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Objective assessment of impulse control 
disorder in patients with Parkinson’s disease 
using a low‑cost LEGO‑like EEG headset: 
a feasibility study
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Abstract 

Background:  Patients with Parkinson’s disease (PD) can develop impulse control disorders (ICDs) while undergoing 
a pharmacological treatment for motor control dysfunctions with a dopamine agonist (DA). Conventional clinical 
interviews or questionnaires can be biased and may not accurately diagnose at the early stage. A wearable electroen‑
cephalogram (EEG)-sensing headset paired with an examination procedure can be a potential user-friendly method 
to explore ICD-related signatures that can detect its early signs and progression by reflecting brain activity.

Methods:  A stereotypical Go/NoGo test that targets impulse inhibition was performed on 59 individuals, including 
healthy controls, patients with PD, and patients with PD diagnosed by ICDs. We conducted two Go/NoGo sessions 
before and after the DA-pharmacological treatment for the PD and ICD groups. A low-cost LEGO-like EEG headset 
was used to record concurrent EEG signals. Then, we used the event-related potential (ERP) analytical framework to 
explore ICD-related EEG abnormalities after DA treatment.

Results:  After the DA treatment, only the ICD-diagnosed PD patients made more behavioral errors and tended to 
exhibit the deterioration for the NoGo N2 and P3 peak amplitudes at fronto-central electrodes in contrast to the HC 
and PD groups. Particularly, the extent of the diminished NoGo-N2 amplitude was prone to be modulated by the ICD 
scores at Fz with marginal statistical significance (r = − 0.34, p = 0.07).

Conclusions:  The low-cost LEGO-like EEG headset successfully captured ERP waveforms and objectively assessed 
ICD in patients with PD undergoing DA treatment. This objective neuro-evidence could provide complementary 
information to conventional clinical scales used to diagnose ICD adverse effects.

Keywords:  Parkinson’s disease, Impulse control disorders, Electroencephalogram, Event-related potential, LEGO-like 
headset
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Background
Parkinson’s disease (PD) is a progressive neurodegen-
erative disorder characterized by the loss of midbrain 
dopaminergic neurons and the subsequent depletion of 
dopamine levels in the basal ganglia [1]. Patients with PD 
manifest the hallmarks of motor control dysfunction, i.e., 
tremor, bradykinesia, and rigidity. Moreover, the disorder 
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is frequently accompanied by a cognitive decline [2, 3] 
in many aspects, including inhibitory control, attention 
shift, reward learning, and working memory; particularly, 
the main pharmacological treatment for the motor symp-
toms, e.g., dopamine agonists (DA), may trigger impulse 
control disorders (ICDs) as an adverse effect [4–8]. ICDs 
refer to the inability to inhibit predominant behaviors, 
thereby leading to several compulsive or pathological 
behavioral changes regarding gambling, shopping, eat-
ing, and sexuality [4]. The inhibitory control is the capa-
bility of selecting the most appropriate response while 
suppressing competing counterparts in ever-changing 
circumstances; its integrity is critical for controlling 
behavior at all levels [4, 8]. Therefore, assessing, moni-
toring, and ideally avoiding ICD in patients with PD has 
become increasingly important [4, 7–9].

Noteworthily, the ICD adverse effect can be mitigated 
and even terminated by reducing DA dose or switching 
to another dopamine replacement therapy [4]. Presently, 
assessing ICD mainly relies on subjective clinical judg-
ment associated with interview outcomes of patients 
with PD, as well as their self-reported questionnaire 
scores. However, behavioral scales are potentially biased 
and may be inaccurate at early stages. Recent advances in 
neuroimaging facilitate the exploration of impulse con-
trol-relevant neural networks and their interaction with 
psychopharmacological interventions. Several neuroim-
aging techniques including near-infrared spectroscopy 
[10], functional magnetic resonance imaging [11, 12], and 
electroencephalogram (EEG) [13, 14] have demonstrated 
the feasibility of associating neurological evidence with 
inhibitory control. Therefore, it is possible to find brain-
markers that objectively characterize cognitive decline 
in neurodegenerative diseases [15]; for example, impulse 
control integrity in patients with PD during chronic DA 
treatment.

