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Abstract

Background: Robotic-Assisted Gait Training (RAGT) may enable high-intensive and task-specific gait training post-
stroke. The effect of RAGT on gait movement patterns has however not been comprehensively reviewed. The purpose
of this review was to summarize the evidence for potentially superior effects of RAGT on biomechanical measures of
gait post-stroke when compared with non-robotic gait training alone.

Methods: Nine databases were searched using database-specific search terms from their inception until January
2021.We included randomized controlled trials investigating the effects of RAGT (e.g., using exoskeletons or end-
effectors) on spatiotemporal, kinematic and kinetic parameters among adults suffering from any stage of stroke.
Screening, data extraction and judgement of risk of bias (using the Cochrane Risk of bias 2 tool) were performed by
2-3 independent reviewers. The Grading of Recommendations Assessment Development and Evaluation (GRADE)
criteria were used to evaluate the certainty of evidence for the biomechanical gait measures of interest.

Results: Thirteen studies including a total of 412 individuals (mean age: 52-69 years; 264 males) met eligibility
criteria and were included. RAGT was employed either as monotherapy or in combination with other therapies in a
subacute or chronic phase post-stroke. The included studies showed a high risk of bias (n=6), some concerns (n=6)
or a low risk of bias (n=1). Meta-analyses using a random-effects model for gait speed, cadence, step length (non-
affected side) and spatial asymmetry revealed no significant differences between the RAGT and comparator groups,
while stride length (mean difference [MD] 2.86 cm), step length (affected side; MD 2.67 cm) and temporal asymmetry
calculated in ratio-values (MD 0.09) improved slightly more in the RAGT groups. There were serious weaknesses with
almost all GRADE domains (risk of bias, consistency, directness, or precision of the findings) for the included outcome
measures (spatiotemporal and kinematic gait parameters). Kinetic parameters were not reported at all.

Conclusion: There were few relevant studies and the review synthesis revealed a very low certainty in current
evidence for employing RAGT to improve gait biomechanics post-stroke. Further high-quality, robust clinical trials on
RAGT that complement clinical data with biomechanical data are thus warranted to disentangle the potential effects
of such interventions on gait biomechanics post-stroke.
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Background

Technology-assisted interventions to enhance gait reha-
bilitation post-stroke are highly interesting from a clini-
cal perspective. Robotic-assisted gait training (RAGT)
employs electromechanical devices that assist stepping
cycles by supporting body weight while automatizing the
gait process through support and facilitation of move-
ment in one or several lower limb joints. RAGT is sug-
gested to be less energy-consuming and cardiorespiratory
demanding when compared with walking without a robot
[1]. Implementing RAGT may thus enable higher intensi-
ties and longer, task-specific training sessions when com-
pared with non-robotic gait training.

Various forms of robotic devices are commercially
available and they are commonly categorized according
to the support they apply [2]. Treadmill-based RAGT
(t-RAGT) is most commonly used in combination with
body weight support [3]. This is either performed with
end-effector robots that drive two footplates, simulating
the phases of the gait, or with exoskeleton orthoses that
move the lower body extremity joints in coordination
with the phases of gait. Overground RAGT (0-RAGT) is
provided by wearable powered exoskeletons that allow a
person to walk overground on hard and flat surfaces [4],
supposedly enabling the user to experience increased
proprioceptive input when compared with the stationary
treadmill training [5].

Earlier reviews revealed that RAGT, together with
conventional physiotherapy, might have a slightly better
or similar positive effect on gait speed and ambulation
when compared with conventional gait training alone
[6-16]. However, the need for a broadened perspective in
the evaluation of gait ability after RAGT post-stroke has
been highlighted [13, 15, 17, 18]. The International Clas-
sification of Functioning, Disability and Health (ICF),
advocated by the World Health Organization, is a clas-
sification system widely used in clinical practice [19]. It
is a foundation for understanding the patient’s personal
and environmental resources and limitations, hence also
used when evaluating rehabilitation effects from dif-
ferent perspectives. The classification system identifies
three domains of a health condition: (1) body function
(physiological and psychological) and structure (related
to organs, limbs, etc.), (2) activity (related to the execu-
tion of a task, and (3) participation (related to involve-
ment in a real-life situation). Although the domains are
interrelated, measurements of all domains and contex-
tual factors are necessary to describe a person’s condition
from a holistic point of view. In a 2013 review, Geroin
and colleagues [20] emphasize that a comprehensive
post-intervention evaluation of RAGT, such as that of
any other intervention, should use outcome measures
that include all domains of the ICFE. In general, tests that
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evaluate walking ability post-stroke address activity limi-
tations alone (6 min Walk Test, Timed Up and Go, Func-
tional Ambulation Category). These tests might fail to
identify restrictions related to the domain of body func-
tion and structure since they do not investigate specific
gait characteristics, such as coordination, muscle power,
joint mobility or extremity positions during gait. In per-
sons post-stroke, gains in walking ability following reha-
bilitation may be considered a result of the restitution
of underlying impairments. However, improvements in
activity measures could also partly be explained by an
adaptation of non-optimal movement strategies that
compensate for existing deficits [21, 22]. A paradigm
shift has occurred in the research area of gait rehabilita-
tion post-stroke [23], claiming that rehabilitation meth-
ods that stimulate the nervous system’s ability to recover
a normalized movement pattern should be preferred
before those encouraging compensation for impaired
mobility, motor control, and balance. In line with this,
the quantitative evaluation of gait quality and movement
pattern may allow for differentiation of recovery mecha-
nisms and foster a deeper understanding of the effects of
different gait rehabilitation interventions post-stroke [18,
23, 24]. To manage this, various biomechanical variables
of temporal (related to time) or spatial (related to dis-
tance) information have been applied. These are derived
from kinematic (parameters of registered position,
motion and/or marker trajectories of interest to describe
the locomotion pattern) or kinetic (registered forces that
act on the body during movement) measures of gait [24].
A gait-assisting robot aims to replicate a movement pat-
tern that is as close to normal as possible with regards
to temporal and spatial parameters. It is also believed to
generate more repetitions with regards to the number
of steps during one training session as compared with
non-robotic gait training. RAGT could thus be assumed
to improve gait quality to a greater extent than training
without a robot by normalizing the movement pattern
and increasing training volume with a carryover effect to
when the person is walking without the assisting robot.
This review aims to summarize the level of evidence for
any potential superior effects of RAGT (with or without
a combination of non-robotic training) compared with
non-robotic training alone on post-stroke gait move-
ment pattern quantified with objective biomechanical
measures.

