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Abstract 

Background:  Upright standing requires control of an inherently unstable multi-joint human body within a small 
base of support, despite biological motor and / or sensory noise which challenge balance. Without applying pertur-
bations, system identification methods have been regarded as inadequate, because the relevant internal biological 
noise processes are not accessible to direct measurement. As a result, unperturbed balance studies have been limited 
to investigation of behavioral patterns rather than possible underlying control strategies.

Methods:  In this paper, we present a mathemathically rigorous system identification method that is applicable to 
study the dynamics and control of unperturbed balance. The method is derived from autocorrelation matrices with 
non-zero time lags and identifies the system matrix of a discrete-time dynamic system in the presence of unknown 
noise processes, without requiring any information about the strength of the noise.

Results:  Unlike reasonable ‘least-squares’ approaches, the performance of the new method is consistent across a 
range of different combinations of internal and measurement noise strengths, even when measurement noise is 
substantial. We present a numerical example of a model that simulates human upright balancing and show that its 
dynamics can be identified accurately. With a biomechanically reasonable choice of state and input variables, a state 
feedback controller can also be identified.

Conclusions:  This study provides a new method to correctly identify the dynamics of human standing without the 
need for known external perturbations. The method was numerically validated using simulation that included realistic 
features of human balance. This method avoids potential issues of adaptation or possible reflex responses evoked 
by external perturbations, and does not require expensive in-lab, high-precision measurement equipment. It may 
eventually enable diagnosis and treatment of individuals with impaired balance, and the development of safe and 
effective assistive and / or rehabilitative technologies.
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Background
The importance of identifying human postural control
Balance is a fundamental necessity for human mobility. 
While standing on the ground seems a trivial daily activ-
ity, it actually requires sophisticated coordination of the 
multi-joint human body which is inherently unstable. 

When humans balance, neural systems for sensory inte-
gration, multi-joint coordination, environmental adap-
tation, and other functions dynamically interact with 
biomechanical constraints of the musculo-skeletal sys-
tem [1]. How the central nervous system regulates inter-
action between neural processes and biomechanics can 
be better understood by identifying the dynamics of the 
neural controller that executes corrective joint torques in 
response to body sway [1–4].
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Previous studies to identify balance
Identifying dynamics by perturbing balance
Studies of human postural control can be broadly clas-
sified into two different experimental paradigms: per-
turbed balance and unperturbed balance [4, 5]. In 
perturbed balance, external perturbations are applied to 
challenge participants’ balance, e.g. by applying pushing/
pulling forces or translating/rotating a platform on which 
they stand. Those perturbations have traditionally been 
regarded as necessary to identify the dynamics of human 
postural control, because the input (external perturba-
tion) and output (motion in response to the perturbation) 
are directly measured, allowing application of well-estab-
lished closed-loop system identification techniques to 
obtain a robust and reliable input-output dynamic rela-
tion [2–4, 6]. While insights into sensorimotor control of 
balance may be gained in this way, it should be noted that 
humans are notoriously adaptive and are likely to change 
behavior in response to the applied perturbations [5]. For 
example, Park et  al. [7] showed that postural feedback 
gains scaled with the magnitude of the applied distur-
bance. Hence, the closed-loop dynamics and control esti-
mated in this way may not well represent those of daily 
activity.

Understanding natural balance without perturbations
In contrast, unperturbed balance studies do not apply 
external perturbation. Instead, the only challenges to 
individuals’ balance arise from internal biological noise 
in motor and / or sensory systems. The response to this 
biological noise may be used to investigate humans’ natu-
ral postural control. Unperturbed balance also includes 
studies to understand humans’ remarkable balance ability 
in challenging environments, such as on a narrow beam 
[8–11]. In these environments, applying external pertur-
bation is often avoided because the environment itself is 
so challenging that participants may lose balance before 
enough data has been collected.

Consistent behavioral patterns observed across individ-
uals, represented by descriptive measures such as center 
of mass (COM) or center of pressure (COP) motion, sug-
gest strategies to manage complex whole-body balancing 
in a coordinated manner [8–10, 12–14]. While there is no 
doubt that characterizing behavioral patterns is impor-
tant, it does not define the postural control strategy [1]. 
Identifying the controller solely from behavioral features 
is quite difficult since different controllers may reproduce 
the same features observed in experiments [10]. On the 
other hand, it is quite difficult to apply the system iden-
tification techniques which have been widely-employed 
for perturbed balancing, because the inputs to the system 
(biological noise) that induce output motion (e.g., sway) 

in unperturbed balance are internal and inaccessible 
to direct measurement [4]. A reliable system identifica-
tion method for unperturbed balance would be highly 
desirable.

Existing methods
Recently, Ahn and Hogan [15] and Ahn et  al. [16] have 
shown that it is possible to estimate parameters of a noisy, 
scalar (first-order) dynamical system without external 
perturbation. Noting that a time series of the dynamical 
system output can be represented as an autoregressive 
model of order one, they quantified the bias in estima-
tion based on conventional linear regression methods, 
then proposed how to compensate for it. Equipped with 
this revised method, they assessed the gait stability of a 
model that simulated human walking [15] and, using 
experimental data, estimated the error-correction gain 
of a model of human motor learning [16]. Other more 
classical theories relevant to linear, stationary, white sto-
chastic processes with unknown noise strength have also 
treated multi-dimensional system parameter identifica-
tion [17–20].

Main contribution
The main contribution of this paper is to develop and 
validate a systematic method to identify the closed-loop 
dynamics of a multi-joint model of unperturbed human 
balancing. We formulate this problem as identifying a 
stochastically-excited, linear, finite-dimensional, dis-
crete-time dynamic system. We exploit auto-correlation 
matrices of the measurements with non-zero time lags 
to estimate the parameters of the model. The strengths 
of the noise processes are not required, which is espe-
cially important when identifying unperturbed balance 
which is driven by unknown internal noise. To better 
understand the key properties of the new method, we 
first consider a simple scalar dynamic model. Then we 
present a numerical example of a model that simulates 
human upright balancing and show that its dynamics can 
be identified accurately. Assuming the dynamic structure 
of a stochastically-excited double-inverted-pendulum 
model, a state feedback controller can also be identified. 
Conversely, comparable parameters estimated using con-
ventional least squares methods exhibit large errors.

