, 145, 206], or the 
target is fixed and changes (also the stiffness and damp-
ing) only when the gait state changes [137, 166, 172, 180, 
224–226]. In both cases, the target trajectory is generally 
in joint-space.

Another type of implementation is to use a force field 
with the joint states (angle, speed, acceleration, etc.) as 
inputs [181, 204, 227, 228]. A variation of the force field is 
the flow field controller proposed by Martinez et al. [229], 
which can also use the “state” given by several joints, 
while applying torque only at one [168]. A combination 
of both the force field and the flow field is suggested by 
Jabbari Asl et  al. [230]. Note that using a multi-dimen-
sional force-field in foot-locus-space to assist the leg to 
follow a pre-defined trajectory (such as the strategy used 
in [211]) is time-invariant, and is not the same as playing 
back a reference trajectory, even if both are classified as 
impedance control.

The impedance controller is usually implemented in 
software by changing the motor torque depending on 
the position and movement of the joint, but it can also 
be implemented using mechanical elements only (see 
"Torque control"). In [231], a negative impedance is 
tuned to compensate that of the leg to make walking less 
demanding for the user, since less effort is required to 
generate the same movement of the legs.

Finally, another possible strategy is to “attract” the 
joint to its future position with a virtual stiffness field 
[86, 142]. The future position can be predicted by 
exploiting the periodicity of the gait. The trajectory is 
typically identified online with an adaptive-frequency 
oscillator (AFO). This is equivalent to impedance con-
trol with the time-shifted identified trajectory as a 
target.

Muscles activity amplification (MYO) A joint torque 
that depends directly on the measured muscular activ-
ity is simple and can be very effective, since it can detect 
the intention of the user before the movement starts. 
However, it is usually limited by the fact that electro-
myography (EMG) sensors are time-consuming to set 
up, the signal amplitude may change because of changes 
of skin conductivity and muscles fatigue, and that some 
muscles are not accessible with surface electrodes. In 
addition, this technique becomes even more difficult in 
case of neurologic impairment. In fact, the muscles may 
have a lower contraction which reduces the amplitude 
of the measured voltage and hence the signal-to-noise 
ratio (SNR). This method is simply not usable with peo-
ple affected with complete paraplegia because there is no 
voluntary stimulation of the muscles. It also cannot help 
people affected with coordination troubles, which would 
just be amplified by the device.

In this method, generally the calculated torque is 
directly applied to the joint [96, 116, 232–234, 234–236], 
but in some papers the torque is fed to an admittance 
model to generate position commands for the low-level 
controller [237, 238]. In terms of the approach to calcu-
lating the intended torque from muscle activity, several 
variants can be distinguished:

•	 The amplification of independent muscles activities is 
typically implemented with one artificial muscle per 
biologic muscle [239]. Its advantage is that the co-
contraction of the biologic muscles also produces co-
contraction of the artificial muscles, which allows to 
amplify both the torque and stiffness of the muscles. 
This can also be implemented with a single muscle; 
however, in this case, the biologic co-contraction will 
make the orthosis produce net torque. This approach 
has also been used in ankle exoskeletons with only 
unidirectional actuation (e.g. plantarflexion assis-
tance only) [239, 240]

•	 The differential amplification of muscular activity 
computes the assistive torque by computing the dif-
ference of the activations [241]. Co-contraction just 
results in less torque. However, it may be approxima-
tive because of the non-linear activity/torque rela-
tionship.
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•	 A variant is to let one activation inhibit the other 
[242].

•	 Instead of assuming the joint torque proportional to 
the raw measured activation, an alternative is using 
a calibrated musculoskeletal model to compute the 
joints torques from the measured activation [243].

In some approaches, muscle activity amplification is 
guided by a gait phase estimation method, where the 
activity of a certain muscle causes assistance only during 
a specific period of the gait cycle [116, 233]. A thorough 
review of these techniques can be found in [244].

In [245], the EMG-torque relation is estimated online 
during swing using a physical model. In [133], capacitive 
sensing is used instead of electromyography (EMG).

Direct joint torque estimation (JTE) The biological joint 
torques required for performing a certain movement can 
be estimated approximately using a simplified model 
with several weighted segments, and then (completely or 
partially) applied with an exoskeleton. Such a method has 
been used to assist squatting [92, 246, 247] or stair ascent 
[248] assuming quasi-static movement (neglecting iner-
tia terms and only compensating the weight). A similar 
approach has been used in [49] to assist gait in different 
terrains (level ground, stairs, ramp) in conjunction with 
other strategies. In [249] the authors have used inverse 
dynamics (4 sets of equations depending on the contact 
point(s) with the ground) to estimate the joints torque. 
Another method that does not rely on an accurate model, 
is using ground reaction forces, shank angle, and shank 
length [250, 251]. It has also been proposed to use a 
spring-loaded inverted pendulum (SLIP) model to esti-
mate the required biological hip and knee torques [252]. 
The point foot approximation is made, and the controller 
requires hip/knee joints angles, ground reaction forces, 
and center of pressure (CoP) position obtained with an 
instrumented treadmill. Similarly, in [253] the required 
stance ankle torque to compensate the effect of grav-
ity has been derived based on a simple 2-DoF compass 
gait model. A mass model and ground reaction forces are 
used in [254] to estimate the hip and knee torques during 
gait, but the exoskeleton is actually not actuated.

Model-computed action to keep balance (BAL) Some 
control strategies address the issue of balance during 
gait based on different mathematical models of walking. 
For full mobilization exoskeletons, provided they have 
enough actuated degree of freedoms (DoFs) and that the 
user does not interfere, walking controllers developed for 
humanoids have been used [20, 194, 255, 256]. In [89] 
hip abd/adduction trajectories during swing are adapted 
online to improve lateral balance based on the “extrapo-
lated center of mass” concept. In another approach, the 
difference between model-computed and actual GRFs 

have been fed to an admittance model to update the pre-
defined trajectories online [198]. In the partial assistance 
paradigm, Zha et  al. [257] have developed a controller 
only assisting in case of loss of balance, which is detected 
based on a quantitative balance metric. A model-based 
assistive torque is then calculated as the weighted sum of 
gravity, Coriolis, and inertial terms with weights deter-
mined using fuzzy logic.

