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Abstract

eters assessed, and reliability and validity metrics.

Background: Extremity weakness, fatigue, and postural instability often contribute to mobility deficits in persons
after stroke. Wearable technologies are increasingly being utilized to track many health-related parameters across
different patient populations. The purpose of this systematic review was to identify how wearable technologies have
been used over the past decade to assess gait and mobility in persons with stroke.

Methods: We performed a systematic search of Ovid MEDLINE, CINAHL, and Cochrane databases using select
keywords. We identified a total of 354 articles, and 13 met inclusion/exclusion criteria. Included studies were quality
assessed and data extracted included participant demographics, type of wearable technology utilized, gait param-

Results: The majority of studies were performed in either hospital-based or inpatient settings. Accelerometers, activ-
ity monitors, and pressure sensors were the most commonly used wearable technologies to assess gait and mobility
post-stroke. Among these devices, spatiotemporal parameters of gait that were most widely assessed were gait speed
and cadence, and the most common mobility measures included step count and duration of activity. Only 4 studies
reported on wearable technology validity and reliability metrics, with mixed results.

Conclusion: The use of various wearable technologies has enabled researchers and clinicians to monitor patients’
activity in a multitude of settings post-stroke. Using data from wearables may provide clinicians with insights into
their patients'lived-experiences and enrich their evaluations and plans of care. However, more studies are needed
to examine the impact of stroke on community mobility and to improve the accuracy of these devices for gait and
mobility assessments amongst persons with altered gait post-stroke.
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Introduction

Use of wearable technologies has become more promi-
nent in both community and healthcare settings with
advancements in technology and the increased need for
telehealth [1]. As the link between physical inactivity,
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morbidity, and mortality has become increasingly
understood [2], researchers have begun to utilize wear-
able technology to examine walking and physical activ-
ity metrics amongst populations of interest, including
persons with stroke [3—14]. Wearable activity monitors
and pedometers have been widely used to examine physi-
cal activity levels, predominantly via assessment of daily
step count and step rate. Commonly used consumer-
grade wearable technologies include Fitbit, Apple Watch,
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and Garmin VivoSmart HR+. Research-grade wearable
technologies include the Actigraph GT3X+and Activ-
PAL [15]. Although consumer-grade devices have been
shown to overestimate and underestimate physical activ-
ity levels compared to research-grade devices, the over-
all correlation between activity trackers is high [16, 17].
Moreover, consumer-grade devices are less expensive
and more user-friendly than what is currently being used
in lab settings [18]. Additionally, the accessibility of such
wearable sensors may benefit the translation of lab-cen-
tered research to the household and community level, as
snapshots of mobility in a controlled research setting do
not always reflect a person’s mobility in their day-to-day
life. Home or community-based assessments of walking
speed and distance via wearable technology can provide
ongoing insight into a person’s functional performance
post-stroke.

Consequences of stroke including lower extremity
weakness, post-stroke fatigue, postural instability, and
cognitive impairment often contribute to gait and mobil-
ity deficits [19, 20]. During the acute phase post-stroke,
increased time in bed has been found compared to the
subacute phase, with sitting times similar between phases
[15]. Additionally, more than half of chronic stroke survi-
vors continue to experience walking deficits and reduced
mobility [21, 22]. Wearable technologies afford an excit-
ing avenue to monitor and provide feedback on walking
function across the different phases of stroke recovery.
Such insight can be used by clinicians to inform and/
or modify plans of care and treatment approaches, and
can be used by patients to effectively self-monitor pro-
gress during and after stroke rehabilitation. For example,
real time feedback and data visualization, accessible by
patients and rehabilitation providers, can indicate a sus-
tained decrease in daily physical activity thereby prompt-
ing a reassessment and treatment plan for contributing
factors. Similarly, wearable data can provide a crosswalk
of sorts between improvements in rehabilitation metrics,
such as strength and balance, and changes in community
mobility and physical activity. Early identification of a
mismatch between gains achieved in rehabilitation and
community mobility is a novel metric that can be used to
modify rehabilitation interventions accordingly.