The method proposed in this paper is largely inspired 
by similar approaches developed to identify human gait 
stability [15], human motor learning dynamics [16], and 
brain activity from electroencelphalogram (EEG) signals 
[20]. While those studies did not consider measurement 
noise separately from biological noise, we show that meas-
urement noise can cause significant bias in estimation. 
We also present a way to mitigate the problem. Equipped 
with the new method, natural human postural dynamics 
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and control can be studied in depth without concern for 
adaptation or possible reflex responses evoked by external 
perturbations, or any need for expensive high-precision 
measurement equipment. Reliable quantitative identifi-
cation of the dynamics and control of human balance, as 
presented in this paper, would enable diagnosis and treat-
ment of individuals with impaired balance, and the devel-
opment of safe and effective assistive and / or rehabilitative 
technologies.

Methods
Identifying a general system from autocorrelation matrices
Consider a discrete-time stochastic finite-dimensional lin-
ear time-invariant dynamic system

where x ∈ R
nx , z ∈ R

nz are state and measured output 
vectors, respectively, at time t. We assume that process 
noise, w ∈ R

nw , and measurement noise, v ∈ R
nv , are 

white and uncorrelated:

The objective is to estimate the nx × nx system matrix A . 
We first compute the auto-correlation matrix of the out-
put z with non-zero lag k > 0 as

where Rzz(0) can be obtained as

An expression for Rxx(k) for the dynamic system (1) can 
easily be obtained. Noting that E{xtwT

s } = 0 for t ≤ s,

(1)
{
xt+1 = Axt +Gwt

zt = Hxt + vt ,

E{wt} = 0, E{wtw
T
s } = �wδts

E{vt} = 0, E{vtv
T
s } = �vδts

E{wtv
T
s } = 0 ∀t, s

(2)

Rzz(k)

= E{ztz
T
t−k}

= E{(Hxt + vt)(Hxt−k + vt−k)
T }

= E{Hxtx
T
t−kH

T +Hxtv
T
t−k + vtx

T
t−kH

T + vtv
T
t−k}

= HE{xtx
T
t−k}H

T = HRxx(k)H
T

(3)

Rzz(0)

= E{ztz
T
t }

= E{(Hxt + vt)(Hxt + vt)
T }

= E{Hxtx
T
t H

T +Hxtv
T
t + vtx

T
t H

T + vtv
T
t }

= HE{xtx
T
t }H

T + E{vtv
T
t } = HRxx(0)H

T + �v

where Rxx(0) can be obtained as

From (2) and (4), it readily follows that

If H−1 exists, one can derive the matrix A from autocor-
relation matrices as

Note that (7) holds for all k > 0.
We now turn to the estimation problem. Using the 

ergodic property of zt , Rzz(k) can be estimated as 
1

N−k

∑N
t=k+1 ztz

T
t−k for k ≥ 0 , where N is the length of the 

time series. As long as the process is ergodic, it has been 
shown that R̂zz(k) provides an asymptotically unbiased, 
normal, and consistent estimate [21]. The estimation can 
be improved by either increasing the trial duration (N) 
or combining multiple-trial data of each participant. In 
practice, the trial duration cannot be arbitrarily extended 
because participants’ dynamics may vary over time due 
to fatigue. Denoting nT as the total number of trials per 
participant and R̂(i)

zz (k) as the estimated autocorrelation 
matrix for i-th trial, we can re-define R̂zz(k) as

where z(i) is the measured output of i-th trial. From (7), 
we obtain an expression for the estimate of A as

where the subscript CR stands for correlation.
In practice, since 

Rzz(k)  = HRxx(k)H
T  = HAkRxx(0)H

T , for a stable sys-
tem with ‖A‖ < 1 , too large a value of k will cause Rzz(k) to 

(4)

Rxx(k) = E{xtx
T
t−k}

= E{(Akxt−k +

k∑

j=1

Aj−1Gwt−j)x
T
t−k}

= AkE{xt−kx
T
t−k} = AkRxx(0)

(5)

Rxx(0) = P = E{xtx
T
t }

= E{(Axt−1 +Gwt−1)(Axt−1 +Gwt−1)
T }

= E{Axt−1x
T
t−1A

T +Gwt−1w
T
t−1G

T }

= ARxx(0)A
T +G�T

wG

= APAT +G�T
wG

(6)Rzz(k) = HAkPHT , ∀k > 0

(7)A = H−1Rzz(k + 1)Rzz(k)
−1H,

R̂zz(k) =
1

nT

nT∑

i=1

R̂(i)
zz (k)

=
1

nT

1

N − k

nT∑

i=1

N∑

t=k+1

z
(i)
t z

(i)T
t−k .

(8)ÂCR = H−1R̂zz(k + 1)R̂zz(k)
−1H, ∀k > 0,
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have a large condition number, which may amplify numeri-
cal error and degrade the quality of estimate. To alleviate 
this performance degradation, by noting that the relation 
AH−1Rzz(k) = H−1Rzz(k + 1) holds for all k > 0 , (8) can 
be improved

for a hyperparameter m, where ·+ denotes a pseudo-
inverse operator. We will briefly discuss the properties of 
the estimation methods in the Results Section.