Neuromuscular model (NMM) A class of bio-inspired 
controllers attempt to mimic the human neuromuscular 
system, consisting of virtual neurons and muscles. These 
virtual muscles are mathematical models based on the 
Hill-type muscle model [258] that generate torques as a 
function of the activation signal and the current muscle 
states (which are in turn a function of joint angles and 
angular velocities). The torque applied to each joint is 
then obtained as the algebraic sum of the torques gener-
ated by the virtual muscles acting on that joint. Some of 
these controllers are based on the neuromuscular reflex 
model from Geyer and Herr [259]. This bio-inspired 
model works based on feedback loops, or “reflexes”, that 
receive joint position information, ground contact and 
virtual muscle lengths as inputs, and generate activation 
signals for the virtual muscles. This concept was initially 
proposed as a model that can reproduce gait patterns 
similar to the natural human gait.

The reflex model has often been used to control pros-
theses, but implementations can also be found in the 
exoskeleton literature. In some modified versions, the 
activation signals of the muscles generated based on the 
reflexes are augmented with central signals generated 
by AFOs [51, 260], although in [260] and similar stud-
ies [261, 262] only the reflex-based controller has been 
tested with subjects. The activation can also be a function 
of electromyography (EMG) signals measured from the 
user’s biological muscles [243, 263]. In addition to joint 
torques, the neuromuscular model has also been used to 
determine stiffness [264]. In another work, the use of a 
neuromuscular model (which is explained in [265] and is 
different from the one used by the rest of the papers) has 
been mentioned, although it is not clear how it affects the 
proposed controller [266].

The main advantage of the neuromuscular model 
method is that it does not require a predetermined tra-
jectory, and therefore does not impose the motion on the 
user. It rather follows the movements of the limbs and 
adapts to them, while being able to reject external per-
turbations. However, to operate properly, many parame-
ters need to be tuned which can make the tuning process 
lengthy. Automated optimization with simulation tools is 
efficient, but such a process is difficult to implement with 
the actual hardware and user. Moreover, this method by 
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itself is not suitable for complete spinal cord injury SCI 
patients since the user needs to at least initiate walking.

The neuromuscular reflex model has also been used 
in simulations of other assistive controllers to model 
the behavior of the human limb [152, 267]. In these 
papers, the neuromuscular model is simulated in paral-
lel with the controller, receiving the torques generated 
by the controller as input and producing joint angles and 
speeds, which are fed back to the controller.

Body weight support (BWS) Body weight support was 
initially proposed as an augmentation to gait rehabilita-
tion training, using stationary over-treadmill suspension 
systems [268]. The same idea can also be implemented 
using wearable lower-limb devices. Instead of provid-
ing assistance at the joints to move the legs, the idea is 
to relieve the user from a part of his/her weight, by hav-
ing the exoskeleton pushing the trunk upward [11, 12]. 
This mainly works for the knee joint, because in stance, 
the partial gravity compensation consists simply in apply-
ing an extension torque. Note that this method is dif-
ferent from model-based gravity compensation which 
calculates joint torques required to resist gravity (e.g. the 
“gravity compensation control approach” in [92]). The lat-
ter approach has been categorized as “Direct joint torque 
estimation” in this review.

Direct joint control by the user (DJU) The joint torque 
can be directly controlled by a user (the wearer of the 
device or an external person such as a physical thera-
pist), but this requires high cognitive load and prior 
training. This method has rarely been used, an example 
being [269] in which the pressure supplied to an artificial 
pneumatic muscle is proportional to the press of a but-
ton, controlled by a physical therapist or by the wearer. 
The actuator is used in an ankle exoskeleton to provide 
plantar flexion torque. In this study, the therapists could 
learn to properly activate the device to provide effective 
assistance, but most of the subjects could not successfully 
do it over 2 sessions.

An equivalent method for position-control also exists 
[270]. In this case, a pole is linking each foot the ipsilat-
eral hand, with a multi-axis force sensor. Using an admit-
tance controller, the position-controlled joints move 
according to the interaction force exerted by the hands, 
so that the feet “follow” the hands.

Other function of feet/joints instant states (FJI) The 
instantaneous values of the sensors such as joint angle or 
ground reaction force can be provided as inputs to a cus-
tom memory-less function, that directly computes joint 
torques [165, 234, 271] or positions [272–274]. Occa-
sionally, electromyography (EMG) signals have also been 
used [275]. This information can also be supplemented 
with an estimate of the gait frequency [276]. Note that 
the type of functions used in this category does not fit 

into common strategies such as model-based torque esti-
mations or virtual impedance functions. In [72], jump-
ing is assisted at the ankle level by an impedance-like 
function producing an ankle torque proportional to the 
angular speed of the shank. In [116], the actuator pres-
sure is proportional to the hip angle or the ground reac-
tion force, depending on the current state (state machine 
triggered by a threshold on the ground reaction force 
value). In [277, 278] a passive mechanism using springs 
has been designed to compensate the gravitational forces 
such that the leg is approximately in static equilibrium in 
all configurations.

This method can also make the paretic leg follow the 
motion of the healthy limb in people with asymmetric 
pathologies [272], but this method is usable only if the 
movements of both legs should be symmetric, which is 
the case for sit/stand transitions (or jumping with joined 
feet) but not walking. A similar but more sophisticated 
method is estimating the desired trajectory of the paretic 
leg as a function of the instantaneous movements of the 
healthy side, based on inter-joint synergies derived from 
healthy gait [279–281].

Other dynamical function of feet/joints instant states 
(FJD) In a similar manner to the FJI category, although 
much less common, custom dynamical functions can 
also be used to calculate the desired action. In [282] the 
hip torque is computed as proportional to the difference 
of the sine of the hip angles, delayed by approximately 
0.25  s. This makes the assistance torque adapt almost 
instantly to the variations in the gait cadence. In [227], 
gait-cycle-iterative corrections (as a function of the posi-
tioning errors in the previous steps) are applied to the 
baseline torque which is calculated using an impedance 
controller.

Low‑level control
This last layer is the closest to the actuators and there-
fore inevitably device-dependent. Most of the methods 
are not limited to exoskeletons but rather shared between 
many robotic applications, and the fact that they are 
being used in a gait assistance device does not affect the 
desired behavior (i.e. tracking of a reference input accu-
rately while remaining stable). Therefore, papers focused 
only on low-level methods for exoskeletons and gait 
assistance devices are rare. Hence, we will limit this sec-
tion to an overview of the existing methods and their rel-
evant characteristics for gait assistance devices, without 
an exhaustive discussion about each method.