Among the available neuroimaging techniques, EEG 
measures the electrical brain activity with a high tempo-
ral resolution of milliseconds, which captures the onset 
of cognitive states and their rapid transitions. Moreover, 
wearable EEG-recording technology has recently made 
impressive progress. Unlike the bulky gel electrode-
headset of laboratories, wearable technology allows the 
recording of brain activity using dry/saline electrodes, 
wireless transmission, and a minimized amplifier [16–
18]. Furthermore, the easy-to-setup wearability makes 
the EEG measurement more user-friendly, less headset-
calibrated, and considerably promotes realistic EEG 
applications in daily life [19–21].

Event-related potential (ERP) is a well-established 
signaling marker related both to the qualitative and 
quantitative assessment of cognitive processes. During 
EEG recording, the individual undergoes a task-specific 

experimental protocol to study a cognitive capacity of 
interest for sequential ERP analysis. The alteration of 
ERP waveforms has been previously linked to the integ-
rity of the targeted cognitive function. For example, 
the oddball paradigm is a classic task that engages the 
selective attention network. When the brain perceives 
a deviant target stimulus, the P3 component (a posi-
tive peak around 300–500  ms following stimulus onset) 
dominantly appears at the midline scalp electrodes [22, 
23]. Either an attenuated or absent P3 component could 
implicate alterations or even deficits in attention shifting 
[3, 24]. The Go/NoGo task is another common task that 
investigates both cognitive and motoric inhibition [25, 
26]. While frequent Go trials are characterized by an as-
fast-as-possible behavioral response, the rare NoGo trials 
imply a withholding of the prepotent response, i.e., inhi-
bition control. The successful NoGo inhibition normally 
leads to clear N2 (negativity around 200–300 ms) and P3 
signals at fronto-central regions as compared with Go 
trials [13, 25, 26]. Consistent with the aforementioned, 
diminished amplitudes of N2 and P3 components are 
associated with dysfunction in inhibition control in indi-
viduals with attention-deficit/hyperactivity disorder [27], 
internet addiction [28], and PD [14]. Accordingly, the 
ERP signature during an actively engaged cognitive task 
is capable of examining deficits in the targeted cognitive 
function regarding physiological, psychological, and psy-
chiatric disorders.

Motivated by the ERP assessment of cognitive capacity 
and its applicability to Go/NoGo task-engaged inhibition 
control, we attempted the application of the ERP signal-
ing strategy to reveal ICD neural signatures in patients 
with PD who undergo DA pharmacological interven-
tions. We hypothesized that patients with PD and ICD 
comorbidity would exhibit diminished amplitudes of the 
N2 and P3 complex after DA treatment as compared with 
typical patients with PD. This amplitude degradation is 
potentially related to ICD severity, that is, ICD symp-
tom severity being positively associated with diminished 
amplitude. A further objective was to approach the above 
issue using a customized, cost-efficient EEG amplifier [29] 
and electrode-holder assembly [30] (namely, a LEGO-like 
EEG headset). Using a non-medical-grade EEG-sensing 
platform is a harsh, yet, realistic setup, closer to a prac-
tical wearable device for ubiquitous ICD monitoring. 
While most studies focused either on the EEG/ERP dis-
tinction between patients with PD and healthy partici-
pants [14, 31, 32] or between different PD stages [33–35], 
only a few studies devoted to the neural assessment of 
ICD in patients with PD. A recent study [36] focused on 
the exploration of the spatio-spectral dynamical patterns 
produced by high-density EEG recordings (i.e., 128 chan-
nels) and pinpointed the underlying neural mechanisms 
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associated with inhibitory control dysfunction in patients 
with PD and ICD comorbidity compared with patients 
with PD alone. Conversely, this work attempted both to 
determine whether ERP signatures can objectively reflect 
the severity of the DA-triggered ICD adverse effect in 
patients with PD and practically contribute to the vali-
dation of using a customized, cost-efficient EEG-sensing 
setup as opposed to an expensive laboratory-oriented or 
medical-grade product. Successful results will elucidate 
how an EEG-based wearable device can routinely moni-
tor ICD symptoms in each patient with PD at home, and 
how it may, thereby, guide clinical practice to an optimal 
DA dose management or pharmacological plan-estab-
lishment while treating motor symptoms.