Methods

Design and registration

This review followed a protocol pre-registered in
PROSPERO  (CRD42020168846). The  Preferred
Reporting Items for Systematic review and Meta-Anal-
ysis (PRISMA) statement was used as a framework to
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document the objectives, methods and findings of the
review [25, 26]. Following PRISMA recommendations,
the research question and the eligibility criteria were
framed using the PICO approach (representing the
patient population (P), the interventions (I), the com-
parator group (C), and the outcome (O), and the study
design chosen [27].

Eligibility criteria

Type of studies

This review included only randomized clinical trials
(RCT) that investigated the effects of robotic-assisted gait
training using instrumented gait analysis to evaluate gait
performance during overground or treadmill walking. All
other study designs were excluded.

Type of participants

This review included adult participants (>18 years of
age) in an acute, subacute or chronic phase post-stroke.
The stroke could be due to haemorrhagic or ischemic
causes. No restrictions were made regarding the func-
tional ability or gender of the participants with regards to
inclusion.

Type of intervention and comparator groups

RAGT for gait rehabilitation in either an inpatient or
outpatient setting was mandatory for inclusion in this
review. RAGT was defined as robotic-assisted gait train-
ing using an electromechanical device to assist the step-
ping cycles during walking. The devices could be either
end-effectors or exoskeletons for treadmill gait training
or exoskeletons used for overground gait training [3].
Contemporary evidence and recommendations suggest
that RAGT should complement, not replace, existing
gait rehabilitation and non-robotic physical therapies [3,
13]. We therefore also included studies using a combina-
tion of RAGT and other therapies such as conventional
physiotherapy training or functional electrical stimula-
tion (FES). All studies were nevertheless required to have
at least one comparator group performing active, non-
robotic gait rehabilitation post-stroke. Non-weight-bear-
ing interventions that used non-interactive devices for
delivering continuous passive motion (e.g., an isokinetic
apparatus for passive knee flexion [28]), or devices used
for seated or standing lower extremity training (e.g., the
MotionMaker"" [29], the Rutgers Ankle [30] or the Active
Knee Rehabilitation Orthotic Devices (AKROD) [31])
were excluded.

Outcomes of interest

Instrumented gait analysis was to be performed in either
a laboratory or a clinical setting using devices that reg-
ister kinematic or kinetic parameters during walking: a
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3-dimensional (3D) or 2-dimensional (2D) motion cap-
ture system, an optoelectrical or inertial system, a gait or
pressure mat, force shoes, a magnetic or acoustic tracking
system, etc. Outcome measures of interest were parame-
ters related to temporal and spatial information based on
kinematics and kinetics. Studies that assessed gait biome-
chanics during RAGT, while wearing the robotic device,
or immediately after only a single training session were
excluded. Results of biomechanical outcomes measured
solely by clinical testing, such as gait speed evaluated
with a stopwatch or cadence reported from observations
were also excluded.

Search strategy
One reviewer (HN) performed a systematic search in the
following databases: PubMed, Web of Science, EBSCO
(Cumulative Index to Nursing and Allied Health Litera-
ture [CINAHL], Allied and Complementary Medicine
[AMED], Academic Search Premier, Sports Discus),
Scopus, ProQuest (Sports Medicine & Education Index)
and the Cochrane Central Register of Controlled Trials
(CENTRAL). The search was limited to full-text articles
published in English from the inception of the databases
until the 19th of January 2021.

The full search strategy is provided in detail as an addi-
tional file (see Additional file 1).

Screening process
The screening process strictly adhered to the ‘a priori’
objective eligibility criteria elaborated in the PROSPERO
protocol. Abstracts and titles retrieved in the search of
the electronic databases were exported to EndNote X9
and screened independently by two reviewers (HN and
AB) to reduce the possibility of rejecting relevant reports
(Fig. 1). Only studies that did not clearly match the inclu-
sion criteria were excluded (e.g. populations such as
individuals with Parkinson’s disease, traumatic brain
injury, etc.; study designs such as case studies, cross-sec-
tional studies, etc.; different types of robots, like robots
for training the upper extremities, etc.; types of reports
such as conference papers, reviews, etc.). All remaining
articles advanced to the next step of the screening pro-
cess and were scrutinized in full-text before potential
inclusion. The included articles were divided between
two reviewers (HN and AB or MS) for independent data
extraction. Risk of bias was independently assessed by
the same two reviewers using the Cochrane Risk of Bias
2 (RoB 2) tool [32]. Another reviewer (AA) was available
to adjudicate any potential disagreements to help reach a
consensus.