Actuators used in robotics are generally direct-current 
motors that are current-driven, and the field of wearable 
robotics is no exception. This current regulation is per-
formed by a high-frequency (typically ≥ 10 kHz ) inner 
control loop. The target current is determined depending 
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on the type of low-level controller. The motor then trans-
mits its torque to the load via a transmission system. Tra-
ditionally, rigid transmission systems such as gearboxes, 
ball screws, and belt drives were most prevalent, but 
introducing compliant elements into the transmission 
is becoming increasingly common in the applications 
involving interaction and force control. This added com-
pliance improves the safety of interaction and the fidel-
ity of force control. Bowden cables are also frequently 
used in exoskeletons, since they allow the transmission 
of forces over longer distances, making it possible to 
place the actuators more proximally or even off-board to 
decrease the burden of added inertia on the user. Devices 
with off-board actuators (also known as tethered) have 
been proposed as research test benches to compare the 
effectiveness of different control strategies independently 
of the device [283, 284]. Another category of compliant 
actuators frequently used in exoskeletons is pneumatic 
actuators, most often in the form of artificial muscles, 
which offer advantages such as low weight (neglecting the 
weight of the off-board compressor) and desirable pas-
sive properties. Finally, some assistive devices do not use 
any actuators but rather rely on passive elements that can 
store and release energy. Hybrid actuators have also been 
proposed, combining more than one actuator type per 
joint [285]. The distribution of the actuator types in the 

reviewed articles is shown in Fig. 5. For a detailed review 
of the different actuation technologies and particularly 
the compliant ones, the reader is referred to [286, 287].

While actuators with compliant properties are often 
used in partial assistance devices, actuators with rigid 
transmission are still the standard in full mobilization 
exoskeletons. Accordingly, in the low-level control, full 
mobilization exoskeletons use position controllers but 
partial assistance devices mostly rely on force/torque 
control schemes. In our classification of low-level con-
trollers, we make a general distinction between posi-
tion or speed controllers against torque controllers. The 
torque control category is then further divided into dif-
ferent methods.

Position/speed controller (POS)
The rigid position control is usually performed with a 
proportional-integral-derivative (PID) regulator. As most 
actuators have a large gear ratio and significant damp-
ing, the position control is usually straightforward. More 
advanced techniques exist [288–292], although such high 
positioning accuracy is generally not required for exo-
skeletons, because the structure is often slightly flexible 
and makes the legs movement less precise anyway. More-
over, relying on highly precise movements is not practical 
when there is some level of variability in the environment 
and the user can also affect the movement (e.g. using the 
upper-body) in unpredictable ways. Some of the more 
advanced controllers have focused on adding more com-
pliant behavior to the position controller, such as the so-
called “proxy-based sliding mode controller” [189, 293, 
294], which offers smooth and gradual recovery in case of 
large errors. An iterative (over several gait cycles) online 
optimization of the torque profile to get the desired joint 
trajectory is presented in [227].

Torque control
The torque control is more challenging, because it 
requires a high bandwidth. A review of many low-level 
torque controllers can be found in [295]. For the case 
they tested (regular gait on a treadmill, Bowden cable 
transmission), they found that a proportional-derivative 
(PD) controller with iterative learning compensation was 
the best performing.

Open-loop feedforward torque control (OLT) Open-
loop torque control is often chosen because it requires 
no torque sensor, which makes the hardware simpler. 
Two ways exist for its implementation. The first way is 
to set the motor current using a model of the actuator, 
including rotor inertia, dry friction, and damping [122]. 
This method is intended for stiff exoskeletons. Unfortu-
nately, the inertia is hard to cancel because the accelera-
tion is estimated from the position, which amplifies the 

Fig. 5  Distribution of actuator types in the reviewed articles. Studies 
in which the controller was not actually implemented in a real device 
or the actuator type was not mentioned were excluded for this 
analysis
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measurement noise. The friction is also difficult to com-
pensate because of its complex modeling. The second 
way, suitable for soft exosuits, is to run position control 
with a model of the stiffness of the system [112, 113, 143]. 
In [296], an admittance controller (force-to-speed) is fol-
lowed by a speed control loop, to control the force. How-
ever, the cable-driven soft exosuit has a behavior that is 
too non-linear to get a consistent performance with the 
closed-loop control only. A feedforward component is 
then added, using a model that includes the suit stiffness, 
the actuator dynamics, and a thigh motion model (hip 
angle to cable retraction).

Fast closed-loop torque control (CLT) The closed-loop 
torque control is the classical way of controlling an accu-
rate torque. It requires a torque sensor for feedback. 
The motor can be rigidly coupled to the joint (possi-
bly through gears) or via a spring. The latter is called a 
series elastic actuator (SEA) and trades off some tracking 
bandwidth to get a better perturbation rejection perfor-
mance. In other words, the softer the spring, the higher 
the torque regulation capability (a larger movement is 
necessary to achieve the torque perturbation), but the 
lower the ability to change torque fast (the motor has to 
spin more to achieve the torque variation). An advanced 
method to control the torque of a series elastic actuator 
(SEA) can be found in [297].

Gait‑cycle iterative torque control (ITT)  Instead of con-
trolling directly the joint torque with conventional fast 
closed-loop control, a position or speed sequence can 
be played back with a compliant actuator, which can do 
approximate torque control based on the actuator’s force-
length relationship. This is well suited to systems that 
are soft and difficult to control. At the end of each step 
of the gait, corrections are made according to the com-
parison between the achieved and desired torques. Since 
the reaction time is one step, this is only accurate if the 
gait is periodic and regular, which is typically the case on 
a treadmill. The displacement/torque relationship can be 
estimated before the experiment, and a constant motor 
speed control results in the desired force profile [113, 
114]. In [101], position-control is used on a Bowden cable 
to follow a trajectory, which translates to a torque at the 
ankle as a result of the elasticity of the exosuit. The tra-
jectory is manually adjusted online to get the right force 
profile. In [109], a fixed voltage profile is triggered some 
time after the heel strike. It is also possible to tune the 
target trajectory online to get the desired work or average 
positive power [16, 102, 137]. In [16], a target trajectory is 
tuned online to get the desired average torque. In [298], a 
speed profile is tuned online instead. In [112], the speed/
position profile is tuned online over several gait cycles, to 
get the desired torque profile.