Methods
Participants
We recruited 59 participants who were divided into three 
groups of 23 patients with PD (PD group: 16 males, 7 
females), 10 patients with PD and ICD comorbidity (ICD 
group: 8 males, 2 females), and 26 healthy controls (HC 
group: 13 males and 13 females). All patients were inter-
viewed by experienced neurologists and diagnosed with 
idiopathic PD according to the United Kingdom Brain 
Bank criteria [37]. We excluded patients with a history 
of other neurologic and/or psychiatric illnesses and use 
of psychotropic medications. The Unified Parkinson’s 
Disease Rating Scale (UPDRS) [38], the modified Hoehn 
and Yahr (H&Y) Staging Scale [39], and the Schwab and 

England (S&E) Activities of Daily Living Scale [40] were 
employed in the evaluation of both disease severity and 
functional status for multiple PD aspects. Moreover, each 
participant completed the Questionnaire for Impulsive-
Compulsive Disorders in the Parkinson’s Disease Rating 
Scale (QUIP-RS) [41], a valid and reliable rating scale 
for ICD, useful in monitoring its severity over time. ICD 
diagnoses were further confirmed via a clinical interview 
per the QUIP-RS score.

Data from seven participants (HC: 3, PD: 3, ICD: 1) 
were discarded (see subsection ‘Signal preprocessing and 
analysis’ for details). The demographic and clinical char-
acteristics for each group’s remaining participants are 
listed in Table  1. Regarding the critical characteristics 
of PD severity, the UPDRS, H&Y, and S&E scores were 
statistically comparable with the PD and ICD groups 
(p > 0.39); however, the QUIP-RS score was significantly 
higher (p < 0.01) in the ICD than in the PD group. The 
participants’ self-reported QUIP-RS scores were allowed 
the exploration of the ERP signatures’ associations.

The clinical assessment of participants with PD/ICD 
and their data collection took place in the Kaohsiung 
Chang Gung Memorial Hospital (CGMH). Both the PD 
and ICD groups performed the first Go/NoGo session at 
least 12 h after the dose of dopaminergic medication (off 
state). The study protocol was approved by the CGMH 
ethics committee. Each participant was fully informed 
of the research purpose and provided written consent 
before the experiment. No participants have previously 

Table 1  The demographic and clinical characteristics for each group

H&Y Hoehn and Yahr Staging Scale, QUIP-RS Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease Rating Scale, S&E Schwab and England Activities 
of Daily Living Scale, UPDRS Unified Parkinson’s Disease Rating Scale (Part I/II/III/total)

Values are given as mean ± standard deviation. For statistical values, Age and Education (year) between HC, PD, and ICD groups were assessed by Kruskal–Wallis 
nonparametric one-way analysis of variance (Age: HC vs. PD = 0.04, HC vs. ICD and PD vs. ICD > 0.45, Education (year): HC vs. PD = 0.04, HC vs. ICD and PD vs. 
ICD > 0.59). Disease duration (year), UPDRS, H&Y, S&E, QUIP-RS between PD and ICD groups were assessed by Wilcoxon rank-sum test

HC PD ICD p value

Demographic

N 23 20 9

Sex 11 M/12 F 13 M/7 F 7 M/2 F

Age 59.26 ± 6.85 65.85 ± 9.11 63.22 ± 7.74 0.05

Education (year) 14.52 ± 3.38 11.85 ± 3.51 12.44 ± 5.43 0.05

Disease duration (year) 6.55 ± 3.85 11.22 ± 5.80 0.04

Clinical characteristics

UPDRS I 3.15 ± 2.01 2.78 ± 1.48 0.75

UPDRS II 9.05 ± 5.18 10.00 ± 5.79 0.69

UPDRS III 21.30 ± 13.10 17.33 ± 6.28 0.59

UPDRS total 33.50 ± 18.19 30.11 ± 12.53 0.74

Modified H&Y 1.70 ± 0.88 1.28 ± 0.26 0.39

S&E 78.05 ± 27.31 85.56 ± 7.26 0.67

Onset site (right/left/symmetric) 5/8/7 3/5/1

QUIP-RS 0.45 ± 1.15 16.00 ± 12.32  < 0.01
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experienced the employed experimental task. Neither the 
DA dose nor the treatment were altered for any patient 
with PD per their EEG analytical outcome.