Identifying controller gain
In order to apply (9) to identify human postural control, 
consider a controllable system

where u ∈ R
nu is control input and B is input weighting 

matrix. If a balancing human is modeled as a set of kin-
ematically coupled rigid segments, with an appropriate 
choice of generalized coordinates the structure of A and 
B may be determined from equations of motion using 
standard methods. For example, if relative joint angles 
and angular velocities are chosen as the state vector x 
and joint torques as the input vector u , the system matrix 
A and input matrix B are constrained by the dynamic 
structure. In particular, if joint angles comprise the 
first elements of x , B must have [0] as its top nx/2 rows. 
The corresponding rows of A have a a unity block [I] in 
the first nx/2 columns. The second half of the matrix is 
determined by the continuous-to-discrete time con-
version rule and sampling frequency, as the first rows 
of the corresponding matrix in continuous-time con-
sist of a [0] block and a unity block [I] ; see Appendix 4: 
Discrete-to-continuous conversion. The dimensions and 
precise meaning of the rest of A and B depend on the 
system configuration, state vector, and control input. For 
instance, modeling a human as a planar inverted pendu-
lum with two joints (ankle and hip), one may assume the 
pendulum is controlled either by joint torque actuators 
( u : joint torques) or muscle actuators ( u : muscle forces), 
depending on the purpose of the model. While these 
assumptions may be restrictive, they are biomechanically 
reasonable and establish the structure of A and B.

Next, suppose the system is equipped with a feedback 
controller that stabilizes the system about its operating 
point x = 0,

(9)
ÂCR(m) =H−1[R̂zz(2), . . . , R̂zz(m+ 1)]

× [R̂zz(1), . . . , R̂zz(m)]+H

(10)
{
xt+1 = Axt + But +Gwt

zt = Hxt + vt
,

(11)
{
yt = Cxt +Dut + et
ut = −Kyt + ηt

where y ∈ R
ny , e ∈ R

ne , η ∈ R
nη are sensory signals fed 

back to a stabilizing controller, sensory noise, and motor 
noise, respectively. K is the nu × ny gain matrix. With-
out loss of generality and for simplicity, we can assume 
D = 0 (Extension of the method to non-zero D would be 
straightforward, but is left for future work.). The closed-
loop system equipped with the controller  (10)-(11) is 
reduced to

where Acl = A − BKC ,    Gcl = [G,−BK,B] , and 
w̃ = [wT , eT , ηT ] . We assume that the noise sources w, e , 
and η are white, mutually uncorrelated, and with covari-
ance matrices �w ,�e,�η , respectively. An asymptotically 
unbiased and consistent estimate Âcl can be obtained 
using the procedure of (9).

One can further estimate the gain matrix Kx = KC of 
the state-feedback controller (11) by solving the following 
linear regression problem,

Note that for nu < nx , this is an over-determined prob-
lem and its unique solution can be obtained. Note also 
that the controller gain can be estimated in the continu-
ous-time domain using a proper discrete-to-continuous 
time model conversion, as described in Appendix 4: Dis-
crete-to-continuous conversion.

This method requires a priori knowledge of A and B 
but those are determined by the mechanical physics of 
the model assumed to describe experimental human 
balancing data. Note especially that if joint angles and 
angular velocities are chosen as the state vector x and 
joint torques (with zero mechanical impedance) as the 
input vector u , constructing A and B for the open-loop 
(uncontrolled) system only requires knowledge of kin-
ematics and gravito-inertial mechanics. Geometric and 
inertial properties of limb segments are quite well quanti-
fied in the literature, for example see [22]. In this way, the 
method presented here ‘fills in’ the missing data about 
mechanical impedance.

Results
Numerical simulation: scalar dynamic system
Model
To gain insight, consider a simple stable dynamic system,

where a,  g,  h are unknown scalar system parameters. 
Unknown noise processes are drawn from zero-mean 

(12)
{
xt+1 = Aclxt +Gclw̃t

zt = Hxt + vt

(13)K̂x = B+(A − Âcl)

(14)
{
xt+1 = axt + gwt

zt = hxt + vt ,
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Gaussian distributions, wt ∼ N (0, σ 2
w), vt ∼ N (0, σ 2

v ) . 
We assume |a| < 1 , i.e., the system is stable. It can readily 
be obtained from (2) - (5) that

Simulation setup
For this simple system, we compared the new method (9), 
âCR(m) with different m-values ( m = 1 and m = 10 ), with 
the ordinary least-squares method (OLS), âOLS . The ordi-
nary least-squares method is detailed in Appendix 1: Ordi-
nary least squares; note that the estimate yielded by OLS is 
equivalent to that by the Yule-Walker equations, which are 
widely used [15, 20]. In the following numerical example, 
we simulated the dynamic system (14) with h = g = 1 for 
different system parameters a ∈ (−1, 1) with a finite reso-
lution of 0.1. The estimates âCR(m) and âOLS were computed 
from five different trials ( nT = 5 ) and each trial consisted 
of a time series with length N = 3000 . This corresponds to 
30s of simulation with a sampling rate of 100Hz, typical for 
studies of human behavior. The noise strengths σw , σv were 
also varied such that the relative strength σr = σv/σw was 
0, 1/2, 1, and 2. Finally, to understand the statistical prop-
erties of the estimation methods, we iterated the above 
procedure 100 times and obtained the mean and standard 
deviation of the error of estimation, â(·) − a . All simula-
tions and computations were conducted in MATLAB 
2018b (Mathworks, MA).

Simulation result
Figure  1 compares the performance of different estima-
tion methods. The ordinary least-squares estimate âOLS 
shows small variance but non-zero bias. The mean error 
of the estimate is zero at a = 0 , but the bias at large |a| 
is considerable and probably unacceptable. On the other 
hand, âCR(m) is not biased when the system parameter 
a is non-zero and large. However, when |a| ∼ 0 , its per-
formance is degraded. In general, the variance and mean 
error of all methods decrease as relative noise strength 
σr increases, i.e., with more accurate measurements and 
larger internal perturbation.