Special passive mechanical properties (PME) It is pos-
sible to exploit the passive mechanical properties of 
the actuator, to benefit from some control properties 
that would require a larger and more complex actua-
tor to emulate them with conventional force control, or 
additional sensors. A first example are the pneumatic 
actuators, that are compliant and with a limited tracking 
bandwidth. This is exploited in [234], where the “bang-
bang” pressure controller does not result in a square 
torque profile, because of the smoothing by the limited 
actuator dynamics. In [226], the compliance of the locked 
actuator is used during stance. Actuation does not have 
to be bi-directional (e.g. pneumatic artificial muscles and 
Bowden cables can pull but not push), and this property 
is used to temporarily “disconnect” the actuator from 
the exoskeleton mechanically, to get a passive high-
performance “transparency” (zero torque) without the 
need for a torque sensor [114]. In [26], the knee is posi-
tion-controlled, but also features passive variable stiff-
ness thanks to an additional actuator that controls the 
pre-tension of a spring. Achieving such compliance with 
a single actuator would not be possible, because of the 
high gear ratio and high inertia of the motor. A magne-
torheological damper is used in [65] to vary the damping 
around the joint in different gait phases. The exoskel-
eton described in [72] uses a magnetorheological clutch, 
linked to a motor always running at full speed. This also 
makes it possible to mechanically “disconnect” the joint 
from the motor and get transparency, when the clutch 
is off. A similar system was presented in [299], but using 
a dual conventional clutch able to apply torque in both 
directions. In [300], the supply pressure of the pneumatic 
actuators is calculated so as to achieve a desired com-
pliance (or equivalently, stiffness). In another study, a 
clutch is used to connect and disconnect a spring and a 
DC motor which is running during 85% of the gait cycle 
to stretch the spring, and is disengaged during the push-
off period to let the spring release the stored energy and 
assist the ankle [178]. In a similar but simpler approach, 
a DC motor is used to compress a spring during stance 
(and this compression is also augmented by the dorsiflex-
ion of the human ankle), and the stored energy is released 
at push-off [301]. Thus, using the spring as a passive ele-
ment allows using a lighter motor with a lower power 
output.

Fully passive system (PAS)  A fully passive system does 
not use an actuator and relies solely on passive mechani-
cal elements, such as springs and dampers. A small actua-
tor may be present to control the state of the system, but 
will not exchange power with the joint [171, 173]. The net 
work of such systems can only be negative, but positive 
power can momentarily be provided if energy has been 
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stored previously. The control behavior is more difficult 
to design and adjust, because of the mechanical changes 
required. However, passive mechanical elements have a 
very high power-to-weight ratio, and do not need a bat-
tery. Therefore, such exoskeletons can be significantly 
lighter to decrease the added effort and metabolic cost of 
carrying the weight of the device. The full actuator can 
be as simple as just a spring [213, 302–306] (hip joint 
only), [19] (ankle joint only). In [164], the spring is linked 
to a ratchet and a clutch to disconnect the spring from 
the ankle during the swing phase. A similar approach 
was described in [11]. In [171], the clutch is active, but 
the rest (a spring) is passive. In [19], the knee is linked to 
a damper via a clutch that is controllable from the soft-
ware. A spring can also connect (indirectly) several joints 
together to perform power transfer [179, 307–309] (but 
this last one is an exotendon that does not really qualify 
as an exoskeleton). In [310], a rigid six-bar linkage with 1 
degree of freedom (DoF) has been used to link the move-
ments of knee and ankle joints and constrain the walking 
trajectory to that of a healthy person.

Evaluation metrics
Evaluation metrics are necessary to assess the perfor-
mance of an exoskeleton and compare it to others. As 
a human being is involved, they are unfortunately often 
inaccurate and not repeatable between subjects, and 
even between different trials with the same subject. A 
complete benchmarking scheme for bipedal locomo-
tion was proposed by Torricelli et al. [311], summarizing 
many desired abilities, test cases, and metrics. This sec-
tion briefly outlines the most common metrics that can 
be found in the literature to evaluate the exoskeleton-
assisted gait. However, this is by no means an in-depth 
review of the evaluation metrics. For an in-depth review 
of the evaluation metrics, the reader is referred to Pinto-
Fernandez et al.’s recently published review paper on this 
subject [9].

Functional performance of the human‑exoskeleton system
The performance can first be evaluated in terms of func-
tional performance, which is the ability of the subject to 
complete a desired task. The scores obtained in Olympic 
sports (time to sprint 100m, maximum jumping height, 
etc.) are mainstream metrics but are not suitable for 
easier tasks such as walking. Other well-known methods 
are the 10-meter walk test (10MWT), the 6-min walk 
test (6MWT), the timed up and go (TUG) test [312], or 
the Fugl-Meyer assessment (FMA) [313]. These are often 

used with highly disabled patients and full mobilization 
exoskeletons [30, 314–316].

These metrics suffer from low repeatability, and the 
outcome depends on the subject’s motivation and effort 
as well.

Metabolic cost
The metabolic cost is the amount of energy consumed 
by a subject to complete a task. These methods are use-
ful because they capture the power exerted by the user, 
which relates closely to the required “effort”. However, the 
human body adapts slowly (with response times on the 
order of 1min [317]) and these methods are only usable 
for an exercise that lasts at least a few minutes.

Heartbeat rate Electrically-measured electrocardiogra-
phy (ECG) or optical methods are used to measure this 
metric [122, 138, 315]. Electrocardiography (ECG) is usu-
ally preferred because of its better accuracy and robust-
ness [318], although this distinction has recently been 
called into question [319]. The heartbeat rate measure-
ment devices are easily wearable, compact and cheap.

Gas exchange Typically, the O2 consumption is meas-
ured to estimate the metabolic rate [72, 303, 309, 320]. 
For these measurements, the exercise is performed 
continuously for 1–2 min until the steady-state value is 
reached. Another possible approach is to fit an exponen-
tial function [105] or a first-order function [214] on the 
transient part of the data.

Muscular activity
There are various methods to approximately detect the 
level of activation of the muscles, which is another meas-
ure of the required effort from the user. However, these 
methods cannot measure the resulting joint torque, 
which is affected by other factors such as muscle fatigue, 
co-contraction of antagonist muscles, etc. These methods 
have a short response time, as opposed to the methods 
aiming to measure the metabolic cost.