One of the most easily measurable, reliable, and sen-
sitive ways to assess mobility deficits in persons post-
stroke is gait speed [23]. Gait speed has been described
as the sixth vital sign and is a predictor of independence,
mortality, functional status at home and in the commu-
nity, and quality of life (QOL) [24]. Gait speed can also
be used to stratify patients into functional ambulation
classifications [household ambulator (< 0.4 m/s), limited
community (0.4-0.8 m/s), and full community ambula-
tor (>0.8 m/s)], with improvements in speed-based gait
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classifications associated with improved function and
QOL in persons with stroke [25]. There is great variabil-
ity in how gait speed is measured in research and reha-
bilitation, with different walking distances (e.g., 3-, 4-,
10-m), protocols (static versus dynamic starts/stops),
speed (self-selected versus fast), and instructions used
[26, 27]. The 10-m walk test is commonly considered the
gold standard for gait speed assessments [28]. Post-stroke
impairments in hip power generation and ankle plantar-
flexor force production can significantly affect gait speed
[29]. Other common spatiotemporal deficits include
decreased paretic stance time and decreased step length,
resulting in asymmetrical gait patterns and decreased
cadence [30-32]. Due to the relationship between these
variables and gait speed, assessment of kinetic forces and
key spatiotemporal parameters of gait via wearable tech-
nology could help target rehabilitation intervention strat-
egies to improve walking post-stroke.

Emerging wearable technologies can provide new
opportunities to enhance assessment and rehabilitation
post-stroke. The number of stroke survivors is growing
due to earlier detection and improved medical interven-
tions, yet many continue to live with disability [33]. It is
impossible for healthcare systems to adequately moni-
tor these chronic stroke survivors long-term and identify
early signs of physical and/or functional decline. Wear-
able devices allow the capturing of mobility and physical
activity performance in different free-living settings, and
clinical access to this data can potentially assist with ear-
lier identification of functional decline and improve time-
liness of referrals, reassessment, and treatment [34, 35].

To our knowledge, there is limited research on the use
of wearable technology to assess gait and mobility post-
stroke. A majority of the available research includes
intervention studies conducted in laboratory and inpa-
tient rehabilitation settings that have used sensors to
investigate change in cadence, step time variability, and
gait speed [6, 12, 13, 36]. Other studies have used sen-
sors as an intervention tool. For example, results from
Mansfield et al. showed that providing physical therapists
with activity data from a wearable device led to increased
focus on ambulation intensity and gait speed during post-
stroke inpatient rehabilitation [36]. While these studies
were conducted in more idealized laboratory or clinical
settings, the utility of such data is often not sufficient in
assessing or predicting an individual’s true functional
mobility and recovery post-stroke. A return to home and
community-based ambulation is commonly one of the
primary goals during stroke rehabilitation, as it relates to
overall activity, participation, and health [37]. As wear-
able technologies continue to progress in affordability
and accessibility, such technologies can enable the gath-
ering of movement-related data in "real-world" settings,
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providing insight into the lived experiences of individu-
als with stroke that can inform rehabilitation providers
and guide intervention strategies. Most consumer-grade
wearable devices (such as Fitbit) are more affordable
than research-grade wearables (such as ActivPAL), with
research-grade wearables increasingly being used along-
side or instead of expensive lab equipment such as force
plates and 3D motion analysis systems for the assessment
of gait [38, 39].

Wearable technologies can provide researchers and
clinicians valuable information to guide interventions,
as well as help to inform best practices and prevention
efforts. Technologies such as wireless sensors, accelerom-
eters, gyroscopes, pressure sensors, and personal activity
monitors (combined with machine-learning algorithms)
have allowed for the measurement and monitoring of gait
and mobility amongst the general public and in specific
patient populations [3-5, 7-14]. While a variety of wear-
able technologies are available, not all enable accurate
and reliable measurement in patients who present with
atypical gait [6]. The psychometric properties of accel-
erometers, pedometers and inertial measurement units
primarily have been validated in healthy populations.
The accuracy and reliability of these devices in capturing
gait and mobility metrics of pathological gait is unclear.
A limited number of studies have examined the efficacy
of specific sensors and their ability to accurately report
spatiotemporal parameters of gait and gait events in per-
sons post-stroke [40]. Gait abnormalities such as incon-
sistent or slow stepping/walking speed and decreases
in single limb stance time can contribute to fluctuating
walking accelerations that can limit the accuracy of some
sensors (e.g., Opal single IMU worn at the lumbar spine,
Fitbit Zip worn at the non-paretic hip, ActivPAL worn on
the paretic leg) to capture variation in gait events in per-
sons post-stroke [40—42]. Thus, information on the valid-
ity and reliability of specific wearable devices is needed
to gauge their ability to accurately capture various walk-
ing metrics in persons with stroke who exhibit more
impaired gait deficits.