A meta-analysis using a random-effects model was
performed with Review Manager 5 (Copenhagen: The
Nordic Cochrane Centre, Cochrane) when a minimum
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Excluded studies

Duplicates removed (n=1209)

Irrelevant studies (n= 1578)

No peer reviewed English full text available
(n=11)

» Reasons for exclusion: Conference papers, dissertations,
other language than English, etc.

Study did not meet inclusion criteria

(n=46)

Reasons for exclusion: Intervention: n= 11 (study design,
not RAGT); Control group: n= 26 (lack of non-robotic control
group); Outcome measure: n= 9 (no gait analysis)

S Records identified through databases
8 (n=2857)
=
=]
[
[}
=
A 4
[=Ty)
£
§ Screening for title and abstract
3 (n=1648)
A 4
= Full text screening
= (n=70)
o)
®
i
E v
©
=)
Q
g Studies included in synthesis
(n=13)
Fig. 1 PRISMA flowchart for identification and screening of eligible studies for the current review

of three studies with relevant data, adequate homoge-
neity of population, interventions and chosen outcome
measures were available. An I? value >40% was consid-
ered as the threshold for statistical heterogeneity [33].
Subgroup analyses were performed regarding the effects
on gait speed and cadence depending on velocity during
the assessment (self-selected, SSV, versus fastest pos-
sible, FV), type of RAGT employed in the intervention
group (t-RAGT versus 0-RAGT) and time of publication
(studies published 2007-2014 versus studies published
2015-2020). When a study had two intervention groups
and one comparator group, the data from the interven-
tion groups were pooled (if their findings were identi-
cal) in the synthesis. For instance, one study [34] used
two intervention groups performing RAGT. One used
additional direct transcranial stimulation during RAGT,
while the other group received sham transcranial direct
stimulation during the same training. The results in these
two groups did not differ significantly and were therefore
pooled in the meta-analyses.

In addition to the meta-analyses, a descriptive synthesis
was performed for the outcomes where statistical pooling
was not possible and findings have been presented in a
narrative form with complementing tables. The GRADE
(Grading of Assessment, Development and Evaluation)
criteria [35] were employed to interpret findings and
summarise the levels of evidence for both the pooled
and narratively summarised data [36]. The evidence was
downgraded from “high certainty” by one level for seri-
ous (two levels for very serious) concerns about the risk
of bias, indirectness of evidence, the inconsistency of
findings, imprecision of effect estimates or potential pub-
lication bias across studies.

Results

Characteristics of the included studies

Of the 2857 studies retrieved, 13 studies involving a
total of 412 participants (264 males, 148 females) were
eventually included in this review (Table 1). The mean
age of the populations in each study ranged from 52 to
69 years. Sample sizes ranged from 12 to 63 participants
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and over half of the studies (62%) involved sample sizes
of 30 participants or less [34, 37—43]. The participants
in three of the studies [43-45] were in a subacute phase
(mean time up to 4 months post-stroke), while the rest
were in a chronic phase post-stroke (mean time up to
104 months post-stroke). Gait ability for inclusion in
each study varied from being independent to needing
an assistive device and/or personal assistance for walk-
ing. The intervention groups received either RAGT as
a monotherapy (n=10) [34, 37-40, 42, 44—-47] or in
combination with some kind of non-robotic gait train-
ing (n=3) that was similar to the training received by
the comparator group [41, 43, 48]. All studies except
one [34] used exoskeletons (Lokomat, GEMS, EKSO,
ALEXII, SMA, GEAR) and the majority of these (n=28)
employed t-RAGT with body weight support [34,
37, 38, 40, 41, 43, 44, 47]. One study [39] combined
t-RAGT (no body weight support) and o-RAGT. The
comparator groups of the included studies received
conventional gait training [43—-45, 48], overground gait
training [34] and/or treadmill gait training with [37,
38, 40—42, 47] or without body weight support [39, 46]
(Table 1).

The duration of the study interventions ranged from
10 days to 10 weeks, yielding 10—40 sessions, given with a
frequency of two to five times per week. Duration ranged
from 30 to 105 min per day. Comparator and interven-
tion groups were offered training with similar duration
and frequency. Details of the received training (e.g.,
intensity) were however vague or inadequately reported
in many studies. This was specifically true for the training
received by the comparator group, where the interpre-
tation of “conventional gait training” or “traditional gait
training” may have differed.

The dropout rate during the intervention period ranged
from 0 to 37%. In six studies, all included participants
completed the training throughout the whole interven-
tion period [34, 38, 40, 42, 46, 48]. Reasons for with-
drawal included fear of falling, skin lesions, leg pain due
to training, problems with an orthosis, pitting oedema,
injury related to training, or self-reported exercise intol-
erance [37, 43-45, 47]. Dropout was also due to travel
limitations and medical or personal reasons that were
reported to be unrelated to training [37, 41, 4345, 47].