Electromyography The most common method for mon-
itoring muscular activity is the surface electromyography 
(EMG), with adhesive electrodes placed on the skin, over 
the muscles of interest [16, 321]. Implanted electromyo-
graphy (EMG) sensors also exist to allow for monitoring 
internal muscles that are not accessible near the surface 
of the skin, but this technique is rarely used due to its 
invasive nature. electromyography (EMG) readings can 
be biased by the change of conductivity of the skin (as 
a result of sweating or migration of the conductive gel), 
and movement of the electrodes.
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Mechanomyography In this method, muscular activa-
tion is measured by the change of volume or the vibration 
intensity of the muscles [322]. It typically gives the aver-
age muscle activity at a specific leg section.

Joints mechanical power
By measuring the position of user’s body segments with 
a motion capture system, and the ground reaction forces 
with a force plate, it is possible to compute the move-
ment and torque of each joint, and thereby its mechanical 
power. For this method, the knowledge of the user’s seg-
ment lengths and weights is needed as well. However, the 
joint mechanical power is not necessarily related to the 
muscle power [323].

Discussion
The selected classification approach made it possible to 
describe 285 control strategies presented in 291 reviewed 
papers.4 A total of 31 blocks have been used. It should 
however be noted that the implementation details and 
the differences between various possible realizations of 
each block could be important and might even affect the 
performance outcome considerably. Comparing the per-
formances was not intended in this review, and indeed 
it is practically impossible due to the differences in the 
target populations and tasks, testing procedures, and the 
reported outcomes in each study.

Selected controllers representing various possible com-
binations of the blocks are given in Table  2, along with 
their classification, actuator type, and a brief description 
of the control strategy. This table shows how the different 
blocks could be combined in numerous ways to form a 
controller.

In the high-level layer, the mode of operation of the 
device is determined, typically based on the type of gait 
or activity (e.g. normal walking, climbing stairs or, sit/
stand transitioning). Currently few studies are address-
ing high-level control, mainly because in laboratory 
or clinical settings the mode of operation is often con-
stant. In fact, only about 20% of the reviewed controllers 
addressed high-level control, many of which only briefly 
mentioned the method without focusing on it. 27 con-
trollers were based on movement recognition, 15 based 
on explicit/manual user input, 13 based on terrain detec-
tion, and 5 based on brain-computer interfaces. 2 con-
trollers combined brain-computer interfaces with terrain 

detection, and 1 controller combined terrain detection 
and movement recognition.

While high-level control can be ignored in applications 
such as rehabilitation, reliable high-level control is essen-
tial for devices that are ultimately intended to be used in 
everyday environments, particularly for full mobiliza-
tion. Most commercial exoskeletons for full mobiliza-
tion still rely on simple high-level control methods that 
require direct input from the user. Advanced methods 
such as terrain recognition and intent detection have 
recently received more attention, but most of the articles 
are in the preliminary testing and feasibility study phases. 
However, promising results have been demonstrated and 
these methods can be expected to be implemented in 
more devices in the near future.

The mid-level layer dictates the continuous behavior of 
the device in each operation mode (or in general, if there 
is only one mode of operation). This layer is central to the 
performance of assistive devices and consequently, the 
existing studies in exoskeleton literature are predomi-
nantly focused on this part. This layer is also usually more 
heavily affected by the fact that the controller is intended 
for an exoskeleton, whereas many of the high- and low-
level controllers could be directly applied to other kinds 
of devices as well (e.g. prostheses and wheeled robots).

Mid-level control is further divided into two parts: (1) 
detection/synchronization and (2) action. While most 
control strategies found in the literature include both 
sublayers, some controllers operate directly on the raw 
sensory data (e.g. joint angles) and the synchronization 
is implicit (e.g. in muscle activity amplification) or non-
existent (the user has to synchronize with the device). 
Control strategies used in some papers consist of more 
than one set of functional blocks. Different sets of blocks 
could either be used simultaneously to complement each 
other, or separately based on the gait state or ambulation 
mode (switched by the high-level controller or a state 
machine in the mid-level layer itself ).

Out of the 285 reviewed control strategies, 265 
addressed mid-level control. The number of possible 
strategies in the mid-level layer is much higher than the 
others, with more than 40 possible variants identified in 
the reviewed articles, and many articles using more than 
one strategy.

In the synchronization level, 98 papers used event trig-
ger, 35 imposed the timing, and 11 used manual trig-
ger. Following these triggers, 72 papers used a simple 
linear increase of the gait phase and 52 used finite-state 
machines to switch between discrete gait states, while 31 
carried out time-based interpolation to calculate the gait 
phase. For direct gait phase estimation, 26 papers used 
adaptive frequency oscillators, 9 used machine learning, 

4  Some of the reviewed papers included more than one controller, and some 
papers —by the same research group— used the exact same controller several 
times, therefore the number of control approaches does not exactly match the 
number of papers.
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Table 2  A selection of the reviewed controllers and their classification

Most of the references were chosen from the most cited papers (based on the number of citations in Google Scholar), and some were manually added to typify other 
possible combinations of blocks not covered among the most cited papers. Actuator abbreviations: EM: Electric Motor, OT: Other, PA: Passive, PN: Pneumatic, SEA: 
Series Elastic Actuator

References High-level Mid-level Low-level Actuator Description

[170] None EVT-FSM-ZCT CLT SEA From heel strike to mid-stance, the stiffness is incremented if foot slap is 
detected from GRF analysis. From mid-stance to toe off, zero impedance 
is applied to let the user perform powered plantarflexion. During swing, 
desired stiffness and damping are set based on the gait speed range

[332] None FJI CLT SEA Required knee torque is estimated as the static torque resulting from the GRF, 
then it is applied with an amplification factor

[208] None PPR-ZCT CLT EM A time-invariant tunnel is defined around a desired path, which is obtained 
from interpolation between the patient’s pre-training gait and that of a 
healthy subject. A virtual spring guides the leg back toward the tunnel 
when diverged. When inside the tunnel, an assisting force tangent to the 
path is applied

[30] MUI EVT-LNP-PPR POS EM A watch is used to select the operation mode, then the fixed-trajectory steps 
are triggered with the trunk tilt

[241] None MYO OLT EM Proportional EMG control; the applied torque is calculated based on the dif-
ference between flexor and extensor muscle activities