Impaired gait and mobility post-stroke often have
far-reaching effects and can dramatically impact social
reintegration, life satisfaction, and community mobility
[43—-46]. Integration of persons post-stroke into the local
community is warranted to help promote functional inde-
pendence and QOL. Recent studies have demonstrated
the significance of assessing not only gait impairments
post-stroke, but also life-space, community mobility, and
QOL as such information can provide a richer under-
standing of the impact of impaired mobility on the lives
of persons with stroke [45]. Advances in wearable tech-
nology, in combination with outcomes collected from
global positioning system devices, ecological momentary
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assessment, and SenseCams, provide a unique means for
in-depth assessments of gait and mobility post-stroke.
Furthermore, examining relationships between wear-
able technology-derived gait and mobility variables and
patient-reported health outcomes (e.g., Stroke Impact
Scale, Activities-Specific Balance Confidence scale) may
help identify barriers contributing to reduced mobility
post-stroke and clarify the impact of gait interventions
on overall recovery.

As wearable technologies continue to advance and
become more accessible, their potential for use in reha-
bilitation research and clinical practice will grow. In
order to improve the utility of wearable technology for
assessing and improving mobility post-stroke, a better
understanding of how this technology has been used to
assess gait and mobility post-stroke is needed. Thus,
the purpose of this systematic review is to evaluate how
and in what settings wearable technologies, such as con-
sumer and research-grade wearable devices, have been
used for assessment of gait and mobility in individuals
post-stroke.

Methods

Defining wearable technology

Building on the work of Godfrey et al. [64] and Parker
et al. [65] in defining wearable technology in the context
of post-stroke rehabilitation, we used the following for
the current study: “Wearable technology encompasses
any wearable device that is worn externally on the body,
is wireless, and captures parameters related to move-
ment and gait. Wearable technology is not limited to the
laboratory environment and may be used in free-living
conditions” We note that mobile phones, although not
exclusively “wearable technology,” may be used in this
capacity by extracting accelerometer data collected by the
phone while worn on the body. Accordingly, we included
“mobile phones” in the search strategy for studies that
used them as wearable technology.

Search strategy

For this systematic literature review we followed the
recommended steps as described in Khan et al. [47].
The focus of this review was on journal articles pub-
lished in English from 2010 up to September 30, 2020
that described the use of wearable technology to assess
gait and mobility in persons post-stroke. PRISMA guide-
lines were used [48]. We searched the following data-
bases: Ovid MEDLINE® (Medical Literature Analysis and
Retrieval System Online), CINAHL (Cumulated Index
to Nursing and Allied Health Literature), and Cochrane
Trials. Our PICO criteria included the following: P (Pop-
ulation): stroke, I (Intervention): wearable technology,
C (Comparator): not applicable, O (Outcome): gait and
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mobility. To find articles related to our PICO we used
the following MeSH (Medical Subject Heading) terms:
“stroke” OR “stroke rehabilitation” OR “cerebrovascular
disorders” AND “wearable electronic devices” OR “fit-
ness trackers” OR “cell phone” OR “monitoring/ambula-
tory” OR “accelerometry” AND “gait” OR “activities of
daily living” OR “exercise” NOT “robotics” OR “exoskel-
eton”. Our search also included the following keywords:
“stroke” OR “cerebrovascular accident” OR “cva” (cer-
ebrovascular accident) AND “wear activity tracker” OR
“wear electronic device” OR “wear diagnostic device” OR
“wear computer device” OR “fitness tracker” OR “activ-
ity tracker” OR “cell phone” OR “cell telephone” OR
“mobile phone” OR “mobile telephone” OR “accelerom-
eter” OR “ambulatory monitor” OR “outpatient moni-
tor” OR “microcomputer” OR “smartphone” OR”inertial
measure unit” OR “imu” (inertial measurement unit)
OR “gyroscope” OR “smart watch” OR “pedometer” OR
“gps” (global positioning system) AND “activities of daily
living” OR “adl” (activities of daily living) OR “exercise”
OR “physical activity” OR “walk’; OR “resistance” OR
“aerobic” OR “endurance” OR “ambulation” OR “gait”. A
detailed search strategy on how the searches were con-
ducted with exact search strings is attached as an Addi-
tional file 1: Appendix.