All studies performed a baseline and post-intervention
assessment within a couple of weeks after the participants
completed the training period. In addition, one study [34]
included a 2-week follow-up evaluation, while four stud-
ies [41, 44, 46, 47] performed follow-up evaluations 1-6
months post-intervention to investigate the long-term
effects of RAGT. To collect biomechanical data, gait anal-
ysis was performed on a gait mat (GAITRite, Walkway or
GaitMat) [34, 38, 40, 44—47], with a 3D motion capture
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system [38, 39, 41, 42], an accelerometer [48], or an in-
shoe plantar pressure measurement system [43]. Of the
13 included studies, biomechanical measures were pre-
sented as primary outcomes in nine [37-41, 45-47] and
as secondary outcomes in four [34, 42—-44].

Risk of bias assessment

A summary of the risk of biases is reported in detail for
each included study in Figs. 2 and 3 (generated with
Review Manager: Version 5, Copenhagen: The Nordic
Cochrane Centre). Risk of bias arising from the randomi-
zation process revealed concerns for two studies, either
due to a lack of relevant information [42] or that rand-
omization was based on the hospital record numbers of
the participants [45] (Fig. 3). Risk of bias due to missing
outcome data gave rise to concerns in several studies.
Reasons for withdrawal were not reported in one study
[39], and when reported they were likely to be related to
certain consequences of the training, e.g., fear of falling,
skin lesions, leg pain due to training, pitting oedema or
self-reported exercise intolerance [37, 43—45, 47]. In all
of these studies except for one [43], the dropouts were
excluded from the analysis. Selective reporting of results
raised some concerns in most of the included studies due
to the absence of study protocols or pre-specified analy-
sis plans. Only four studies reported trial registrations
[39, 41, 46, 48]. The analysis plan in one of the registered
protocols did not conform to the analyses performed in
the study [48], and one study [41] chose to report only
within-group analyses.

Effect on temporal and spatial parameters

Although all included studies analysed at least one tem-
poral gait parameter, the most reported were gait speed
(n=10) and cadence (n=38). The certainty of evidence
(GRADE evaluation) was found to be very low for both
these parameters because there were some concerns for
several studies with regard to the risk of bias (Table 2),
indirectness of evidence owing to clinical variation
regarding intervention parameters and gait analysis set-
tings (see Table 1), and imprecise findings with insig-
nificant differences between small population groups
(6—25 participants/group). The meta-analysis of gait
speed (Fig. 4) indicated no overall significant differences
between the intervention and comparator groups after
the training period (mean difference [MD] 0.00 m/s;
95% confidence interval [CI] — 0.05, 0.05; I>=93%). The
meta-analysis of cadence similarly did not reveal any sig-
nificant differences between groups (MD 1.44 steps/min;
95% CI — 2.34, 5.22; 12=92%) (Fig. 5). Bang et al. [38] did
not report gait velocity during assessment (SSV or FV)
and this study was therefore excluded from the subgroup
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meta-analyses. This study found significantly larger
improvements for both gait speed (MD 2.14 m/s; 95% CI
0.93, 3.36) and cadence (MD 1.48 steps/min; 95% CI 0.41,
2.55) favouring the RAGT group. When these results
were included in the meta-analyses, they did however not
influence the overall results.

In the subgroup analyses of gait speed and cadence (see
Additional files 2 and 3), where the studies employing
0-RAGT and those using t-RAGT were differentiated, we
did not find any between-group differences. Differences
between groups were neither identified in subgroup anal-
yses that differentiated between earlier (2007-2014) and
later published studies (2015-2020) with regards to gait
speed and cadence (see Additional files 4 and 5).

Other temporal parameters assessed in the included
studies were gait cycle/stride duration [43, 48], step time
[46], stance time/percentage of GC (single [43, 47] and/
or double limb support [38, 41, 43]), and swing time/
percentage of GC [41, 46] (Table 3). For the same rea-
sons as for the outcomes used in the meta-analysis, the
GRADE assessment indicated very low certainty of evi-
dence for the gathered temporal parameters (Table 2).
However, in nearly all studies, no significant difference in
temporal parameters between groups was observed and
both groups improved to an equal extent. A significantly
higher increase in the single-limb stance period favouring
the comparator group during FV was reported by Hornby
et al. [47] (MD — 3.0%; 95% CI — 6.96, 0.96) (Table 3).
In contrast, Bang et al. [38] observed a decreased dou-
ble limb support time (MD — 1.46%; 95% CI — 2.32, —
0.6) favouring the RAGT group during walking in SSV.
Although Calabré et al. [48] reported a significantly
higher effect for gait cycle duration in the RAGT group,
our calculations (based on measurements of distances
in the pdf-file and calculations using RevMan) did not
reveal any significant difference between the groups (MD
— 0.08 (ratio); 95% CI — 0.19, 0.03) (cf. Tables 3). Finally,
the study by Ogino et al. [41] that did not report results
of between-group analyses was excluded in the narrative
synthesis.

