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Abstract

Background: High quality head-mounted display based virtual reality (HMD-VR) has become widely available, spur-
ring greater development of HMD-VR health games. As a behavior change approach, these applications use HMD-
VR and game-based formats to support long-term engagement with therapeutic interventions. While the bulk of
research to date has primarily focused on the therapeutic efficacy of particular HMD-VR health games, how devel-
opers and researchers incorporate best-practices in game design to achieve engaging experiences remains under-
explored. This paper presents the findings of a narrative review exploring the trends and future directions of game
design for HMD-VR health games.

Methods: We searched the literature on the intersection between HMD-VR, games, and health in databases includ-
ing MEDLINE, Embase, CINAHL, PsycINFO, and Compendex. We identified articles describing HMD-VR games designed
specifically as health applications from 2015 onwards in English. HMD-VR health games were charted and tabulated
according to technology, health context, outcomes, and user engagement in game design.

Findings: We identified 29 HMD-VR health games from 2015 to 2020, with the majority addressing health contexts
related to physical exercise, motor rehabilitation, and pain. These games typically involved obstacle-based challenges
and extrinsic reward systems to engage clients in interventions related to physical functioning and pain. Less com-
mon were games emphasizing narrative experiences and non-physical exercise interventions. However, discourse
regarding game design was diverse and often lacked sufficient detail. Game experience was evaluated using primarily
ad-hoc questionnaires. User engagement in the development of HMD-VR health games primarily manifested as user
studies.

Conclusion: HMD-VR health games are promising tools for engaging clients in highly immersive experiences
designed to address diverse health contexts. However, more in-depth and structured attention to how HMD-VR
health games are designed as game experiences is needed. Future development of HMD-VR health games may also
benefit from greater involvement of end-users in participatory approaches.
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management [1-3], phobias, anxiety and other disorders
or health conditions [4-13]. VR as a concept has come
to include a wide range of digital technology applica-
tions where the user perceives and interacts with a com-
puter-generated virtual environment, whether through a
traditional 2-dimensional (2D) display, a projected dis-

Background

In recent years, there has been a rapid growth in the
reported use of virtual reality (VR) in the treatment of a
variety of clinical conditions, such acute and chronic pain
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play paired with 3D glasses, or a head-mounted display
(HMD). Given such diverse types of display technologies,
comparisons may not be reliable, and so this review is

©The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or

other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativeco
mmons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.


http://orcid.org/0000-0001-5406-4956
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12984-020-00801-3&domain=pdf

Tao et al. ] NeuroEngineering Rehabil (2021) 18:31

focused on HMD-VR technology applications. Similarly,
general software content of HMD-VR ranges from artis-
tic virtual experiences, to simulations, to games. This
review focuses on games designed specifically as health
applications, or HMD-VR health games.

Advances in HMD-VR technology

Research in the 1980’s with early computer graphics
explored the potential for computer-generated VR expe-
riences with HMDs. At the time, computer processing
power was very limited while HMDs were unreliable and
cost tens of thousands of dollars. More recently, com-
mercially available computer and graphics technology
has become capable of rendering realistic high resolution
3D imagery in real-time. The current level of technology
is far removed from devices we were using in research
even five years ago (such as the Oculus Rift Develop-
ment Kit 2). In 2005, basic cloth simulation was hailed
as showpiece technology, whilst modern 3D rendering
cards with integrated physics support can simulate indi-
vidual human hair movement in complex lighting situa-
tions. This technological progress has made modern VR
devices much more immersive, providing a much bet-
ter sense of presence for demanding VR gaming users,
and more importantly, less prone to technical problems
than their early counterparts. Whilst the typical cost of
a high-end consumer HMD-VR set-up remains high for
individual consumers ($2000 or more, including gaming
computer and headset system), this generation of tech-
nology has seen substantial use in research settings [14].
Moreover, VR technology companies have released more
accessible, affordable, and easy to use HMDs, e.g. Ocu-
lus Quest (Facebook, Menlo Park, USA). These advance-
ments will support greater accessibility of HMD-VR,
including HMD-VR health applications.

Applying gaming and HMD-VR in health

The key element in these HMD-VR health applications is
the use of immersive media content to engage the users
in a stimulating interactive experience, where they feel a
sense of presence in a different and novel environment
[14, 15]. This is quite different from two-dimensional
computer based gaming implementations. Presence
here, refers to the sense of actually being within an envi-
ronment that is generated by technological means [14,
16-18]. It involves the participant as a co-constructor
of the experience, and this concept is well-established in
computer science [14]. Although third-person perspec-
tives have been used and discussed in VR gaming experi-
ences, this has not been a major focus for health game
application developers, as the potential for VR to engen-
der a sense of first-person presence represents one of its
main attractions [19, 20]. Hence, this review has focused
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on HMD VR implementations, as the most common and
rapidly developing field in VR health gaming applications.