Eligibility criteria

Studies were included if they were conducted on persons
with stroke (>18 years of age) within any time frame
post-stroke (i.e., acute, subacute and chronic) and inves-
tigated the use of wearable technology in relation to the
assessment of walking and mobility post-stroke. Exclu-
sion criteria included the following: (1) studies that were
not written in English, (2) studies that were published
prior to 2010, (3) systematic literature reviews, (4) pro-
tocol studies that did not contain any data or results, (5)
studies that used wearable technology only as a modal-
ity for treatment, (6) studies that solely looked at upper
extremity function and mobility, and (7) studies con-
ducted on children (<18 years of age). Additionally,
articles using “exoskeletons” or “robotics” were excluded
since these forms of technology are primarily used to
promote movement rather than assess it.

Study selection

All studies identified from the databases were compiled
and uploaded to Zotero reference management software
(https://www.zotero.org; Corporation for Digital Schol-
arship, USA) for review, at which point we removed
duplicates. Initial title and abstract screening eliminated
studies based on inclusion and exclusion criteria, and
was carried out by two authors per study (KK., E.O,
S.R.,, T.R,, or K.T.). Studies that were not eliminated were
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reviewed further in full text against inclusion and exclu-
sion criteria by the same two authors, independently. The
first author (D.P.) resolved discrepancies in determining
if an article met eligibility criteria.

Quality assessment

A minimum of two reviewers (K.K., E.O., S.R.,, TR,
or KT.) completed the quality assessment of each
included article using the Physiotherapy Evidence Data-
base (PEDro) quality scale for clinical trials [49] and the
Strengthening the Reporting of Observational studies
in Epidemiology (STROBE) checklist for cross-sectional
studies [50]. The PEDro scale is a checklist of 11 items
that are used to evaluate the quality of clinical trials
by using yes or no statements that are scored based on
whether they are stated in the article or not. This scale
looks at the external and internal validity of the rand-
omized clinical trial being evaluated as well as statistical
information. The STROBE checklist consists of 22 items
evaluating the methods, results, and other distinguishing
features of a cross-sectional study. The checklist does not
determine quality grades; however, a higher score is asso-
ciated with a better quality study.

Data extraction

We extracted data that included study author name(s)
and year, number of subjects, subject demographics such
as age and gender, time post-stroke, side of stroke (left
or right), assistive device use, environment for data col-
lection (lab-based, community, etc.), type(s) of wearable
device used, location the device was worn on the partici-
pants body, gait variable(s) or parameters examined, and
main findings for primary and secondary outcomes. We
also extracted, when applicable, statistical analyses (e.g.,
p-values, correlational values) and wearable technology
reliability and validity metrics.

Results

Search results

We identified a total of 354 articles via our initial data-
base search. 97 duplicates were removed after initial
screening. The titles and abstracts of 257 remaining arti-
cles were further screened. Of those, 220 articles were
excluded as they contained at least one exclusion criteria.
If the reviewers were unable to find at least one exclusion
criteria during the title and abstract screening, a full-
text review of the article was warranted. The number of
full texts articles assessed for eligibility was 37. Follow-
ing full-text review, we excluded another 24 articles. The
remaining 13 articles [36, 42, 51-61] met inclusion crite-
ria and were included in this systematic review (see Fig. 1
for PRISMA flowchart). Tables 1, 2, 3, 4, 5 outline study
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Fig. 1 PRISMA flowchart for systematic review

Table 1 Type and quality of included studies

Article Type of study Environment of data collection (lab-based, inpatient, outpatient, Levelof  Quality of evidence
community, or combination) evidence
Dorsch etal. [51] Randomized Control Trial  Inpatient 2 High
Mansfield et al. [36] Randomized Control Trial  Inpatient 2 High
English et al. [52] Randomized Control Trial ~ Community 2 High
Givon et al. [53] Randomized Control Trial ~ Not explicitly stated. Interventions provided by occupational 2 High
therapists in a clinical setting
Danks et al. [54] Randomized Control Trial ~ Outpatient clinical research laboratory 2 High
Kanai et al. [55] Randomized Control Trial ~ Hospital 2 High
Prajapati et al. [56] Cross-Sectional Hospital 4 Moderate
Taraldsen et al. [42] Cross-Sectional Hospital 4 Moderate
Tramontano et al. [57]  Cross-Sectional Hospital 4 Moderate
Wang et al. [58] Cross-Sectional Hospital 4 Moderate
Seo etal. [59] Cross-Sectional Not explicitly stated. Subjects were persons with chronic stroke 4 Moderate
Paul et al. [60] Pilot Study: Non-rand- Community 3 Moderate
omized control trial
Shinetal. [61] Longitudinal pilot study Inpatient/outpatient 4 N/A
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Table 3 STROBE checklist for cross-sectional studies
[tem number-STROBE checklist