To understand the difference between âOLS and âCR(1) , 
it is convenient to derive analytic expressions. The ordi-
nary least squares method is given as

and âCR(1) is given as







Rxx(0) = P = a2P + g2σ 2
w = 1

1−a2
g2σ 2

w

Rxx(k) = akP, ∀k ≥ 0

Rzz(0) = h2P + σ 2
v = 1

1−a2
g2h2σ 2

w + σ 2
v

Rzz(1) = ah2P
Rzz(k + 1) = aRzz(k),∀k ≥ 1

(15)âOLS =
R̂zz(1)

R̂zz(0)
≈

Rzz(1)

Rzz(0)

where

It is clear that even if autocorrelation is perfectly esti-
mated, e.g., R̂zz(k) = Rzz(k) , âOLS has bias which depends 
on both the system parameters a, g, h and the unknown 
noise strengths σ 2

w , σ
2
v  , while âCR(1) provides an unbiased 

estimate without requiring any information about the 
noise strengths. In particular, the bias in âOLS increases 
as the relative noise σv/σw increases. On the other 
hand, âCR(1) is not well defined for |a| ∼ 0 because its 

(16)âCR(1) =
R̂zz(2)

R̂zz(1)
≈

Rzz(2)

Rzz(1)

(17)
Rzz(1)

Rzz(0)
=

ah2P

h2P + σ 2
v

=
a

1+ (1− a2)
σ 2
v

h2g2σ
2
w

(18)
Rzz(2)

Rzz(1)
=

a2h2P

ah2P
= a
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Fig. 1  Comparison of estimation methods with different process 
and measurement noise strengths. Each estimate was obtained from 
5 different trials. Each trial consisted of a time series with length N 
= 3000. The mean and standard deviation of the error of estimation 
( ̂a− a ) for each plot were obtained from 100 iterations of the whole 
process
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denominator contains a. These properties are well repre-
sented in Fig. 1. While âOLS has smaller variance for all a 
values, the error due to bias is substantial for non-zero a. 
âCR(1) has relatively large variance in general but provides 
quite an accurate estimate unless a is close to 0. When 
true a is close to 0, âCR(1) is quite imprecise.

This drawback can be overcome if we use âCR(10) . This 
estimate for large true a is as accurate and exhibits as 
little bias as âCR(1) . More importantly, it is remarkable 
that âCR(10) substantially improves accuracy and vari-
ance even when |a| ∼ 0 . While its variance is still larger 
than âOLS , the accuracy of its mean value is comparable.

We also tested the effect of hyper-parameters m, the 
maximum time lag in autocorrelation to estimate â , 
and nT  , the total number of trials, on the error of esti-
mation and present the result in Fig.  2. The absolute 
value of the error of estimation, |âCR(m) − a| was com-
puted, then the average and variance of the absolute 
error were computed from 100 iterations. As shown in 
Fig. 2, in general both hyper-parameters monotonically 
improved the reliability of estimation by reducing both 
mean error and its variance. As might be expected, 
increasing the number of trials had more effect than 
m. This is because increasing m means more R̂zz(k) 
are recruited for â , while increasing the number of tri-
als helps to better estimate Rzz(k) and consequently 
reduces the errors that propagate in estimating â . Thus 
it is always recommended to use as large as nT  as pos-
sible, i.e., collect as many data as possible from each 
participant.

The performance improvement with increasing m 
quickly reached a plateau, and thus a sufficiently large 
value of m, for instance m = 10 can be chosen to improve 
the estimation. As can be seen in Figs. 1 and  2, the vari-
ance when |a| ∼ 0 is still quite large. Therefore one may 
first compute âOLS to estimate a, then compute âCR(m) 
when |âOLS| is larger than a threshold, e.g., 0.1. For higher 
dimensional systems, one may instead use the norms of 
Rzz(k) and Rzz(1) to determine the value of m.

Numerical simulation: balance model
Double inverted pendulum model
Human quiet standing is often modeled as an inverted 
pendulum with single [23], double [10], or more than two 
joints [24]. To establish how the new method performs for 
a multi-joint case, we adopted a double inverted pendulum 
model of human quiet standing. Lumped model param-
eters including mass, center of mass position from joint, 
length, moment of inertia about center of mass of each 
link, and gravitational acceleration are listed in Table  1. 
They were computed based on the anthropomorphic dis-
tribution of males [22], with weight and height of 73 kg 
and 1.73 m. We assumed that the foot is not moving dur-
ing standing and regarded the ankle as a pin joint; any mass 
and length below the ankle was neglected in the double-
inverted pendulum model. Figure 3 illustrates joint angles 
and torques for ankle ( q1, τ1 ) and hip ( q2, τ2 ). As in (11), 
it was assumed that each joint torque is a sum of control 

0 5 10

100

M
ea

n

0 5 10

100

V
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ia
nc

e
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100

a=0
a=0.1
a=0.2
a=0.5
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a b

Fig. 2  The effect of hyper-parameters m, the maximum time lag of 
the autocorrelation function used to estimate â , and nT  , the total 
number of trials, on |âCR(m) − a| . Noise strengths were fixed as 
σw = σv = 1 . A nT = 5 was fixed and m was varied. B m = 5 was 
fixed and nT  was varied

Fig. 3  Double inverted pendulum model with angle ( qi ) and torque 
( τi ) sign conventions and parameter values for mass ( mi ), length ( li  ), 
center of mass ( ci ), and moment of inertia about center of mass ( ji ). 
The direction of gravity (g) is also defined
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input torque and actuation error, τi = ui + ηi . The state 
vector x = [q1, q2, q̇1, q̇2]

T and input vector u = [u1,u2]
T 

were defined accordingly.

Stabilizing controller
We used an infinite-horizon linear quadratic regulator 
(LQR) to stabilize the double inverted pendulum. The LQR 
is a state-feedback controller in which gain Kx is deter-
mined such that a quadratic cost is minimized:

where u = −Kxx [25]. Two sets of parameters of the 
LQR were tested:

•	 Case 1: 

•	 Case 2: 

The parameters used in Case 1 are those which were 
reported as well-representing human balancing and simi-
lar to the ‘hip strategy’ [10, 26]. Case 2 was intended to test 
a different type of controller which encouraged more use 
of the ‘ankle’, similar to the ‘ankle strategy’, but minimized 
control effort.