Among spatial parameters, step length increased sig-
nificantly more on the affected side following RAGT
compared with non-robotic gait training (MD 2.67 cm;
95% CI 1.55, 3.80; I?=65%) (Fig. 6). Such between-group
differences were not detectable for step length on the
non-affected side, nor for the combined (affected and
non-affected side) change. As seen in Fig. 7, stride length
increased significantly more in the RAGT group when
compared with the comparator group (MD 2.88 cm; 95%
CI 0.46, 5.25; I>=66%). However, the (GRADE) certainty
of evidence remained very low for both these parameters
(Table 2).
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Seven studies [34, 37, 39, 40, 45, 46, 48] calculated some
kind of temporal or spatial symmetry ratio (Table 4) by
using a variety of ratio calculations of different spatio-
temporal parameters for either or both the paretic and
non-paretic limbs. Results from the meta-analysis of
temporal symmetry (Fig. 8) revealed very low evidence
(Table 2) for a statistically significant improvement in
the symmetry ratio in the RAGT groups compared with
the non-robotic gait training groups (MD 0.09; 95% CI
0.04, 0.15; *=90%). For spatial asymmetry (Fig. 9) on
the other hand, no significant differences were observed
between groups (MD — 0.01; 95% CI — 0.06, 0.04; I* = 80).

Effect on kinematic parameters

Only three of the included studies [37, 41, 42] analysed
kinematic data, and the overall (GRADE) certainty of
evidence was found to be low for the kinematic param-
eters (Table 4). Lewek et al. [37] detected the consist-
ency of intra-limb hip and knee angular trajectories over
repeated gait cycles and the maximum lateral deviation
of the heel during the swing phase with respect to the
position of the ipsilateral heel during consecutive stance
phases (known as circumduction). Srivastava et al. [42]
analysed the peak flexion angles during the swing phase.
Both studies analysed gait at SSV but none of them found
any differences between groups after the intervention
period. Ogino et al. [41] used kinematic data to detect
index values for abnormal gait patterns following stroke.
However, they did not report results from between-group
analyses.

Effect on kinetic parameters

Kinetic variables represent the forces generating the kin-
ematics and spatiotemporal outcomes during walking,
and kinetic information should therefore be very useful
for understanding and interpreting gait characteristics
[49]. However, we did not find any eligible RCTs evaluat-
ing kinetic gait data following RAGT.

Follow-up data

Four studies performed a follow-up test: one after 2
weeks [34], one after 1 month [41], three after 3 months
[41, 44, 46] and one after 6 months [47]. The outcome
measures investigated during the follow-up period were
gait speed, cadence, step time, swing/stance time, step
length, temporal and spatial symmetry and gait kinemat-
ics (Tables 3 and 4). The 2 week follow-up by Geroin
et al. [34], found similar group differences in cadence and
temporal symmetry that had been observed during the
assessments immediately after the intervention period.
According to this, the RAGT group showed a significant
improvement in cadence (MD 15.6 steps/min; 95% CI
8.15, 23.11) and temporal symmetry (MD — 0.42 (ratio);
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95% CI — 0.5, — 0.34) when compared with the compara-
tor group. No group differences were otherwise detected
for any of the investigated outcomes when RAGT was
compared with non-robotic gait training during follow-
up measurements [44, 46, 47].
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Discussion

Except for synthesised evaluations of gait speed, this is
the first study to review and ascertain the level of evi-
dence for RAGT with the quantification of post-stroke
gait quality based on biomechanical measures. While
employing a pre-registered comprehensive search strat-
egy, based on well-defined eligibility criteria for studies,
in nine renowned databases and screening 2857 retrieved
citations, only 13 RCTs met the eligibility criteria to
address the research question.

Analysis and synthesis of the included studies revealed
mixed effects on biomechanical measures assessed after
RAGT. Risk of bias assessment raised concerns for sev-
eral of the studies due to limitations in the randomization
process and poor reporting regarding the handling of
missing data (See Figs. 2 and 3). Furthermore, reporting
bias could be a problem as the plan for analysis was sel-
dom available and only three studies [39, 46, 48] reported
a registered study protocol. The variety of outcome
measures used in the included studies limited the abil-
ity to pool results. However, meta-analyses for gait speed
and cadence showed no effect of RAGT that exceeded
the effect of non-robotic treatment (Figs. 4 and 5). Owing
to the uncertainty of the evidence, specifically concern-
ing the risk of bias, small population sizes, and hetero-
geneity and inconsistency in results, the general quality
of evidence for these outcomes was downgraded to very
low despite including only randomized controlled trials
(RCTs) (Table 2). The low number of eligible RCTs iden-
tified for inclusion in this review, in combination with the
concerning risk of bias associated with them, rendered
a low certainty of evidence for the effects of RAGT on
gait speed among persons with stroke compared with
non-robotic training. Methodologically robust RCTs are
required to elucidate any potential effects of RAGT on
biomechanical parameters relating to post-stroke gait.

Evidence for the potential of RAGT, in combination
with physiotherapy, to increase the likelihood of regain-
ing independent walking ability post-stroke has previ-
ously been reported by Mehrholtz et al. to be moderate
[12]. Their findings, as well as the findings of yet another
review [14], were in line with ours and showed that gait
speed (assessed either with clinical or instrumented
methods) improved to an equal extent in the RAGT and
comparator groups post-stroke.

We found the certainty of evidence for the effect of
RAGT on cadence to be very low for the same reasons
as mentioned for gait speed (Table 2). The pooled results
revealed an equal amount of improvement in cadence in
intervention and comparator groups (Fig. 5). Gait speed
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and cadence on their own do not reflect the specific gait
movement pattern during walking and should instead
be interpreted in combination with other spatial and/or
temporal kinematic parameters [21, 50]. Step length and
stride length are considered closely connected to gait
speed [74]. However, even though a difference between
groups was not detectable with regards to gait speed,
our analyses showed that step length (Fig. 6) and stride
length (Fig. 7) on the affected side improved more in the
RAGT group when compared with the non-robotic train-
ing group.