Author 12 3 4 5 6 7 8 9 10 N 12 13 14 15 16 17 18 19 20 21 22 Total

Prajapati et al. [56] 1 1 1 1 1 1 1 T 0 1 1 1 1 1 1 1 0 1 1 1 1 1 20/22

Taraldsen et al. [42] 1 1 1 1 1 1 1 T 0 1 1 1 1 0 1 1 0 1 1 1 1 1 19/22

Tramontanoetal.[577 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 19/22

Wang et al. [58] 1 1 1 1 T 0 1 1T 0 O 1 1 1 1 1 1 1 1 1 1 1 18/22

Seo et al. [59] 1 1 1 1T 0 1 1 1T 0 O 1 1 1 1 1 1 1 0 1 1 0 16/22

T=yes;0=no

Table 4 Study demographics

Article Age mean = SD (years) Sample size  Sex (% female) Time Post-Stroke® CVA (% right Assistive device use (%)

hemisphere)

Dorsch etal. [51] C:650£132 C73 C:38% Acute/Subacute C41% NR

:61.84+15.7 1: 78 : 40% I: 44%
Mansfield et al. [36] C:61.5+£13° C: 28 C:43% Subacute C: 46% (bilateral 7%) Cane-C: 18%;1: 17%
;644197 [: 29 l:31% 1: 38% (bilateral 7%) Rollator or wheeled
walker-C: 54%; I: 52%
Multiple-C: 11%; I: 3%
English et al. [52] C678+138 C 14 C:36% Chronic NR Walking stick-C: 29%;
|:654+123 [:19 l:32% I: 26%
Frame-C: 7%; I: 5%
Givon et al. [53] C:620+£93 C23 C:29% Chronic C:67% NR
[:56.74+9.3 l: 24 1:52% 1:61%

Danks et al. [54] C:582+124 C: 14 C:43% Chronic C: 36% NR
[:59.14+87 113 |: 46% : 46%

Kanai et al. [55] C:629+9.1 C: 25 C:48% Acute/Subacute C:44% NR
l:66.8410.0 l: 23 I:35% I: 39% (bilateral 4%)

Prajapati et al. [56] 5974153 16 25% Subacute NR Single-point cane (50%
for lab gait assess-
ment; 25% daily use)

Rollator (6% for lab
assessment; 19% daily
use)

Taraldsen et al. [42] C:463490 C 10 C: 100% Acute NR NR

[:752+6.2 14 I: 50%
Tramontano et al. [57] 68.7+7.1 20 30% Subacute 50% None
Wang et al. [58] 639488 18 33% Not clear (only 33% (bilateral 17%) NR
year of diagnosis
provided)
Seo et al. [59] NR 10 NR Chronic NR None
Paul et al. [60] C:5534+126 C:8 C:50% Chronic C:37% Walking aid-C: 38%;
l:56.3+8.7 115 : 53% 1:53% I: 47%
Walking stick-C: 38%;
1: 27%
Elbow crutch(s)-I: 20%
Shinetal. [61] 55.8 6 17% Subacute 50% All 6 participants used

assistive devices,
but which type not
specified

SD standard deviation, CVA cerebral vascular accident, C control, / intervention, NR not reported

2 These values represent the median =+ interquartile range

® Time post-stroke defined: Acute (1-7 days), Subacute (7 days-6 months), Chronic (>6 months)
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characteristics, quality assessment, wearable technolo-
gies utilized, and data reported.

Quality assessment

All 13 studies were published in peer-reviewed journals;
6 were randomized control trials (RCTs) [36, 51-55], 5
were cross-sectional studies [42, 56-59], 1 was a non-
randomized control trial [60], and 1 was a longitudinal
pilot study [61]. In accordance with the Oxford Center for
Evidence-Based Medicine (OCEBM) [62], 6 articles were
ranked as Level 2 evidence, 1 as Level 3 evidence, and
6 as Level 4 evidence (Table 1). All RCTs and the non-
randomized control trial were appraised using the PEDro
scale, wherein all 7 were rated as high quality (PEDro
score>6) (Table 2). The 5 cross-sectional studies were
appraised using the STROBE checklist, which does not
have a standardized scoring system; however, by examin-
ing the number of criteria each study met, a relative qual-
ity can be inferred. Of the 5 articles appraised using the
STROBE checklist, they respectively met 91%, 86%, 86%,
82%, and 73% of the determined 22 criteria established to
be considered the highest quality of evidence (Table 3).