Finally, the torque controller was perturbed by internal 
sensory noise e and motor noise η with �e = σ 2

e I4 and 
�η = σ 2

η I2 such that

Kx = argmin Kx

∫ ∞

0
[xT (t)Qx(t)+ uT (t)Ru(t)]dt,

Q = I4, R =

[
5 0
0 1/5

]

.

Q = I4, R = 106
[
0.3 0
0 10/3

]

.

τ = u + η = −Kx(x + e)+ η.

Model linearization
While we used the full nonlinear equations of motion to 
simulate human balance, when stabilized by the LQR and 
perturbed by small internal noise, the resultant motion of 
the double inverted pendulum is subtle, consistent with 
experimental observations of quiet standing [6, 27]. For 
small motion, the nonlinear system can be well-approxi-
mated as a linear system (10), as detailed in Appendix 3: 
Double inverted pendulum linearization. From the lin-
earized model, Acl was obtained.

Simulation setup
We used the new method to estimate the closed-loop 
system matrix Acl and controller gain matrix Kx . Because 
the model was developed in continuous-time, we first 
estimated discrete-time model parameters using (9), then 
converted them into continuous-time model param-
eters by following the method described in Appendix 4: 
Discrete-to-continuous conversion. The size of the error 
between true and estimated matrices was computed as 
below

Note that from the choice of the state vector x , the first 
two rows of Acl are constrained to [0, I] . Therefore, we 
replaced the first two rows of Âcl with [0, I] to obtain the 
controller gain using (13) and compute errors.

Similar to Scalar Dynamic System example, the errors 
obtained from the new method and from the ordinary 
least squares method were compared for different com-
binations of noise strengths. Note that sensory and 
motor noise are essentially equivalent in this setup, e.g., 
ut = −KCxt − Ket + ηt = −KCxt + η̃t . Thus, in the fol-
lowing simulation we fixed ση and varied σe . The tested 
parameters are summarized in Table 2.
Âcl was computed from five different trials ( nT = 5 ). 

In each trial, a semi-implicit Euler integrator was used 
to simulate forward dynamics of the model for 90 s with 
a time step of 0.01 s (100Hz sampling rate, N = 9000 ). 
Finally, in order to understand the statistical properties of 
each estimation method, we iterated the above procedure 

(19)eA = (�Acl − Âcl�2)/�Acl�2

(20)eK = (�Kx − K̂x�2)/�Kx�2

Table 1  double inverted pendulum model parameters

Symbol Parameter meaning (units) Value

m1 Mass of link 1 (kg) 25.89

l1 Length of link 1 (m) 0.857

c1 Center of mass of link 1 (m) 0.582

j1 Moment of inertia of link 1 (kgm2) 1.350

m2 Mass of link 2 (kg) 42.20

l2 Length of link 2 (m) 0.841

c2 Center of mass of link 2 (m) 0.328

j2 Moment of inertia of link 2 (kgm2) 2.547

g Gravitational acceleration (m/s2) 9.81

Table 2  Range of noise strengths tested

Symbol Parameter meaning Range

σe Sensory noise strength [1e−02, 3e−02]

ση Motor noise strength 1e−02

σv Measurement noise strength [1e−03, 5e−03]
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10 times and obtained the mean and standard deviation 
of eA,(·) and eK ,(·) . All simulations and computations were 
conducted in MATLAB 2018b (Mathworks, MA).

Results
Figures 4 and  5 present the mean error of estimation of 
the system matrix eA and the controller gain eK  obtained 
from Âcl,OLS and Âcl,CR for various combinations of noise 
strengths and for two different controllers. In general, 
increasing measurement noise degraded performance 
estimation. For example, in Case 1, when σe = 0.01 and 
ση = 0.01 , the mean eA,OLS was 40.5% with σv = 0.001 
but 86.9% with σv = 0.005 . Increasing sensory noise 
improved the estimate of the ordinary least squares 
method, yet its performance remained much worse than 
that obtained from the new method. The performance 
gap between the ordinary least squares method and the 
new method was even larger when estimating controller 
gain. For example, the mean error of estimation eK  from 
the ordinary least squares method reached about 150%.

Within the range of parameters tested, the error of esti-
mation from the new method was slightly affected by dif-
ferent levels of noise. The mean and standard deviation of 
the error of estimation for all conditions were about 10% 
and 9% for eA and 11% and 10% for eK  , respectively.

The performance gap between the ordinary least 
squares method and the new method was even larger in 
Case 2, as shown in Fig. 5. For example, the mean error 
of estimation eK  from the ordinary least squares method 
reached over 400% (note the scale of the color bar), while 
the mean and standard deviation of the error of estima-
tion from the new method for all conditions were about 
10% and 7% for eA and 9% and 6% for eK  , respectively.

Discussion
Summary of the work
In this work, we presented an unbiased parametric sys-
tem identification method that enables estimating the 
dynamics of human postural control using recorded 
joint trajectories without external perturbation. While 
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Fig. 4  Mean estimated error of the system matrix eA(%, left) and the control gain eK(%, right) from 10 iterations for different noise combinations. 
Errors of the ordinary least squares method (OLS, top) and the new method (CR, bottom) are shown. For both cases, motor noise was fixed as 
ση = 0.01 . The double inverted pendulum model was simulated with the Case 1 controller parameters
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the physical world is in the continuous-time domain, our 
digital measurement systems provide us signals in the 
discrete-time domain. Hence, we investigated a method 
to identify a discrete-time model. With a biomechani-
cally reasonable model of the multi-joint human body, 
the gain matrix of a state-feedback controller can also be 
estimated. We first examined the properties of the new 
method using a simple scalar dynamic system. While 
the ordinary least squares method showed bias due to 
unknown noise in the system, the new method did not 
show bias even without information about the system’s 
noise strengths. The variance of the new method was 
substantially reduced by employing multiple trials to 
improve the estimate of autocorrelation with non-zero 
time lags. The new method was then validated using a 
double inverted pendulum model stabilized by two differ-
ent state-feedback controllers and perturbed by internal 
noise, a reasonable model of human balancing which can 
describe the widely-reported ‘ankle’ and ‘hip’ strategies 
[28]. In particular, compared to the ordinary least squares 

method, the controller gain identified by the new method 
was considerably more accurate, yielding errors of ∼10% 
or less. The numerical simulation examples indicate that 
the new method can be used to identify human pos-
tural dynamics from experimental data. Given a biome-
chanically plausible model of the relevant gravito-inertial 
mechanics, the net multi-joint impedance, whether due 
to intrinsic mechanics or feedback control, may also be 
identified.