[103] None EVT-TBP-TPR PME PN Uses an “algorithm” to predict stride time from heel switch data, then turns 
plantarflexion assistance on and off (applying constant pressure to pneu-
matic muscles) at pre-defined gait cycle percentages

[89] None EVT-LNP-PPR +BAL-ZCT CLT SEA A state machine applies joint trajectories (fixed trajectories in the sagittal 
plane, online adaptation in the frontal plane based on XCoM to improve 
balance) and changes the impedances of the joints. Lateral weight-shifting 
triggers the steps

[44] BCI IMP-LNP-PPR POS EM BCI control with 4 actions: “stand”, “walk”, “stop”, and “kick”. In one paradigm the 
subject triggers the walking and the steps are performed automatically. In 
another, the subject triggers each step

[117] None EVT-FSM-TPR OLT PN State machine. Transitions using threshold on the feet pressure sensors (two 
per foot, one in front and one in back). Dorsiflexion torque applied at heel 
strike and toe-off, no assistance during foot flat, plantarflexion torque 
applied at heel off

[142] None AFO-ZCT? CLT SEA AFO is used to estimate the gait frequency and joint angle, then the joint is 
attracted toward its predicted future position (equivalent to impedance 
control with the time-shifted, AFO-identified trajectory, as the target)

[150] None EVT-TBP-TPR +ZCT+BWS OLT EM Torque sequence triggered by EMG. Also damping to limit the movement 
speed, and gravity compensation

[164] None EVT-FSM-ZCT PAS PA A spring is only engaged during stance using clutch and ratchet mechanism 
(no electronics involved), to assist ankle plantarflexion

[256] None BAL OLT EM Full mobilization with balance, resulting in crutch-less walking. Human and 
exoskeleton are considered as a single bipedal walker, and advanced 
control methods for bipedal robots are used. The details are out of scope 
for this review

[252] None JTE CLT EM Estimates approximately the hip/knee torque using a spring-loaded inverted 
pendulum model, assuming point foot. Requires GRF and CoP position 
obtained from instrumented treadmill

[111] None MLP-ZCT+TPR OLT EM Gait event detected with IMU and support vector machine: heel strike, heel 
off and toe off. Each event triggers a damping profile (HS) or torque profile 
(HO and TO)

[72] MOV ASP-TPR+IMP PME OT Uses angle-speed diagram to get the phase. Discriminates between walking 
and jumping using the phase difference between the two legs. Walking: 
torque profile. Jumping: impedance control

[260] None EVT-FSM-NMM CLT SEA Based on the reflex model by [259] which uses different reflex loops depend-
ing on stance/swing, but muscle activation signals also include another 
component simulating the input from central pattern generators (CPG) 
using adaptive-frequency oscillator (AFO). The CPG component has not 
been used in experimental tests

[41] BCI+TER IMP-LNP-PPR POS EM BCI-controlled FSM decides 3 actions (turn left/right, walk front), and an 
obstacle detection system (3D camera + ultrasonic sensors) blocks the 
actions that result in hitting obstacles
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2 used angle-speed plot phase and 2 used other gait 
phase estimation methods.

In the action sublayer, impedance control was used 85 
times, torque profile 64 times, trajectory-based position 
control 51 times, myoelectric amplification 22 times, 
function of foot/joint instant states 19 times, direct joint 
torque estimation 14 times, model-computed movement 
to keep balance and neuromuscular model 8 times each, 
and finally dynamical function of foot/joint states, body-
weight support and direct joint control by the user were 
used 2 times each.

The low-level layer is responsible for carrying out the 
desired “action” determined in the mid-level layer. The 
type of descending command (position or force/torque) 
from the mid-level layer determines the nature of the 
low-level controller. Typically the low-level control strat-
egy can be a simple proportional-integral-derivative 
(PID) position regulator in full mobilization exoskele-
tons, or a torque controller (either open- or closed-loop) 
for partial assistance. Besides these methods which are 
very common in robotics, alternative methods also exist 
that can be applied to control the torque in actuators 
with mechanical compliance. Furthermore, simple forms 
of torque control have also been realized using only pas-
sive elements through storing and releasing energy. 
Clearly, the choice of the low-level control strategy is 

heavily influenced by the hardware of the device, which 
is in turn affected by trade-offs between wearability (e.g. 
weight and volume) and performance (e.g. power output 
and bandwidth).

249 out of the 285 reviewed control strategies included 
low-level controllers, although in some cases the type 
was not clearly mentioned. 60 control strategies were 

Fig. 6  Number of references for each functional block (top: high-level, middle: mid-level, bottom: low-level)

Fig. 7  Percentage of the considered publications that addressed 
high/mid/low level, per year of publication
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based on position control and 186 based on torque con-
trol. Among the torque-controlled devices, 57 had an 
open-loop torque controller, 55 a closed-loop torque 
controller, 36 used special passive mechanical properties, 
18 were passive devices and 16 used gait-cycle iterative 
torque control.

Figures 3 and 6 show that some control blocks are more 
popular than the others. For the high-level, it can be seen 
that in absolute terms, the high-level control method 
is not addressed often in the literature, although it is 
increasing over time (Fig. 7). The popularity of the man-
ual user input (MUI) can be explained by the fact that 
the full mobilization exoskeletons are responsible for the 
full movements of the limbs, which should be adapted to 
many situations, and MUI is the most reliable and prac-
tical method today in this regard. For partial assistance, 
the movement recognition is more common because 
MUI and brain-computer interface (BCI) are not fast or 
convenient enough to use (the users have less impair-
ments and higher expectations for usability), and the ter-
rain detection is still in an early stage of development. 
For middle level, the leading blocks for partial assistance 
are event-trigger, impedance control and torque profile, 
probably because these are simple to understand and 
implement, and are able to cope with simple sensors 
(encoders, switches, etc.). The majority of the full mobi-
lization exoskeletons use an imposed position profile 
(linear increase of the gait phase (LNP) + position pro-
file (PPR)). For low-level, almost all the full mobiliza-
tion devices use a position profile, because it is easy to 
implement with traditional actuators with high gear ratio, 
and because the mid-level associated blocks are mostly 
designed around reference kinematics, instead of joint 
torques or GRFs. For partial assistance, torque control is 
preferred, and open-loop (OLT) and closed-loop torque 
control (CLT) are the most common, because they are 
the traditional ways of torque control in robotic applica-
tions. Although CLT should be the most versatile (it does 
not require tuning to a specific movement, as opposed to 
exploiting special passive mechanical properties (PME) 
and gait-cycle iterative torque control), accurate and 
high-bandwidth torque control, it requires torque sens-
ing and a careful design. OLT is simpler but less accurate, 
and less stable over time (e.g. due to changes in friction 
with temperature and wear). Generally, the most popular 
techniques are on one hand usable on simple hardware, 
so not requiring delicate sensing (e.g. muscles activity 
amplification) or special mechanics (e.g. PME, or even 
a fully passive actuator), and on the other hand easy to 
understand and implement. Typically, machine learn-
ing and neuro-muscular models are harder to imple-
ment because of the complex algorithms involved and 
the need for training data, so they are rarely used out 