Gait/mobility analysis environment

Two studies were conducted in inpatient rehabilitation
settings [36, 51], 1 study in an outpatient clinical research
setting [54], and 5 studies were explicitly hospital-based
[42, 55—58]. One study collected data across multiple set-
tings including inpatient and outpatient [61]. Two studies
examined data collected from participants living within
their community [52, 60], and 2 studies did not state or
explain the setting in which the research was conducted
[53, 59] (see Table 1).

Participant characteristics

The mean sample size for included studies was 23 (range
6-78 participants). All studies except one [59] reported
the age of participants: persons with stroke had a mean
age>55 years of age, and one study reported a mean
age below that of 46.3 years for a healthy control group
[42]. Amongst the studies that reported the gender of
participants [36, 42, 51-58, 60, 61], the ratio of men to
women varied greatly. Regarding chronicity of stroke, 1
study included participants with acute stroke (0-7 days)
[42], 4 included sub-acute (7 days—6 months) [36, 56, 57,
61], 2 included both acute and subacute [51, 55], and 5
included chronic (> 6 months) [52-54, 59, 60]. Nine stud-
ies reported where the stroke occurred and/or the side of
the body that was affected and included participants with
both left and right-sided strokes or bilateral stroke [36,
51, 53-55, 57, 58, 60, 61]. Of the 5 studies that reported
on the use of assistive devices by participants [36, 52,
56, 60, 61], a variety of assistive devices were used when
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walking including single point canes, rollators, and walk-
ing sticks (see Table 4 for more details).

Wearable technologies used

Studies employed an array of wearable technologies in
order to assess gait and mobility post-stroke. The most
commonly used devices were accelerometers [36, 42, 51—
57, 60, 61]. One study reported the use of a smartphone
application for real-time assessment of step count [60].
Two studies conducted assessments with foot pressure
sensors [58, 59].

Parameters of gait and mobility assessed

Measures of gait and mobility included spatiotempo-
ral parameters as well as measures of physical activ-
ity (Table 5). The most widely assessed spatiotemporal
parameters of gait were gait speed [42, 51, 54, 57, 59, 61]
and cadence [36, 56]. Less common parameters included
single limb support time, double limb support time,
stride time, stride length, swing symmetry and tempo-
ral gait symmetry [56, 58, 59]. The two most commonly
reported measures of mobility were step count [36, 42,
53-56, 58, 60, 61] and duration of physical activity (e.g.
time spent walking/active) [36, 51, 52, 54-56, 60]. Less
commonly reported measures included levels of mod-
erate-to-vigorous physical activity [52] and number
of mean walking bouts [56]. One study examined foot
plantar pressure distribution during walking [58] while
another study evaluated lower body kinematic changes
during walking early post-stroke [59]. None of the stud-
ies analyzed associations between patient-reported out-
comes (e.g., QOL, measures of fatigue) and wearable
technology-based measures of gait and mobility.

Discussion

The interest in the use of wearable technology such as
sensors has sky rocketed in recent years. Researchers and
healthcare providers have begun to recognize the poten-
tial depth, breadth, and ease of data collection that the
emergence of such technology can enable. In examining
the use of wearable technology to assess gait and mobil-
ity post-stroke, the majority of the studies captured in
this systematic review were randomized control trials
of high quality [36, 51-55] and cross-sectional studies
[42, 56—59]. Studies varied in age of participants [36, 42,
51-58, 60, 61], time post-stroke [36, 42, 51-57, 59-61],
location of stroke [36, 51, 53-55, 57, 58, 60, 61], gender of
participants [36, 42, 51-58, 60, 61], and the use of assis-
tive devices [36, 52, 56, 57, 59—-61]. Five research studies
assessed their participants’ gait and mobility pre/post
intervention or hospital stay, with data collection times
of 2-3 consecutive days [53, 55] up to 1 week [52, 54,
60]. Two research studies conducted their data collection
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across the length of participants’ inpatient rehabilita-
tion stay (which varied from a few days to approximately
3 weeks) [36, 51], and one study recorded data across
12 treatment sessions during inpatient/outpatient reha-
bilitation [61]. Three studies used wearable technology
to examine parameters of gait during clinical walking
assessments [57-59], and two studies collected data on
one day for either <1 h [42] or 8 consecutive hours [56].
As assistive devices (such as canes) can compensate for
lower limb weakness, impaired balance and force produc-
tion often caused by hemiplegia and/or paresthesia post-
stroke, approximately half of the studies documented
assistive device use and specifics during walking assess-
ment trials [36, 52, 56, 57, 59—61]. Due to the limited
number of studies conducted on wearable technology
assessment of gait and mobility post-stroke, such varia-
tion in participant characteristics was expected.