Go/NoGo experiment and EEG signal collection
A two-target visual Go/NoGo task was selected to elicit 
cognitive and motoric inhibition during the EEG record-
ing. The participant had to press a handheld button as 
quickly and accurately as possible upon the frequent 
presentation (70%) of a green square (i.e., the Go trials, 
8.5 cm × 8.5 cm) at the center of a 16" monitor, but refrain 
from pressing the button upon the rare presentation 
(30%) of a red square (i.e., the NoGo trial). The protocol 
is shown in Fig. 1A. Each participant underwent the Go/
NoGo task in two sessions with a ~ 1 h inter-session rest. 
The PD and ICD groups were administered DA medica-
tion immediately after completing the 1st session. Each 
session was constituted by three 80-trial blocks, last-
ing about 30  min. The inter-trial jitter was set between 
0.5 and 1.5 s. Each session collected a total of 168 and 72 
Go and NoGo trials, respectively, per participant.

We used a lab-customized, cost-efficient, porta-
ble  8-channel EEG amplifier [29] wired to a LEGO-like 
electrode-holder assembly [30]. The amplifier sampled 
the EEG signals at 250 Hz and in a bandwidth between 
0.6 and 56.5 Hz. Each set of the LEGO headset (i.e., sen-
sor positioning ring, inter-ring bridge, and bridge shield) 
had an 8-channel electrode-holder grid assembled and 
attached to position the EEG electrodes over the loca-
tions of F3, Fz, F4, FCz, C3, Cz, C4, and CPz (see Fig. 1B), 
mainly covering the fronto-central region relevant to the 
inhibition processing of the N2 and P3 components [13, 
25, 26]. The assembled LEGO headset accommodated the 

dry electrodes (Cognionics Inc., San Diego, CA) for the 
measurement with respect to the left and right earlobes 
as ground and reference sites, respectively. Regarding the 
integrity of the customized EEG recording infrastruc-
ture, the portable amplifier is capable of recording ERP 
P3 waveforms in an auditory oddball paradigm using a 
hyperscanning setup for three participants with a 10-day 
reproducibility test [29]. Its integration to the LEGO 
headset has also been verified both by a steady-state 
visual-evoked potential (SSVEP) task [30], and the same 
oddball task with still and walking participants [30, 42]. 
Figure  1C presents the experimental setup for the Go/
NoGo task and the EEG recording.

Signal preprocessing and analysis
We adopted the following procedures to pre-process the 
collected EEG signals and extract N2 and P3 peak ampli-
tudes corresponding to the Go and NoGo trials per EEG 
session. First, the raw EEG signals were band-pass filtered 
into a bandwidth of 1–30 Hz. Then, the filtered EEG sig-
nals were segmented into epochs ranging between − 200 
and 1000  ms, per the visual target onset, and corrected 
upon their pre-stimulus baseline. The artifactual epochs 
with a statistical kurtosis value exceeding a threshold of 
4 were rejected, followed by signal quality-ensuring via 
visual inspection. Moreover, the epochs corresponding 
to erroneous behavioral responses (standard error (SE): 
no button-pressing for Go trials, commission error (CE): 
button-pressing for NoGo trials) were discarded. There-
fore, there were seven participants (HC: 3, PD: 3, ICD: 
1) whose retained epochs (less than 80%) were discarded 
due to either technical or personal issues. The remain-
ing 52 participants retained ~ 91% epochs on average for 

Fig. 1  Experiment protocol and EEG recording setup. A The designed two-target visual Go/NoGo task, B the 8-channel EEG montage, and C a 
snapshot of an EEG experiment with the assembled LEGO-like headset
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sequential analysis. Particularly, there were no signifi-
cant differences (p > 0.25) in the number of the remaining 
NoGo trials between the three groups (63–67 trials on 
average) for both sessions.

We employed an independent component analysis 
(ICA) to remove eye movement artifacts that commonly 
accompany a visual task. The remaining epochs were 
incorporated into an extended infomax ICA algorithm 
to parse the 8-channel signals into independent compo-
nents (ICs), of which, those with pronounced character-
istics of eye movement in terms of activation waveform 
and spectral profile were identified and removed [43]. 
The remaining ICs were then back-projected to the 
channel-space, returning ocular artifact-suppressed EEG 
epochs.