The typical motor impairments following stroke cause
an unbalanced walking pattern which is often charac-
terized by asymmetries in temporal parameters (rela-
tion between affected and non-affected swing, stance,
step and/or stride time) and/or spatial parameters
(relation between affected and non-affected limb posi-
tions and/or step length) [51, 52]. The consequences of
spatial and temporal asymmetry are debated [53], but
symmetry ratios seem to be more sensitive measures
of recovery compared with absolute values of spatial or
temporal parameters [54]. Gait symmetry is further asso-
ciated with a high energy expenditure [55], a high risk
of falls, and an unequal loading of the joints (increas-
ing the risk of joint degeneration and bone density loss
in the paretic limb) [56]. Our meta-analysis showed that
temporal symmetry improved slightly more in the RAGT
groups when compared with the non-robotic gait train-
ing groups (Fig. 8). There were conversely no significant
differences observed between groups with regard to spa-
tial symmetry after training (Fig. 9). The pattern of spa-
tial symmetry vary greatly, while some individuals exhibit
a longer step length on the non-paretic side, and oth-
ers take longer steps on the paretic side [57, 58]. A step
lengthening strategy on the affected side detected for the
RAGT group (see Fig. 6) may not necessarily be associ-
ated with a similar improvement in spatial symmetry in
the same group. The level of asymmetry is suggested to

be more relevant than some other parameters (e.g., gait
speed and step length) to identify the degree of impair-
ment and compensatory mechanisms used during walk-
ing post-stroke [59]. These results should however be
interpreted cautiously since the GRADE certainty of evi-
dence was very low due to inconclusive results between
studies and since there were only a few studies with rela-
tively small sample sizes that investigated this.

Meta-analyses that differentiated studies from before
and after 2015 found no differences between the groups
with regards to gait speed and cadence (see Additional
files 4 and 5). However, when contrasting the findings
of most recent studies with those of earlier research
(Tables 3 and 4), the most recent studies (published
from 2018 to 2019) reported larger improvements of
spatial and temporal parameters in the RAGT groups
when compared with the non-robotic training groups
[39, 45, 48]. This may reflect how increased knowl-
edge in the area of gait rehabilitation post-stroke, com-
bined with the rapid technological development of
advanced robotic devices, may have improved RAGT
post-stroke. Several factors are considered imperative
to stimulate increased neural activity and reorganiza-
tion: (1) enhancement of active wearer participation,
which includes the possibility of individual adjustments
and an adaptable robotic interference [3, 8, 60, 61],
(2) sufficient degrees of freedom to minimize motion
restrictions in the joints and allow other aspects of
gait, such as balance, to be incorporated in training [3,
8, 60, 61], and (3) real-time biofeedback to the wearer
[8]. The trend towards more positive results for the
biomechanical gait measures in the most recent stud-
ies evaluating RAGT post-stroke might be a result of
adjustments made based on the factors mentioned
above. For instance, Lee et al. (2019) [39] and Calabro
et al. (2018) [48] provided active wearer participation
through individual guiding, encouragement, adaptation
and progression.
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Fig. 4 A forest plot (generated with the Review Manager Web, The Cochrane Collaboration, 2019, available at revman.cochrane.org) summarizing
a pooled effect estimate on change in gait speed (m/s), following robotic-assisted gait training (RAGT) compared with non-robotic gait training
(non-RAGT), during walking at a self-selected velocity (SSV) and the fastest velocity possible (FV). C/ confidence interval; df degrees of freedom; SD
standard deviation

Low certainty of evidence indicated that kinematic
measures were not significantly different between
the groups after the intervention [37, 42]. Although
kinematic measurements could help to discriminate
between restoration and compensation strategies that
develop post-stroke, only two studies [37, 42] that col-
lected kinematic data after RAGT (Tables 3 and 4) were
found. Hence, no certain conclusions can be made
regarding the effect of RAGT on kinematic measures of
gait post-stroke at this time. It has been advocated that
detailed kinematic data should be collected and ana-
lysed for quantification of specific gait movement pat-
terns when investigating walking post-stroke [18, 20].
Even so, the need for sophisticated laboratory equip-
ment, competence of assessors, and more time and
finances may be some reasons for the lack of studies
that have performed these assessments.

The requirements in terms of finance, assessor compe-
tence and time are similar for the collection of kinetic and
kinematic data. To obtain valid kinetic data represent-
ing joint moments and power, the individual also needs
to walk independently without walking aids, as naturally
as possible, and contact the force platform with only one

foot. This may be a challenging task for individuals post-
stroke who have severe impairments. We did not find any
eligible RCTs that evaluated kinetic variables after RAGT.
Spatial and temporal parameters during walking are
nevertheless direct consequences of the kinetic param-
eters affecting the joints [49]. Several studies have shown
kinetic deviations in both the affected and unaffected leg
in individuals post-stroke [62, 63]. Moments and power
bursts are suggested to be reduced in amplitude in per-
sons post-stroke when compared with asymptomatic
controls while walking at a self-selected speed [64]. How-
ever, the total lack of eligible robust RCTs evaluating
kinetic variables after RAGT post-stroke calls for future
research in this area.