Environmental settings typically used in gait and mobility
research post-stroke

Gait and mobility are important parameters that inform
a patient’s ability to remain independent and engage in
the community. Our systematic literature review shows
that while wearable technology has been extensively used
in gait and mobility research post-stroke, assessment of
community mobility using wearable devices is limited.
Although wearable technology was primarily developed
to eliminate barriers of laboratory-based research, our
research reveals that this technology has been underu-
tilized especially in diagnosing gait and mobility restric-
tions after stroke in the community and more natural
environments. Surprisingly, the community-based stud-
ies that used wearable technology to address mobility
after stroke focused on interventions [52, 60]. Thus, the
applicability of such research seems questionable as evi-
dence related to diagnostic utilization of wearable devices
in this patient population has not yet been firmly estab-
lished. Our literature review recommends future origi-
nal research should first focus on systematic evaluation
of key diagnostic metrics of gait and mobility by using
wearable technology in a community-based setting.
This approach warrants the need to determine the type
of wearable technology which is appropriate for a com-
munity-based evaluation of gait and mobility in persons
with stroke. Once the appropriate wearable device(s) has
been established, the next logical step is to utilize them
as a diagnostic tool, assessing community mobility defi-
cits post-stroke and ultimately devising novel treatment
options. However, the current lack of diagnostic utili-
zation of wearables for chronic stroke requires further
study including knowledge and skills around interpre-
tation of wearable data and translation of wearable data
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to actionable measures for improving gait and mobility
among rehabilitation providers.

Type of wearable device(s) used in gait and mobility
research post-stroke

As anticipated, there is little consistency in the choice
of device used to collect and analyze people’s gait and
mobility post-stroke. The most commonly used wear-
able technologies were triaxial accelerometers of varied
brands [36, 51, 52, 55-57, 61], with fewer studies using
pressure sensors for gait assessment [58, 59]. While
devices such as the StepWatch activity monitor have
proven to be valid and reliable in post-stroke populations
[6, 63], demonstrating their utility in research, the cost of
such devices and associated software may be prohibitive
for widespread use in clinical practice. Other accelerom-
eter-based wearable technologies, such as smartphones
and Fitbits, which are more commercially available, less
expensive, and user friendly, may be more practical for
patient and clinician use. Many of these devices collect
and record a multitude of mobility parameters (i.e. sin-
gle limb stance time, acceleration, physical activity level,
etc.) versus just a single measure. Most devices used are
manufactured so that they are small, lightweight and
wireless, allowing users to wear them in a variety of set-
tings while not being intrusive. Devices in this systematic
review were most commonly worn at the hip [52, 53, 56],
thigh [42, 61], and ankle [51, 54, 56] to allow capturing
of gait and mobility parameters of interest. Overall, this
review stresses the need to devise wearable technology
that is affordable, light weight, user-friendly and at the
same time accurately captures complex mobility deficits
that a person with stroke might encounter in day-to-day
life and the community.

Outcomes investigated in gait and mobility research
post-stroke

Our findings suggest that gait speed [42, 53, 54, 57, 59,
61] and cadence [36, 56] are the two most widely assessed
spatiotemporal parameters of gait via wearable technol-
ogy. Considering that gait speed is the sixth vital sign and
a major predictor of quality of life and functional status
within a community [24], it is not surprising that gait
speed was the most commonly assessed gait parameter
in post-stroke populations. It is also recognized, however,
that gait speed may not reflect the full functional picture
of ambulators post-stroke. Therefore, assessing additional
measures of mobility is pertinent for elucidating the
impact of stroke on walking function. The most common
measures of mobility included step count [36, 42, 53-56,
58, 60, 61] and duration of activity [36, 51, 52, 54-56, 60],
which were collected and examined across all settings.
Step count was assessed using a variety of accelerometers,
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including smartphone applications; duration of physical
activity was primarily assessed via accelerometers. Due to
current limitations in wearable technology and relevant
research, our knowledge on various important parame-
ters such as quality and efficiency of gait, functionality of
gait, and impact of gait and mobility deficits on quality of
life and long-term health outcomes in people with stroke
is limited.