of a simulated environment. It is remarkable that apart 
from the blocks related to imposing a position profile 
(continuously imposed movement, linear increase of the 
gait phase, position profile), the blocks are used almost 
only for full mobilization, or only for partial assistance, 
but there is little sharing. Manual user input, BCI, terrain 
detection, manual trigger, model-computed movement to 
keep balance, and position control can be associated to 
full mobilization, whereas movement recognition, event-
trigger, adaptive-frequency oscillators, angle-speed plot 
phase, machine learning, time-based gait phase inter-
polation, other gait phase estimators, state machine, 
neuro-muscular model, torque profile, direct joint torque 
estimation, direct joint control by the user, model-com-
puted movement to keep balance, impedance control, 
function of feet/joints instant states, dynamical function 
of feet/joints states, bodyweight support, muscles activ-
ity amplification, open-loop torque control, closed-loop 
torque control, gait-cycle iterative torque control, special 
passive mechanical properties, and fully passive system 
are associated to partial assistance.

Although objectively comparing the performance of 
the controllers is not possible (different target users, dif-
ferent tasks, different metrics, etc.), ten successful pub-
lications have been selected here, and have been used 
to highlight effective control features. In the context 
of the full mobilization, the four best performers to the 
CYBATHLON 2016 [324] have been selected [27, 28, 30, 
90], because they proved that their system is fast and can 
overcome many obstacles. They are all using manual user 
input (MAN), because this is the most reliable method 
today. BCI is slow, limited to a small set of commands, 
and requires focus. Terrain detection is currently lim-
ited to over-simplified obstacles scenarios, but has a high 
potential because it will benefit from the current devel-
opment of humanoids. Movement recognition is rarely 
used because the user has not enough voluntary control 
of the legs. For the lower layers, pre-defined gait trajec-
tories with position-control (LNP+PPR+POS) are suc-
cessful in practise, because they are simple to implement 
and reliable, and it is possible to tune them for different 
types of gait and obstacles. This imposed gait pattern can 
be triggered manually with the hands (MAN) or from the 
body movements (EVT). The exoskeleton in [195] is also 
remarkable because it is the first one truly able of hands-
free dynamic walking. This new control technique, based 
on the balance control of humanoids (BAL) is promis-
ing, although less reliable (failure of the device cannot 
be recovered by the user, since there are no crutches) 
and currently slower. In the context of partial assistance, 
three passive [164, 307, 309] and two active controllers 
[123, 141] have been selected because they had the great-
est results in lowering the metabolic cost of walking or 
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running. The high-level control layer is rarely considered 
because most studies focus on steady-state walking or 
running. However, the transition between these two can 
be performed automatically using movements recogni-
tion (e.g. [123]). The most successful powered exoskele-
tons implement a torque profile, which can be made very 
efficient if the torque profile is tuned to the user. The syn-
chronisation is done with an event trigger [123] or AFO 
[141]. There is no clear trend for the low-level torque 
control. Simpler, fully passive exosuits could also suc-
cessfully break the “metabolic cost barrier” (as expressed 
in [7]), mostly with a variant of impedance control [164, 
307, 309]. While the control can bring less power to the 
user, the ability to implement it on a dramatically lighter 
equipment makes the assistance outcome (assistance 
minus burden) beneficial.

Several full mobilization exoskeletons are already com-
mercialized and the existing devices are reasonably suc-
cessful in assisting people with paraplegia or severe 
lower-limb weakness. However, there still exists consid-
erable room for improvement in their control strategies, 
particularly in the areas of balance, terrain adaptability, 
and walking speed. These potential areas of improve-
ment are generally addressed in high-level control and 
the “action” sublayer of mid-level control. Recent pre-
liminary studies in terrain detection methods have also 
demonstrated successful results, paving the way for more 
applied research on integrating these methods into actual 
exoskeletons. Investigating more generalizable online 
adaptive position profiles to decrease the reliance on 
fixed trajectories and terrain types also deserves more 
attention. For “crutched” exoskeletons, however, since 
the behavior of the device would become potentially 
unpredictable for the user, an advanced feedback system 
should be designed so that the crutches can be moved 
according to the expected movement of the legs. Finally, 
ensuring the safety and robustness of more sophisticated 
control strategies would be a major challenge in the tran-
sition from the laboratory to everyday use, because of the 
dramatically increased complexity. To achieve crutchless 
dynamic walking, recent advancements utilizing meth-
ods from the field of humanoid robotics have proven 
promising, and more progress in this direction is to be 
expected in the near future. Control strategies that effec-
tively address fall prevention and recovery from tripping 
could also substantially improve the safety of full mobili-
zation exoskeletons.

In the field of partial assistance, many encouraging 
results have been achieved as well, especially concern-
ing metabolic cost reduction which is arguably the most 
sought-after target in this field [7]. Several studies have 
investigated the effects of different factors such as magni-
tude [99, 113] and timing [102, 141] of assistive torques, 

power delivery [102], and adaptation of the subjects 
[115, 121] on the metabolic cost reduction. This has led 
to a better understanding of the methods for effectively 
reducing the metabolic cost, and challenges such as com-
pensatory behaviors in unassisted joints [16, 115]. Con-
trary to full mobilization in which further improvements 
mostly can come from the “action” sublayer of mid-level 
control, for partial assistance the performance of the 
“detect/sync” sublayer is equally important. In many par-
tial assistance exoskeletons, the user has to bear the full 
weight of the device. This can be a serious hindrance, 
especially for people with existing weaknesses. There-
fore, improving the design of partial assistance devices to 
reduce their weight could be as important as improving 
the control strategy. Controllers that can work with sim-
pler hardware are at an advantage. In the same vein, soft 
exoskeletons (exosuits) have received increased attention 
from the researchers and this trend is likely to continue.