Methodological considerations

This review followed a pre-registered protocol in PROS-
PERO, included relevant RCTs published until the 19th
of January 2021, employed the updated and comprehen-
sive Cochrane risk of bias 2 tool (2019), and summarized
the current level of evidence for the biomechanical gait
parameters of interest using the established GRADE cri-
teria. In general, the RAGT and comparator groups were
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Fig. 5 A forest plot (generated with the Review Manager Web, The Cochrane Collaboration, 2019, available at revman.cochrane.org) summarizing
a pooled effect estimate on change in cadence (steps/min), following robotic-assisted gait training (RAGT) compared with non-robotic gait training
(non-RAGT), during walking at a self-selected velocity (SSV) and the fastest velocity possible (FV). C/ confidence interval; df degrees of freedom; SD

Favours non-RAGT Favours RAGT

standard deviation

comparable based on the amount of therapy (duration
and frequency) provided, but information on the inten-
sity (here defined as the amount of work per unit time
[i.e., the rate of work or power]) of training and individual
adjustments was inadequate or unavailable. The impor-
tance of specifying the intensity of practice has been
emphasized [65]. The intensity is nonetheless applied and
specified inconsistently in most exercise training proto-
cols. This is also the case for the studies included in this
review, and this may account for some of the differences
in the conclusions regarding the lack of superiority of one
rehabilitation method compared with the other. Clini-
cal heterogeneity between the included studies was also
considerable due to differences in the population of inter-
est (stroke severity level and phase post-stroke, etc.) and
intervention settings (the robotic device used, feedback
delivered, and content, duration, intensity and frequency
of the training in both the RAGT as well as the compara-
tor groups).

The chosen biomechanical outcome measures (differ-
ent spatial and/or temporal parameters) and the settings
for gathering gait data varied (various systems for gait
analysis, allowance of walking aids during assessments,
variations in walking distances, etc.). This variation
together with different definitions and/or calculations

in data analysis limit the possibility of generalising the
results. We also did not include studies using only elec-
tromyography (EMG) in our review because motor intent
identification using EMG may have significant limitations
in individuals post-stroke due to severe motor impair-
ment, profound muscle fatigue, or abnormally coacti-
vated muscles [66, 67]. This is further corroborated in an
up-to-date compilation of evidence in this area provided
by Lennon et al. (2020) [68]. Finally, this review excluded
papers in languages other than English.

It has been suggested that the effect of RAGT depends
on factors such as time after stroke and impairment sever-
ity [12]. Indeed, RAGT combined with physiotherapy
has been suggested to be especially efficient in improv-
ing the function and mobility of the lower limbs in non-
ambulatory patients in their subacute phase post-stroke
[11, 13]. It has also been hypothesized that gait function
and movement pattern is less likely to change in a chronic
phase post-stroke. Interventions for improving motor
performance, initiated in an early stage post-stroke, are
assumed to closely interact with the dynamic phases of
neural remodelling to promote better reorganization
[69]. Hence, the possibility to influence the gait move-
ment pattern post-stroke would supposedly decrease with
the course of time post-stroke. Only three of the thirteen
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Risk of bias legend

(A) Bias arising from the randomization process

(B) Bias due to deviations from intended interventions

(C) Bias due to missing outcome data

(D) Bias in measurement of the outcome

(E) Bias in selection of the reported results
Fig. 6 A forest plot (generated with the Review Manager Web, The Cochrane Collaboration, 2019, available at revman.cochrane.org) summarizing
a pooled effect estimate on change in step length (cm), following robotic-assisted gait training (RAGT) compared with non-robotic gait training
(non-RAGT). *: assessed during walking at a self-selected velocity (SSV); A: assessed during walking at the fastest velocity possible (FV); C/
confidence interval; df degrees of freedom; SD standard deviation

studies included in this review had a population in a suba-
cute phase post-stroke, whereas the others addressed pop-
ulations in a chronic phase. Since the assessment of gait
biomechanics requires walking function (with or without
aids or personal support), none of the studies included
non-ambulatory persons. It was thus not possible to draw
any conclusions regarding the impact of RAGT in relation
to the different phases post-stroke (subacute/chronic) or
different severity levels of impairments.

Another topic of interest when evaluating the effects
of RAGT is the possible difference between RAGT
employed on a treadmill and the one performed over-
ground. Overground RAGT is hypothesized to provide
greater motor control stimulation, multisensory plas-
ticity and required effort when compared with RAGT
performed on a treadmill [5]. Hence, we performed sub-
group-analyses based on the employed type of RAGT for
the outcomes of gait-speed and cadence but found no
significant differences between the groups (Fig. 6).

Future challenges and recommendations

Robotics in gait training post-stroke requires an evalu-
ation from several perspectives in order to identify
responders and non-responders to RAGT (e.g., the

impact of RAGT in relation to the different phases post-
stroke and different severity levels of impairments) and
map the strengths and weaknesses to support and guide
future technical development. Highly intensive, task-
specific and repetitive gait training post-stroke, such as
RAGT, is assumed to stimulate restoration of motor skills
and, consequently, normalize the gait movement pattern
through neuroplasticity [70-72]. Yet this has not been
thoroughly investigated and the mechanisms underlying
functional gains achieved through RAGT in individuals
post-stroke are still poorly understood. This review high-
lights the need to combine the measures of task accom-
plishment with objective assessments of gait movement
patterns and gait quality after RAGT.