Caveats of parametric model fitting
Like other parametric system identification techniques, 
the new method relies heavily on the model which deter-
mines the structure of A and B . It should also be noted 
that Kx identified from the method is the gain matrix 
of a linear full-state feedback controller. Consequently, 
several trade-offs must be considered when develop-
ing models and interpreting results. As presented in this 
study, one may model a human as a double inverted pen-
dulum with joint positions and velocities as its states and 
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Fig. 5  Mean estimated error of the system matrix eA(%, left) and the control gain eK(%, right) from 10 iterations for different noise combinations. 
Errors of the ordinary least squares method (OLS, top) and the new method (CR, bottom) are shown. For both cases, motor noise was fixed as 
ση = 0.01 . The double inverted pendulum model was simulated with the Case 2 controller parameters
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joint torques as its control input. With this model, the 
gain Kx should be interpreted as the apparent impedance 
seen at the ankle and the hip, i.e., stiffness and damping 
at each joint as well as coupling between them. Depend-
ing on the order of the model and the physical meaning 
of the state and input vectors, the precise meaning of Kx 
will vary. Therefore, the state vector and the model order 
should be carefully determined, based on the purpose of 
modeling. Moreover, the method does not draw any con-
clusions about underlying neural processes but only their 
products; it only identifies the net contributions from all 
control components such as intrinsic mechanical imped-
ance and neural feedback control.

Significant time delay due to limited neural signal 
transmission rate is another important factor that makes 
human motor control challenging. However, the cur-
rent work did not incorporate this aspect of human pos-
tural control. To identify time delay in the system, more 
sophisticated methods are required. In recent literature, 
the limitation of neural transmission has often been 
modeled as a pure time-delay in state feedback control 
[4, 6, 29]. This would essentially increase the order (or 
the maximum lag) of the model  (12). Neglecting meas-
urement noise, that model is equivalent to the widely 
studied auto-regressive models with order larger than 
one, and there exist a number of papers treating such 
models with scalar [30] and multi-dimensional state vari-
ables [20]. Both the unknown model order (equivalent to 
the unknown time delay) and the model parameters can 
be estimated, as briefly presented in Appendix  2: Yule-
Walker equations for multi-variate autoregressive mod-
els. Augmenting the present methods with such features 
is left for future work.

Important assumptions
The new method requires a number of modeling assump-
tions including 1) the stochastic dynamics of human 
balancing is linear and time-invariant (stationary), 2) 
the number of independent measurements equals the 
order of the system (hence H−1 exists), and 3) the pro-
cess and measurement noises are white and mutually 
uncorrelated.

Linear and stationary processes
A mechanical system with any controller (nonlinear, 
discontinuous, or higher order) must yield at least the 
lower-order behavior modeled here. Musculo-skele-
tal mechanics acts to smooth out discontinuities. The 
remaining nonlinearities would either be differentiable or 
resemble noise, and small motions would justify a line-
arized representation. Indeed it has been widely reported 
that unperturbed human balancing exhibits only subtle 
movement [13, 27].

The stationarity of human balance is debatable [5, 31, 
32]; due to fatigue or change in control strategy (e.g., 
transitioning between an ‘ankle strategy’ and a ‘hip strat-
egy’ [28]) during balancing, the system may exhibit time-
varying dynamics. Stationarity should be established 
before applying the new method to identify human pos-
tural control.

Existence of H
Whether H−1 exists or not depends on the model. If one 
develops a joint-level human balance model, joint angular 
positions and velocities can be measured with reasonably 
high accuracy with available technologies, e.g., motion 
capture systems (MOCAP), inertial measurement units 
(IMUs), or goniometers. In general it becomes harder to 
obtain full measurement of states as more complex fea-
tures of postural control are included in the model (e.g., 
muscle dynamics or neural time delay). On the other 
hand, [17–19] have shown that an appropriate system 
order and parameters may be identified from partial 
measurements for single-input systems. Further investi-
gation and application of such methods to the analysis of 
human postural control is left for future work.

White and mutually uncorrelated noise
The new method relies heavily on the assumption that all 
noise processes in  (10) are white and uncorrelated with 
each other. However, some studies have indicated that 
biological noise may best be described by ‘pink’ noise or 
Brownian noise [33]. Moreover, linear models lump all 
the higher-order and nonlinear terms of a real human 
system into process noise, which might not be white. 
However, it should be noted that the purpose of system 
identification is to parameterize a model which may pro-
vide mechanically feasible explanations of observations 
and guide experiments to test hypotheses. In that sense, 
any model is wrong, and white noise may be wrong, but it 
is a convenient and useful approximation.

Strength of the new method compared to the ordinary 
least squares method
We used a scalar stochastic dynamic system to analyze 
properties of the new method. In Fig. 1, it was shown that 
the variance and bias of the new method are sensitive 
to the size of the true system parameter. The method’s 
performance degraded when a was close to 0 (in the 1D 
model). In the multi-joint model, it would correspond to 
the case when ‖Acl‖ is close to 0. However, such a case is 
quite rare in biological systems. In particular, �Acl� = 0 
implies that the neural controller rejects any perturbation 
within one sampling interval.