The typical content takes the form of either a game or
a purposeful, yet non-gaming, first-person virtual experi-
ence. A common application of the latter is seen in expo-
sure therapy whereby patients with phobias are presented
with the source of their anxiety or fear in a controlled
and graded manner in order to help them overcome their
distress response [21]. Another example is Virtual Medi-
tative Walk where users follow a guided meditation to
reduce anxiety and chronic pain. In this virtual environ-
ment, EEG biofeedback of entering relaxed mindful state
causes mist to appear in the virtual forest [22]. Alterna-
tively, off-the-shelf commercial HMD-VR games may be
used as novel adjunctive interventions. Exercise-based
games such as Audioshield [23] and Beat Saber [24] are
rhythm-based HMD-VR games where players have to
physically move their bodies to play. Beyond cardiovas-
cular exercise, such games are of therapeutic interest for
their involvement of psychomotor skills and even cogni-
tive skills. Yet, the principal appeal behind using games
for therapy, whether HMD-based or not, has been their
potential to support sustained adherence to therapy
[27-29]. As such, game-based therapy may be viewed as
an approach to behavior change [30]. However, oft-the-
shelf commercial HMD-VR games are limited in their
application. As they are designed for general able-bodied
audiences, they may not be suitable for health contexts
involving physical or cognitive limitations.

Another approach has involved developing games
specifically as health applications [31-33]. For example,
rehabilitation games for stroke recovery have seen tech-
nology implementations pairing motion capture tech-
nology with both 2D televisions and HMDs [34]. Health
games are usually designed to address limitations in body
functions or mental health, build specific skills, or pro-
mote positive behaviors in the player. They often involve
combining elements such as puzzles, graded difficulty,
matching patterns, repetitive exercises, exploring an
environment, or simply providing a pleasing and distract-
ing experience. An early example includes Hunter Hoff-
man’s SnowWorld, which used an older generation of
HMD-VR technology. In SnowWorld, patients who had
suffered burns throw snowballs at snowmen and pen-
guins to reduce their pain [38, 39]. Such HMD-VR health
games aim to combine the advantages of a fun and moti-
vating game with clinically grounded approahces.

Game design for HMD-VR health applications

Developing games as health applications using HMD-
VR requires a broad intersection of theoretical and
technical lenses. These include biomedical and psycho-
social perspectives on health, computer and engineering
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technologies, human computer interaction theory, and
ultimately game design. Several approaches to game
design have been articulated by Salen and Zimmer-
man [35], Schell [36], and Fagerholt and Lorentzon [37].
Games may be fundamentally described as systems with
defined rules, explicit objectives, and quantifiable out-
comes, whereby interaction with these systems give rise
to a playful experience [36]. These systems may be con-
trasted with other artefacts such as playgrounds, where
there are no game rules, or training simulators, where
play is not an important aspect of the experience. The
ultimate design goal, according to Salen and Zimmer-
man, is an experience of meaningful play, which “occurs
when the relationships between actions and outcomes
in a game are both discernable and integrated into the
larger context of the game” [35].

Considering Hunicke and colleague’s Mechanics-
Dynamics-Aesthetics (MDA) framework [38], mean-
ingful play can be understood through the Aesthetic
experiences produced by a game such as fantasy, chal-
lenge, discovery, self-expression, etc. These Aesthetic
experiences are the cumulative emotional and intel-
lectual product of the game Dynamics: the various
ways the player interacts, makes choices, and plays the
game. Examples of Dynamics include resource manage-
ment, time pressure, cooperation, collection, building,
or other strategies. Underpinning the game Dynamics
are the Mechanics that make up the objects and rules of
the game. For example, Mechanics in Chess include the
board layout, the different pieces, how the pieces can
move and capture other pieces, and the objective and
outcome of checkmating your opponent. With this con-
ception of games in mind, we may consider the strengths
and benefits of using HMD-VR for gameplay experiences
and their impact in context of health applications. Pri-
marily, HMD-VR greatly contributes to aesthetic experi-
ences that rely on sensory immersion, e.g. discovery and
fantasy.

Moreover, the quality of game design ultimately
impacts stakeholder adoption of these games as health
technology [39-41]. To this end, stakeholder engage-
ment throughout the research and development process
has also seen increasing emphasis [39, 42, 43]. Overall,
HMD-VR health games represents a growing field, and
some researchers are now beginning to compare the
value of different hardware and software applications in
this area [44]. Reviews including HMD-VR health games
typically focus on efficacy in a specific context [2, 21,
45]. However, it is unclear how differences in the game
design of HMD-VR health games impact their effec-
tiveness compared to others. Often, broad compari-
sons are made in terms of very different systems, users,
and assessment tools. We are gaining some ideas about
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the important elements in designing user accessible and
effective HMD-VR experiences overall [14, 46, 47], but
within this sphere, the value of good game design in the
effectiveness of a health game remains relatively unex-
plored. Yet, it represents a significant part of the puzzle.
Game design underpins the mechanisms by which HMD-
VR health games influence patients as a behavior change
approach. Therefore, an exploration of the application of
game-design in HMD-VR is a significant and worthwhile
area to explore further. To this end, we conducted a nar-
rative review characterizing the current state and consid-
erations of game design in HMD-VR health games.