Before calculating the N2 and P3 peak amplitudes, 
z-score standardization was applied to each EEG epoch 
(i.e., subtracting the mean and dividing by the standard 
deviation of its baseline) prior to deriving the average 
ERP profile of Go and NoGo conditions in each ses-
sion. Then, the N2 and P3 peak amplitudes were defined 
within the time intervals of 200–500 ms (i.e., a maximal 
negative deflection in amplitude) and 400–700  ms (i.e., 
a maximal positive amplitude), respectively. These time 
intervals were selected while considering that N2 and 
P3 could differ between individuals and groups [14]. It is 
noteworthy that this work quantified the N2 and P3 sig-
natures by peak amplitude instead of mean amplitude. 
The wide time intervals allowed the pinpointing of suit-
able peak candidates. Hereafter, the resultant N2 and 

P3 peak amplitudes were used to relate to the impulse 
control capability and explore intergroup differences 
both with and without pharmacological intervention. 
Because of the imbalanced group samples, the statistical 
significance of the between-session differences pertain-
ing to behavioral outcomes was assessed by the paired 
sample t-test and the Wilcoxon signed-rank test for the 
HC/PD groups and the ICD group, respectively. Regard-
ing the ERP outcomes, a permutation test procedure 
was adopted to assess the statistical significance of the 
between-session difference, either within each group or 
between groups over different channel locations, while 
considering the control of family-wise error rate [44, 45]. 
Namely, the permutation approach iteratively shuffled 
the N2/P3 signatures 20,000 times among the recruited 
group participants. Its statistical assessment was con-
ducted by comparing the observed test statistic value 
against a distribution from permuting the observed val-
ues under the null hypothesis.

The EEG analytical procedures and visualization plots 
were performed using the open-source EEGLab toolbox/
scripts [46] and in-house MATLAB scripts (The Math-
works, Inc., Natick, MA, USA).

Results
Figure  2 shows the behavioral outcomes of the button-
pressing task, including the Go trials’ response time (RT) 
and standard errors, the NoGo trials’ commission errors, 
and all response errors to Go (SE) and NoGo (CE) tri-
als. The ICD group was prone to faster responses to Go 

Fig. 2  Behavioral results of the Go/NoGo task, including response time (ms) for Go trials, standard errors for Go trials, commission errors for NoGo 
trials, and all response errors
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targets relative to the HC and PD groups, particularly on 
the 2nd session following their DA medication adminis-
tration. There was a mean RT reduction of about 9 ms for 
the ICD group (1st session: 483.9 ± 93.8 ms, 2nd session: 
474.5 ± 104.7 ms) with respect to an 8-ms increase for the 
PD group and a 4-ms reduction for the HC group; how-
ever, these RT differences were not statistically significant 
(p > 0.5). Along with such an RT outcome, the average 
errors in the ICD group tended to be higher for the 2nd 
sessions (SE: 2.11 ± 3.89; CE: 2.11 ± 1.76) compared with 
the 1st session (SE: 0.78 ± 2.33; CE: 1.22 ± 1.09); how-
ever, it did not statistically differ (p > 0.13). Both the SE 
and CE were relatively comparable across sessions in the 
PD and HC groups (SE 1st/2nd: 2.50 ± 6.35/2.35 ± 4.39; 
CE: 3.45 ± 5.72/2.85 ± 3.99; p > 0.29; SE: 
0.48 ± 0.99/1.35 ± 2.99; CE: 1.04 ± 1.19/0.91 ± 0.90; 
p > 0.13, respectively). While considering SE and CE 
together, only the ICD group made more behavioral 
errors in the 2nd session than in the 1st session (2nd 
vs. 1st: 4.2 ± 4.1 vs. 2.0 ± 2.5; p = 0.03). The other two 
groups made comparable errors (p > 0.2) between the two 
sessions.

Figure  3 compares the ERP profiles of the Go and 
NoGo trials at the Cz electrode in representative par-
ticipants from the HC, PD, and ICD groups. Generally, 
ERP images (first two rows) show how NoGo trials pre-
sent an N2 peak (blue strap) around 200–400 ms and a 
P3 peak (red strap) around 400–600 ms. The N2 and P3 

signatures were relatively consistent across trials as com-
pared with the Go counterpart. Note that the ERP images 
were displayed after smoothing 10 neighboring trials (by 
default in EEGLab [46]), which were intended solely for 
visualization purposes. After applying the synchronizing 
averaging to all available trials, the ERP profile (last row) 
exhibited N2 and P3 peaks exclusively for the NoGo con-
dition. The Go-NoGo comparison empirically demon-
strated the validity of the Go/NoGo protocol for eliciting 
impulse inhibition and the corresponding ERP signatures 
of interest.