It was also shown that the quality of the estimate is sen-
sitive to the size of measurement noise, or more precisely, 
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the size of measurement noise relative to process noise 
(internal biological noise), σr . Both the ordinary least 
squares method and the new method performed bet-
ter as measurement noise decreased. When σr = 0 , the 
ordinary least squares method provided a very accurate 
estimate of the system parameter a as shown in Fig.  1 
and it outperformed the new method. However, as σr 
became larger, error in the ordinary least squares method 
increased rapidly. In contrast, the new method showed 
consistent performance across a range of σr values. 
Moreover, recruiting multiple auto-correlation matrices 
with different time lags ( m = 10 ) substantially improved 
the precision of the new method and provided accu-
rate estimates for values of �a� ∼ 0 . The improvement 
can easily be extended to the multi-dimensional case as 
it does not require any difficult operations. The perfor-
mance difference between the new method and the con-
ventional ordinary least squares method was even more 
pronounced in the double inverted pendulum example as 
shown in Figs. 4 and  5.

Furthermore, with the known parameters A and B 
based on the gravito-inertial model, the controller gain 
matrix could be estimated. The mean error of estimation 
of controller gain obtained from the new method was 
much smaller than that from the ordinary least squares 
method (Figs.  4 and 5), especially when measurement 
noise was large. Sensitivity to measurement noise is an 
important practical consideration. It has been reported 
that the variability of joint angles during quiet standing 
is on the order of 0.1 deg [6, 27]. The measurement errors 
of state-of-the-art IMUs, 0.2 - 0.3 deg, [34] is compara-
ble to and perhaps larger than sway motion during quiet 
standing. This paper showed that when measurement 
noise was comparable to process noise, the ordinary least 
squares method can be substantially biased, while our 
method was unbiased for even larger noises.

The practical implication is quite striking. While meas-
urement noise can be further reduced by setting up 
high-precision MOCAP in the lab, such high-precision 
measurement systems are usually expensive and require 
large space. If clinicians are to diagnose patients remotely 
in at-home settings, they may not have access to accurate 
measurement systems (e.g., MOCAP or high-precision 
IMUs). In that case, our method would be an effective 
alternative to the conventional ordinary least squares 
method because it does not require such high-precision 
sensors.

Wider application
The method proposed in this paper is applicable to any 
linear, discrete-time stochastic system, thus relevant to 
a broad range of human system studies. For example, 
the new method appears to be applicable to the study 

of rhythmic movements, another important field in 
human motor control [35, 36]. For example, it is possi-
ble to quantify the degree of stability of walking [15] or 
rhythmic arm movement [37]. The relevance of the pro-
posed framework to rhythmic movement is detailed in 
Appendix 5: Stability assessment of rhythmic movement. 
In a recent study, Ahn and Hogan [15] have shown how 
to obtain accurate assessment of gait stability by correct-
ing the bias due to the short duration of experimental 
time series. However, that method was limited to a sca-
lar human walking model and not easily extensible to the 
multi-joint models which are typical of human systems. 
Moreover, significant error in human motion measure-
ment systems was not accounted for. Combining the 
strength of the new method with the results of Ahn and 
Hogan [15] may improve the state-of-the-art in stability 
assessment of human walking [38]. The same technique 
may also improve experimental stability assessment of 
legged robots.

Another interesting field of application is motor learn-
ing [16, 39]. In motor learning studies, how humans learn 
a task from observing errors in each trial is often mod-
eled as a linear discrete-time system with some feedback 
mechanism as in (10). Typical human motor learning 
models assume measurement noise and process noise 
are the same ( v = w in (1)). Due to this assumption, 
the least squares estimate requires additional correc-
tion as shown in [16] while our new method can readily 
be applied. Recent studies [16, 39] have examined a sca-
lar dynamic model which assumes that a task error can 
be represented by a scalar variable. A method for multi-
dimensional systems, as presented in the current study, 
would enable studies of how humans learn complex tasks 
in which error cannot be simply represented by a single 
number.

Conclusion
This study presented a mathematically rigorous sys-
tem identification method for identifying dynamics of 
unperturbed balance. With a biomechanically reasonable 
model of the multi-joint human body, the gains of a state-
feedback controller can also be estimated without any 
information about the system’s noise strength. A numeri-
cal example with a double inverted pendulum model of 
human quiet standing validated the method.

Methods to assess human motor control have signifi-
cant practical importance. They may allow quantitative 
diagnosis of individual patients and development of cus-
tomized treatment plans. With an aging population, tech-
nology-assisted human mobility is a growing need. The 
methods presented here may allow better assessment of 
technology-assisted mobility, which may eventually lead 
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to development of customized assistive and / or rehabili-
tative technologies.

Appendices
Appendix 1: Ordinary least squares
For the zero-mean discrete timeseries { zt}N1  obtained 
from the system (1),

one can form the over-determined system

or succinctly

which can be readily solved using the usual least-squares 
estimator

Rearranging, the ordinary least squares estimate is 
obtained as

which is equivalent to (8) with k = 0.