For future research, more comparative studies testing 
different control strategies on the same hardware and in 
similar conditions could be valuable. The developments 
in machine learning methods have successfully been uti-
lized in detection of the environment, locomotion mode, 
and also the gait phase. But these methods have not been 
integrated with subsequent action blocks frequently. In 
the future, controllers with machine-learning-based envi-
ronment/activity recognition and synchronization can 
become more common. Robust and reliable detection 
of the terrain or the activity mode using machine learn-
ing can make exoskeletons more autonomous and much 
easier to use in everyday situations. Accurate detection of 
the gait phase can on the other hand improve the effec-
tiveness of the assistance provided by the exoskeletons. 
For the latter purpose, however, simpler methods can 
also provide sufficient accuracy.

With a large scope, not limited to a specific applica-
tion or type of device, this review was intended to pro-
vide an organized overview, to help the new researchers 
in the field understand the vast range of control strate-
gies for lower-limb exoskeletons to assist the gait. The 
proposed layers and blocks structure is well suited to 
sort and compare the existing controllers, and prob-
ably the future ones. Such organization work is essential 
because the topic of exoskeleton control tends to accel-
erate its expansion (Fig. 8), which makes understanding 
the existing methods increasingly difficult. However, it 
is not a practical tool for the inverse process, which is 
the synthesis of new controllers. In fact, the classifica-
tion is made so that it is independent of the target appli-
cation or device, but these are important for the design 
of a performant controller. For example, some blocks 
are irrelevant for the full mobilization of complete spi-
nal cord injury SCI users (e.g. body weight support and 
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muscles activity amplification), and some implementa-
tions require specific sensing which may not be available 
on the actual hardware (e.g. electromyography (EMG) 
sensors or foot pressure sensors). Also, this classification 
gives no guidance on how to choose the implementation 
of each selected block, because the performance of each 
implementation is not compared. In addition, there is no 
guarantee that the complete controller results in a useful 
behavior. Hence, choosing a path through the blocks is 
a complex task. Finally, the proposed blocks set empha-
sizes on the processing that leads to the desired behavior, 
but does not show the sources of information. For exam-
ple, it is not visible that a controller uses the movement 
of the sound leg to control the paretic leg, or that another 
uses the foot contact information to produce torque at 
the hip. This can be considered as a limitation because 
intention detection is a key challenge for these control-
lers, and sources of information play a decisive role in 
intention detection. The main reason is that in the litera-
ture, the techniques are designed for and tested with an 
actual device with fixed inputs (e.g. sensors locations), 
but these techniques may still be applicable to other exo-
skeleton topologies.

Conclusion
In this paper, an overview of the existing literature on the 
control of lower-limb orthotic devices for gait assistance 
was provided, plus a brief overview of the metrics com-
monly used to evaluate the performance of the control-
lers. An effort was made to focus on the core concepts 

used in each controller, and to separate them from dif-
ferent possible implementation methodologies and hard-
ware platforms, whenever possible. A 3-layer hierarchical 
structure was proposed for the classification of the con-
trollers, conceptually similar to the suggested framework 
in a previous review article [4].

The different possible control approaches in each layer 
were then represented by atomic functional units in the 
form of blocks. While most of the blocks could be imple-
mented using various methods, the overall function 
remains largely the same. This type of classification and 
decomposition facilitates the comparison of the different 
existing approaches in terms of control by abstracting out 
the basic idea regardless of the implementation details. 
It allows capturing not only the differences but also the 
similarities among different approaches.

A vast number of methods were identified showing 
considerable heterogeneity, each one being tailored to a 
specific kind of application, target population, and per-
formance objective. No comparison was made among 
these methods in terms of effectiveness and performance 
outcome, mainly because a general comparison would be 
pointless when the ultimate objectives and target popu-
lations are fundamentally different. Furthermore, even 
among the studies sharing these features, the protocols 
used for testing and the reported performance metrics 
(if any) often do not match and thus there is not enough 
information to make systematic comparisons. Regard-
less, it can be stated that many significant improvements 
in terms of performance outcomes have been achieved 

Fig. 8  Number of reference considered, per year of publication
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recently, as pointed out by other recent reviews as well 
[1, 7].

Currently, the most successful full-mobilization exo-
skeletons are controlled with manually selected modes 
(MUI), setting pre-defined trajectories that are manu-
ally (MAN) or automatically (EVT) triggered. The main 
limitations are that the crutches prevent the use of the 
hands for other tasks, and switching from one mode 
to another is time-consuming. To address these issues, 
there are promising developments ongoing on dynami-
cal balance (BAL) and terrain awareness (TER), both 
supported by the recent advances in powerful, com-
pact, low-power, embedded computers. Nevertheless, 
these devices will be more complex, bulky and expen-
sive than the current crutched exoskeletons. Humans 
are already aware of the terrain and know what move-
ment to perform, they are just unable to command the 
exoskeleton accurately and quickly enough. Conse-
quently, more research work on efficient user interfaces 
could improve the current generation of exoskeletons 
and make them quicker in less structured environments 
(single step stair, short sideways slope, speed bump, 
etc.).

For partial assistance, the best results have been 
obtained with event-triggered (EVT+TPR) or AFO-
synchronised (AFO+TPR) torque profile, possibly 
tuned to each user with human-in-the-loop optimiza-
tion, and torque control. These techniques are exploit-
ing the periodicity of the gait to keep the torque 
pattern synchronized with the legs. This is why it can 
be expected that they are less efficient in unstructured 
environments, where the gait pattern is less regular. 
State-less techniques (such as FJI) could solve this issue 
but they have not been addressed often in the litera-
ture. Hence they may deserve more research effort.

These improvements in controllers, along with other 
advancements in technology, hardware and design 
have taken gait assistance exoskeletons one step closer 
to becoming mainstream, although many challenges 
still need to be resolved before making the move from 
laboratories to real-world usage. This would call for 
the research on exoskeleton control to start moving 
toward more comprehensive studies with more realistic  
scenarios and protocols in the near future. Such stud-
ies necessitate more interdisciplinary collaborations 
among control researchers and specialists from various 
other disciplines, from physiologists and clinicians to 
design engineers and conformity assessment bodies for 
medical device regulations in different countries and 
regions.
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