Figure  4 further presents the topographic mapping of 
NoGo N2 and P3 peak amplitudes and their between-
session contrast at the representative electrodes for 
the HC, PD, and ICD groups. The HC group exhibited 
relatively stronger N2 and P3 amplitudes for both ses-
sions as compared with the other groups. The peak dis-
tributions were maximally located at the fronto-central 
midline electrodes (i.e., Fz, FCz, and Cz), while the P3 
distribution also expanded laterally towards F3 and F4 
(as shown in Fig.  4A). Furthermore, while both PD and 
ICD groups were administered their DA therapy after 
the 1st session, only the ICD group developed noticeable 
deterioration in N2 and P3 peak amplitudes in the 2nd 
session over the midline electrodes. As shown in Fig. 4B, 
the ICD group’s between-session P3 amplitude differ-
ence reached marginal statistical significance at Fz and 
Cz (p < 0.096), whereas the N2 contrast simply returned 

Fig. 3  ERP images and profiles at Cz from representative subjects of HC, PD, and ICD groups. The NoGo trial (red trace) corresponds to N2 and P3 
peaks around 200–400 ms and 400–600 ms, respectively, concerning the Go trials (blue trace)
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a tendency in decline (0.166 < p < 0.198). Conversely, the 
PD group’s behavior was comparable with the HC group, 
barely yielding distinguishable between-session N2 and 
P3 contrasts (0.384 < p < 0.948). Along with the amplitude 
outcome, Table 2 summarizes the latencies of N2 and P3 
peaks for each group. Generally, the peak latency did not 
substantially differ (p > 0.18) across the two sessions for 

most cases in terms of the ERP components and elec-
trode locations. Only the PD group had the NoGo P3 
approximately 69 ms late at Cz for the 2nd session (2nd: 
545 ± 87 ms vs. 1st: 476 ± 128 ms, p = 0.04).

Figure  5 shows the between-session contrast in 
N2 and P3 peak amplitudes and their ICD score 
associations with the PD and ICD groups. The ICD 

Fig. 4  Comparative NoGo N2 and P3 signatures between the 1st and 2nd sessions and their contrast. Only the PD and ICD groups underwent DA 
treatment right after the 1st session. A Topographic mapping of peak amplitudes over the adopted 8-channel montage. The color was normalized 
according to the amplitudes across groups. B ERP profiles and peak amplitude distributions
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group showed more deterioration in both N2 and P3 
peak amplitudes relative to the PD group, yet, with 
less statistical significance (N2: 0.14 < p < 0.18, P3: 
0.22 < p < 0.80). Most importantly, the between-session 
N2 decline correlated with the ICD scores, that is, the 

participants with a higher ICD score had a diminished 
signature after the DA treatment. Among the fronto-
central electrodes, the extent of the N2 decline exhib-
ited a marginal statistical association at Fz (r =  − 0.34, 
p = 0.07). This association barely emerged in the P3 
counterpart.

Table 2  Peak latencies of the NoGo N2 and P3 for the 1st and 2nd session in each group

Only the PD and ICD groups underwent DA treatment right after the 1st session

Numbers in boldface show their contrast with statistical significance p < 0.05

N2 P3

1st 2nd 1st 2nd

HC

 Fz 335 (56) 348 (61) 519 (70) 514 (68)

 FCz 339 (56) 340 (55) 489 (47) 506 (50)

 Cz 353 (57) 339 (76) 521 (75) 517 (66)

PD

 Fz 343 (95) 328 (75) 500 (56) 511 (80)

 FCz 348 (75) 333 (68) 505 (59) 522 (85)

 Cz 310 (120) 324 (79) 476 (128) 545 (87)
ICD

 Fz 336 (99) 340 (101) 548 (77) 603 (91)

 FCz 361 (69) 342 (64) 500 (72) 532 (83)

 Cz 312 (69) 301 (74) 543 (96) 535 (98)