A consensus is unfortunately lacking as to which bio-
mechanical gait measures to use when investigating
motor coordination and the quality of movement pat-
terns during walking [50, 73, 74]. Standardised guidelines
for assessing and reporting gait variables should be devel-
oped to support researchers and enable pooling of results
to facilitate the evaluation of the effects of and further
development of gait-assisting robots used in post-stroke
rehabilitation. These guidelines should include assess-
ments of several (spatial, temporal and kinetic) aspects
of gait [15, 50], and consider bilateral motor coordination
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(A) Bias arising from the randomization process

(B) Bias due to deviations from intended interventions

(C) Bias due to missing outcome data

(D) Bias in measurement of the outcome

(E) Bias in selection of the reported results
Fig. 7 A forest plot (generated with the Review Manager Web, The Cochrane Collaboration, 2019, available at revman.cochrane.org) summarizing
a pooled effect estimate on change in stride length (cm), following robotic-assisted gait training (RAGT) compared with non-robotic gait training
(non-RAGT). *: assessed during walking at a self-selected velocity SSV; A: assessed during walking at the fastest velocity possible FV; C/ confidence
interval; df degrees of freedom; SD standard deviation

Test for overall effect: Z = 3.28 (P = 0.001)

Risk of bias legend
(A) Bias arising from the randomization process

(B) Bias due to deviations from intended interventions
(C) Bias due to missing outcome data

(D) Bias in measurement of the outcome

(E) Bias in selection of the reported results

confidence interval; df degrees of freedom; SD standard deviation

Intervention Control Mean Difference Mean Difference Risk of Bias

Study or Subgroup  Mean SD Total Mean SD Total Weight IV, Random, 95% CI Year IV, Random, 95% CI
Geroin 2011 0.31 0.085 20 003 0.1 10 21.4% 0.28[0.20, 0.36] 2011 -
Buesing 2015* 0.08 0.02 25 0.04 0.03 25 37.2% 0.04 [0.03, 0.05] 2015 =
Buesing 2015* 0.08  0.03 25 0.05 0.03 25 36.8% 0.03[0.01, 0.05] 2015
Calabro 2018 0.24 0.5367 20 0.16 0.3578 20  3.4% 0.08 [-0.20, 0.36] 2018 —
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Fig. 8 A forest plot (generated with the Review Manager Web, The Cochrane Collaboration, 2019, available at revman.cochrane.org) summarizing
a pooled effect estimate on change in temporal symmetry (ratio), following robotic-assisted gait training (RAGT) compared with non-robotic gait
training (non-RAGT). *: assessed during walking at a self-selected velocity SSV; A: assessed during walking at the fastest velocity possible FV; C/

[50] as well as the engagement of the trunk [75] and dis-
placement of centre of mass [76]. Inter-limb coordina-
tion, such as symmetry in spatio-temporal parameters,
including kinematic measures of movement endpoint,
whole trajectories, and joint angles, as well as in kinetic
parameters, are all important outcomes reflecting the
quality of gait post-stroke [76] and bilateral motor coor-
dination [50].

The challenge of bioengineers is to match the most
recent neurological findings with the features of the
robots developed for gait training post-stroke [3]. These
robots should not only simulate physiological patterns
but also favour the determinants of a qualitative gait
recovery. To stimulate the recovery of a close-to-nor-
mal gait movement pattern, the robots should enable

variability in lower limb kinematics through sufficient
degrees of freedom in all three planes of motion [60]. In
addition, they should be flexible and individually adjust-
able, and they need to encourage active participation
from the wearer. The combination of individual support
and progression, realtime feedback and guidance, and
motor tasks that challenge balance control and coordina-
tion, serves for multisensory stimulation that has been
suggested to be beneficial for neural reorganization. The
optimally developed robot should have the ability to gen-
erate a bottom-up and top-down complex and controlled
multisensory stimulation aiming to modify the plasticity
of neural connections through the experience of moving
[5].
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Buesing 2015* 0.01 0.04 25 0.08 0.04 25 324% -0.07 [-0.09, -0.05] 2015 L
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Total (95% CI) 141 138 100.0% -0.01 [-0.07, 0.04] {b
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Fig. 9 A forest plot (generated with the Review Manager Web, The Cochrane Collaboration, 2019, available at revman.cochrane.org) summarizing a
pooled effect estimate on change in spatial symmetry (ratio), following robotic-assisted gait training (RAGT) compared with non-robotic gait training
(non-RAGT). *: assessed during walking at a self-selected velocity SSV; A: assessed during walking at the fastest velocity possible FV; Cl confidence

Conclusion

This systematic review revealed a substantial knowl-
edge gap underpinning the effects of RAGT post-stroke
when compared with non-robotic gait training. Only
thirteen eligible randomised controlled trials were iden-
tified which evaluated the effects of RAGT post-stroke
on objective biomechanical outcome measures. Our
findings demonstrated a very low certainty in current
evidence for employing RAGT instead of non-robotic
gait training to improve gait ability post-stroke. Stand-
ardised guidelines for biomechanical quantification of
gait should be developed to support researchers in the
evaluation of gait-assisting robots used in post-stroke
rehabilitation. Well-designed, high-quality clinical trials
that complement clinical data with objective, quantitative
gait data post-stroke will provide more detailed informa-
tion on the potential effects of robotic gait training in
general, as well as the influence on gait movement pat-
tern in particular. In the long term, this could contribute
to the development of RAGT that, either on its own or
as an addition to other treatments, can better target true
recovery and decrease the impact of compensatory gait
patterns post-stroke.
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