Reliability and validity of wearable devices in gait

and mobility research post-stroke

While the efficacy of technology utilization in post-stroke
populations is important to highlight and understand,
only a limited number of studies in this systematic review
examined and reported on reliability and validity met-
rics. Thus, the consistency and accuracy of various meas-
ures and outcome tools used in majority of the research
studies that were included in this review were unknown.
The studies that reported on validity and reliability used
both uni- (e.g., ActivPAL) and tri-axial accelerometers
[42, 51, 56, 60]. These studies conducted reliability and
validity analysis of one or more of the following outcome
measures: gait speed, step counts, and/or swing sym-
metry, which were compared against a criterion stand-
ard that included one of the following: 3D gait analysis,
clinical outcome measures of gait and mobility, or video-
based counts. Thus, our review emphasizes the need for
future research to specifically examine validity and reli-
ability metrics of wearable devices used to measure gait
and mobility deficits in persons post-stroke. Particularly,
abnormal movement and force production patterns that
are commonly seen in this population more so amplifies
the need to utilize a wearable technology that accurately
assesses these parameters while maintaining reliability
and validity.

Clinical applicability of wearable technology to improve
walking post-stroke

This systematic review highlights the potential of wear-
able technologies for use in clinical practice. Clinical and
home-based assessments provide a simplistic snapshot of
a patient’s functional mobility, whereas wearable technol-
ogies can provide real-time vital data to provide insights
as to their patients’ lived experiences (e.g., time spent
active versus sedentary, time spent walking, number of
steps taken, time spent in specific activities). These data
can help clinicians design interventions more tailored
to an individual’s needs by capturing barriers to mobil-
ity that cannot be otherwise assessed in the clinic, as well
as guide preventative measures and best practices. Addi-
tionally, many of the commonly used devices also allow
for the collection of location-based data that may per-
mit clinicians to examine measures of participation and
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life-space as well, expanding opportunities for clinicians
to directly address outcomes that are meaningful to per-
sons with chronic stroke.

Limitations

There are a number of limitations that should be con-
sidered when interpreting the results of our study. First,
the results of the methodological quality assessments
included in the systematic review are based on the asses-
sors interpretation of the quality of the articles. Second,
our search did not include keywords pertaining to “reli-
ability” or “validity” of wearable technology as this was
not considered in our initial search strategy. Therefore,
had such terms been included there may have been more
findings related to these metrics. Our results are also
limited to the available MeSH headings and chosen key-
words for this study. Moreover, given the relatively small
number of studies conducted on wearable technologies
and gait assessment post-stroke and the large number of
research questions pertaining to the subject, it is difficult
to make strong recommendations about the type of wear-
able technologies best suited to assess gait and mobility
in post-stroke populations. Lastly, due to the shortcom-
ing of validity of consumer-grade devices for assessing
gait and mobility in neurologically involved populations,
there is a lack of accurate algorithms to monitor and
account for variability in gait and mobility patterns.
Future research is needed to examine the validity of dif-
ferent consumer wearables during free-living walking
and mobility assessments in persons with stroke.

Conclusion

Wearable technologies have the capacity to provide
information on gait analysis in real-world settings, which
allows the ability to assess and address mobility limita-
tions such as reduced walking speed/endurance and
reduced physical activity within different environments
(e.g., home/community, indoor/outdoor). The current
systematic review found that relevant research over the
past decade has primarily been conducted in lab-based or
hospital settings. Gait speed is the most commonly cap-
tured spatiotemporal parameter of gait and step count is
the most commonly captured mobility metric, assessed
primarily via triaxial accelerometers. Future research
should be conducted within more community settings,
as well as examine associations between patient-reported
outcomes and wearable technology-based measures of
gait and mobility (e.g., walking speed, time spent walking,
intensity of activity) to provide a richer understanding of
the impact of stroke and rehabilitation on patients’ lives.
Lastly, our results showed a limited number of studies
that examined reliability and validity of wearable devices,
highlighting the need for more studies to examine
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psychometric properties of these devices when collect-
ing gait and mobility information in persons post-stroke.
These studies are essential to determine which wearable
technologies are most effective to utilize and in which
contexts they are most appropriate.
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