Fig. 5  Between-session contrast of NoGo N2 and P3 peak amplitudes and their associations with ICD scores for the PD and ICD groups at the 
representative electrodes. Circles at the right side of each subplot represent the outcome for each PD and ICD individual (PD: 20, ICD: 9), whereas 
gray lines depict the linear relationships between the peak differences and ICD scores assessed by linear regression analysis
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Discussion
This work contributed to the exploration of ERP-related 
features that can be used to reflect DA-triggered cogni-
tive disorders in patients with PD. Furthermore, the non-
medical grade lab-customized, cost-efficient LEGO-like 
EEG headset [29, 30] was successfully employed in this 
feasibility study. We found that patients with PD and 
ICD comorbidity exhibited N2 and P3 peak amplitude 
deterioration upon DA administration. The ICD sever-
ity tended to modulate the N2 deterioration. Therefore, 
these ERP findings objectively assessed the ICD adverse 
effect, which potentially constitutes a complimentary 
assessment to conventional scales, such as clinical inter-
views and self-reported questionnaires performed to 
patients with PD. The EEG wearability also facilitates 
neuro-monitoring in the living environments of patients 
with PD and facilitates the elaboration of an optimal 
pharmacological plan while chronically treating motor 
symptoms. The following paragraphs discuss the integrity 
of the ERP outcomes and feasible refinement towards the 
aforementioned purpose.

The stereotypical Go/NoGo protocol was employed to 
arouse both cognitive and motoric inhibition and to elicit 
the corresponding ERP signatures of N2 and P3 peaks at 
the fronto-central region, which manifested as a response 
to NoGo events (i.e., successful inhibitions) [13, 25, 26]. 
Accordingly, we implemented the two-target visual task. 
The NoGo N2 (200–400 ms) and P3 (400–600 ms) com-
ponents noticeably appeared (c.f., Fig. 3), in line with the 
literature. Furthermore, our study results showed that 
the PD groups (with and without ICD) exhibited weak-
ened N2 and P3 peak amplitudes compared with the HC 
group (c.f., Fig.  4), which replicated early findings [14, 
32]. While previous studies mostly focused on EEG dif-
ferences, either between different PD stages [33–35] or 
PD vs. HC individuals [14, 31, 32], fewer studies assessed 
typical patients with PD against those with ICD comor-
bidity [36]. To address this issue, we conducted two 
sessions of the Go/NoGo task interleaved with the DA-
pharmacological treatment for PD groups. Contrastingly, 
only the ICD group tended a between-session decline in 
peak amplitude at the fronto-central midline electrodes 
(i.e., Fz, FCz, and Cz), particularly for the P3 counterpart, 
yet, with marginal statistical significance (c.f., Fig.  4). 
Beyond the between-group comparison, the N2 peak 
deterioration was somehow modulated by ICD severity 
(i.e., patients’ self-reported QUIP-RS scores), which was 
statistically remarkable at Fz and marginally at Cz. The 
above comparison of PD versus PD and ICD comorbid-
ity implied that the DA therapy made patients with ICD 
vulnerable to impulse control deterioration, evident both 
as behavioral manifestations (i.e., relatively faster yet 
mistaken responses in the 2nd session) and weakened 

fronto-central N2 and P3 peaks. Furthermore, we empiri-
cally demonstrated the potential of the cost-efficient 
EEG-sensing LEGO headset and of the ERP protocol 
and analytical framework for monitoring the impulse 
control capability of PD patients during the pharmaco-
logical intervention. It is noteworthy that the LEGO-like 
electrode-holder infrastructure [30] allows the unlim-
ited reassemble of a compact EEG headset with minimal, 
yet, informative electrodes (Fz, FCz, and Cz only) on the 
scalp, thus removing redundant/irrelevant electrodes 
from other brain regions, improving headset wearabil-
ity and comfort and offering individual optimization for 
each patient with PD if necessary.