Appendix 2: Yule‑Walker equations for multi‑variate 
autoregressive models
If one assumes a zero-mean discrete timeseries { zt}N1  is an 
autoregressive process, a method to estimate the appro-
priate order p of the model

and the corresponding coefficients Aj can be established. 
By multiplying zTt−k to each side of equation, taking 
expectation, and noting that E{e(t)z(t − k)T } = 0 , one 
can obtain

zt+1 = Hxt+1 + vt+1

= H(Axt +Gwt)+ vt+1

= HAH−1(zt − vt)+HGwt + vt+1

= HAH−1zt −HAH−1vt +HGwt + vt+1,








zT2
zT3
...

zTN








� �� �

T

=








zT1
zT2
...

zTN−1








� �� �

W

(HAH−1)T
� �� �

�

T = W�

�̂OLS = (WTW)−1WTT

= (z1z
T
1 + · · · + zN−1z

T
N−1)

−1

× (z1z
T
2 + · · · + zN−1z

T
N )

= R̂zz(0)
−1R̂zz(1)

= (HÂOLSH
−1)T

(21)ÂOLS = H−1R̂zz(1)R̂zz(0)
−1H

zt = A1zt−1 + A2zt−2 · · · + Apzt−p + e(t)

Substituting k = 1, 2, · · · , p in the above equation, with 
Rzz(k)

T = Rzz(−k) , one can obtain the set of equations 
referred to as the Yule-Walker equations [20, 30]:

which can also be written as

or succinctly

Note that this is a well-posed system with the same num-
ber of equations as unknowns. The matrix R̃ is full-rank 
and symmetric, so that invertibility is guaranteed. There-
fore the coefficients or the system parameters � can be 
estimated by

There are various ways to determine the order of the 
system p. For example, the proper order p can be deter-
mined by minimizing the Akaike information criterion 
(AIC). Readers are referred to [20] for more details. 
Note that for the model with order p = 1 , the resultant 
parameter estimate of Â1 is the same as the ordinary least 
squares method, i.e., Â1 = Rzz(1)Rzz(0)

−1

Appendix 3: Double inverted pendulum linearization
The equations of motion of the double inverted pendu-
lum model are

Rzz(k) = A1Rzz(k − 1)+ A2Rzz(k − 2)+ · · ·

+ ApRzz(k − p),∀k > 0

Rzz(1) = A1Rzz(0)+ A2R
T
zz(1)+ · · ·

+ ApR
T
zz(p− 1)

Rzz(2) = A1Rzz(1)+ A2Rzz(0)+ · · ·

+ ApR
T
zz(p− 2)

...

Rzz(p) = A1Rzz(p− 1)+ A2Rzz(p− 2)+ · · ·

+ ApRzz(0)

�
Rzz(1),Rzz(2), · · · ,Rzz(p)

�

� �� �

r̃

=
�
A1,A2, · · · ,Ap

�

� �� �

�

×








Rzz(0) Rzz(1) · · · Rzz(p− 1)

RT
zz(1) Rzz(0) · · · Rzz(p− 2)
...

RT
zz(p− 1) Rzz(p− 2) · · · Rzz(0)








� �� �

R̃

r̃ = �R̃

�̂ = r̃R̃−1
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where M(q) ∈ R
2×2 is the inertia matrix, C(q,Pq) ∈ R

2×1 
are the Coriolis and centrifugal terms, G(q) ∈ R

2×1 are 
the gravitational torques, and τ = [τ1, τ2]

T ∈ R
2×1 is 

the joint torque vector, which is sum of control input 
u and motor noise η . The generalized coordinates are 
q = [q1, q2]

T ∈ R
2×1 , whereq1 is the angle of the lower 

body link (link 1) measured from the upright position, 
and q2 is the relative angle of the upper body link (link 2) 
measured from the lower body link position. The angles 
represent sagittal plane ankle and the hip joint motions, 
respectively.

Defining the state variables as x = [qT , q̇T ]T , (22) can 
be rewritten as

The nonlinear equations of motion can be linearized 
about the equilibrium point of the model or the upright 
balancing posture ( x∗ = 0 , u∗ = 0 , and η∗ = 0 ) as follows

where Ac and Bc are linearized state and input matri-
ces, respectively. Subscript c stands for continuous-time. 
Evaluation of the Taylor expansion around a fixed point 
yields the following, very simple equations, given in block 
form by:

With the state feedback controller u = −Kxx , the closed-
loop system matrix is obtained as

Appendix 4: Discrete‑to‑continuous conversion
The method described in this paper is based on discrete-
time system model, but sometimes continuous-time 
models are more convenient. In such cases, the discrete-
time system parameters obtained using the new method 
should be properly converted to continuous-time 
approximation.

In the example in Numerical simulation: balance 
model, we used semi-implicit Euler integrator to inte-
grate forward dynamics. Therefore the conversion from 
the continuous-time system parameters Ac to its dis-
crete-time counterpart Ad becomes

(22)M(q)Rq + C(q,Pq)Pq +G(q) = τ = u + η,

ẋ =

[
q̇

−M(q)−1(C(q, q̇)q̇ +G(q))+ τ

]

.

ẋ = Acx + Bcu + Bcη

Ac =

[
0 I

−M−1 ∂
∂q
G 0

]

x=x∗,τ=τ∗

Bc =

[
0

M−1

]

x=x∗,τ=τ∗

Acl = A − BKx .

where dt is the sample time interval. If we assume that 
the top rows of Ac are [0, I],

therefore the discrete-time to continuous-time conver-
sion is obtained as

Appendix 5: Stability assessment of rhythmic movement
Orbital stability of a limit cycle in state-space has one-
to-one correspondence to the stability of a discrete 
return map, or Poincaré map. The eigenvalues of the 
linearized Poincaré map are called characteristic or 
Floquet multipliers [40, 41].

The Poincaré map x  → P(x) relates the state of a sys-
tem after one cycle ( xt+1 ) and its current state ( xt ): 
xt+1 = P(xt) . It follows that limit cycle trajectories cor-
respond to the fixed point ( x∗ ) of the map, x∗ = P(x∗) , 
and the (local) orbital stability of the limit cycle is 
equivalent to the stability of the corresponding fixed 
point of the map on the Poincaré section. To evaluate 
the effects of small perturbations on x∗ , the Poincaré 
map can be linearized:

Denoting Ap = ∂P
∂x
|(x=x∗) and assuming x∗ = 0 without 

loss of generality, also assuming white process and meas-
urement noise, we obtain the following expression,

to which (9) can be readily applied to obtain Âp . The 
maximum Floquet multiplier is the eigenvalue of Âp with 
the largest modulus.
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[
I dtI
0 I

]
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[

0 dt2I
0 dtI

]

Ac

Ad =
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I 0
0 I
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+
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