Even though the above outcomes are encouraging, 
some issues should be mentioned and considered for 
future efforts toward the improvement of the effective-
ness of the adopted protocol and framework. First, ERP 
waveforms are time-locked and phase-locked weak elec-
trical potentials to stimulation events. By applying the 
synchronizing averaging to repetitively collected trials 
of the same task, the ERP components of interest (e.g., 
N2 and P3 signatures) can be revealed, since EEG back-
ground activity (i.e., concurrent to the engaged task) and/
or accompanying random noises can be simultaneously 
greatly alleviated. Therefore, the number of collected tri-
als and the extent of artifact contamination are two criti-
cal factors for the signatures’ signal-to-noise ratio (SNR). 
However, this work was a user-friendly EEG experiment 
for elderly participants (typically above 59  years). We 
reduced sessions to around 30  min and mounted the 
dry electrodes over the LEGO headset. As such, each 
single session only collected 72 NoGo trials per partici-
pant, which infrequently occurred (30%). The retained 
trials were even fewer after noisy trial removal (average 
removal: ~ 9%). Therefore, the limited trials inevitably 
downgraded the N2 and P3 SNR for certain participants. 
This potentially explains, in part, the noticeable intra-
group and intergroup variability at the fronto-central 
electrodes (c.f., Figs.  4B and 5). Future efforts should 
either incorporate advanced artifact removal or spa-
tial filtering frameworks [47–50] for SNR improvement, 
given the number of EEG trials collected with this chal-
lenging recording setting. On the other hand, ERP sig-
natures elicited by NoGo trials are highly driven by the 
engagement of attentional or working memory resources 
that are recruited by the Go/NoGo protocol configu-
ration [51], namely, trial pace (i.e., stimulus-stimulus 
interval), the probability of NoGo trials, the difficulty of 
NoGo trials identification, and working memory load 
variability (i.e., varying the stimulus–response associa-
tion), which reportedly affects the capability to elicit pre-
potent motor activity and probe inhibitory control [26, 
51, 52]. Such factors are based on the assumption that 
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the increase of the inhibitory effort to withhold responses 
to NoGo trials enhances cognitive inhibitory activity, 
following the model of reactive, selective inhibition of 
response [51, 52]. However, the psychological model of 
prepotent response inhibition is multifaceted, mean-
ing that its underlying neural mechanisms may not be 
exclusively revealed in a standard Go/NoGo task [51, 52]. 
Exploring other inhibitory models is feasible by amend-
ing the experimental design; for instance, adding a pure 
block of Go trials only in the experimental design offers 
the capability to address the reactive, non-selective inhi-
bition of response [36, 51, 52]. Future studies can capi-
talize both on the manipulation and optimization of the 
above designs, further diversifying and amplifying the 
between-session N2 and P3 contrast. Moreover, in addi-
tion to the time-related exploited ERP signatures, their 
inherent spectral oscillations could be worthy of research 
[36, 51]. For instance, the event-related spectral per-
turbations (ERSP) measure the time course of relative 
changes in the spontaneous EEG spectrum in response to 
stimulus events [53], i.e., ERP’s spectral energy. If ongo-
ing EEG and ERP are not completely independent and/
or stationary [53], the full-spectrum ERSP analysis can 
reveal the phase-incoherent event-related brain dynam-
ics that cannot be fully explained by ERP. Some empirical 
demonstrations have been reported exactly in Go/NoGo 
task [54, 55]. Lastly, in contrast to the single-channel ERP 
analysis, multi-channel scenarios that exploit tempo-
spatio-spectral characteristics among a set of channels of 
interest could be more reliable (e.g., functional connec-
tivity [36, 56], linear source analysis [36, 51, 57]). Such 
multivariate signal analysis has been demonstrated to 
improve the efficacy of extracting event-relevant patterns 
from non-stationary or artifact-contaminated EEG activ-
ity [58–60].

Limitations
This work has some limitations. The existence of ICD-
related ERP signatures was empirically demonstrated 
in a relatively small number of ICD participants. Its 
generalizability has to be tested in a larger population 
in the future. Moreover, this work performed a single-
day EEG recording and analysis. That is, each recruited 
participant partook in the Go/NoGo protocol with and 
without DA treatment only once. However, intra-indi-
vidual differences in task-related EEG activities may 
present ecologically on a daily basis [61–64]. Several 
behavioral and psychological states, such as attention, 
stress, anxiety, and/or sleep quality may contribute to 
the above EEG non-stationarity. Effectively alleviat-
ing non-stationarity is still an open challenge [65–67], 
and, therefore, the ERP-marker’s robustness has to be 
elucidated over repeated measurements interspaced in 

the chronic pharmacological plans. Lastly, we mainly 
addressed the ERP signatures’ feasibility to reflect the 
ICD adverse effect in patients with PD. While consider-
ing the integrity of serving as biomarkers, a machine-
learning framework (e.g., shallow or deep learning) has 
to be leveraged in the future to evaluate its discrimina-
tion ability in ICD detection from typical patients with 
PD.

Conclusion
This work empirically demonstrated that the custom-
ized low-cost LEGO-like EEG headset enabled the 
extraction of ERP waveforms for the objective assess-
ment of ICD in patients with PD during DA treatment. 
The ERP evidence may provide complementary infor-
mation to behavioral evaluation, which is convention-
ally used to diagnose the ICD adverse effect.
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