Methods

To explore game design in HMD-VR health games, a
literature search focusing on the intersection between
HMD-VR, games, and health was undertaken. Biblio-
graphic health databases searched included MEDLINE,
Embase, CINAHL, and PsycINFO. The engineering data-
base Compendex with a search restriction to the “health”
topic was also used. To narrow VR-related literature to
only HMD-VR, the keywords: HMD, head mounted dis-
play, and virtual headset were used as search terms. For
games, the keywords: game, gaming, and exergame were
used. Search results were restricted to the English lan-
guage. To capture the current generation of HMD-VR
we also restricted results to those published from 2015
onwards. All search results arising from the Boolean
“AND” of the HMD-VR and games search results were
screened. Title and abstract screening included any arti-
cles mentioning VR or games in a health context. The full
text screening criteria are provided in Table 1.

HMD-VR health games were charted and tabulated
according to the type of input technology implementa-
tion, health context (i.e. clinical population, condition, or
type of intervention), outcomes used in the evaluation of
the game, and user engagement employed during game
design, if any. Given the wide range of approaches to
game design and reporting, a narrative review appeared
the most appropriate approach. Accordingly, we sum-
marized each reviewed game according to the MDA
framework and narratively described observed trends.
Furthermore, we tabulated outcomes related to evalu-
ation of identified games according to therapeutic
outcomes, game experience, technology acceptance,
cybersickness, and open feedback. Tabulated results were
also integrated into each topic of discussion.

Findings

The complete search was conducted on March 16, 2020
and identified 140 potentially relevant articles. Dedu-
plication yielded 94 unique articles. Title and abstract
screening identified 47 articles related to HMD-VR,
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Table 1 Inclusion and exclusion criteria
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Inclusion criteria

Exclusion criteria

Original articles describing the design of a digital application specifically for health contexts (e.g. reducing symptoms,

recovering body or cognitive functions, or maintaining health)
Use a HMD-VR as the display and interaction technology
Describes the VR application as a game
Available in the English language
Published in peer reviewed academic or professional journals

Only used commercially
available HMD-VR games
designed for general audi-
ences

Opinion or narrative discus-
sions that did not report
on the use of a specific
VR-based game

Grey literature

games, and health. Upon full-text screening, 30 articles
were identified as describing HMD-VR games designed
specifically for health contexts [48—77]. One article ref-
erenced previous work with greater detail related to game
design and was retrieved [57]. The 29 HMD-VR games
are summarized in Table 2 and evaluation outcomes are
characterized in Table 3. All data are provided together in
Additional file 1.

Health contexts and end-users
Of the HMD-VR health games reviewed, the most com-
mon health contexts included physical exercise, motor
rehabilitation, and pain related conditions. Physical exer-
cise games were aimed at both healthy adults and those
with various health conditions. For example, Tuveri and
colleagues designed Rift-a-bike to engage a general audi-
ence in cycling-based exercise [49] while Eisapour and
colleagues focused on exercise for people with dementia
[74]. Other health contexts ranged from addressing sen-
sory disorders [70] to cognitive functioning [53]. Overall,
these contexts are consistent with applications found in
the broader health VR field, which includes non-game
and non-HMD applications [78—80]. However, some key
areas were not represented in the games reviewed. While
HMD-VR applications have been used for mental health
disorders such as phobias, depression, or body dysmor-
phia, those conditions have not seen HMD-VR health
games designed specifically for them [14, 21]. Perhaps,
for conditions such as mild depression, off-the-shelf com-
mercial exergames (HMD-VR or otherwise) may suffice
for improving certain aspects of function [81]. In such
cases, a specifically developed HMD-VR health game
may be unnecessary. Nevertheless, commercial game-
based interventions may not always be an appropriate
method of treatment delivery for these underrepresented
health conditions. More research is necessary to under-
stand how game playing and using HMD-VR, can sup-
port or conflict with therapies for such health conditions.
Conversely, HMD-VR games based on therapies
involving physical movement were the dominant trend
observed. In this context, the choice of interaction

technology is particularly important. While HMD-VR
provides the principle means of immersing the user in
an environment, the quality of motion tracking deter-
mines the perceived realism of a user’s actions impact-
ing the virtual environment [82]. This technology choice
must also be aligned with the therapeutic modality, as
each technology has its limitations. For example, skeletal
tracking [83] is suitable for health applications involving
gross movement over larger ranges of motion, as Sisto
and colleagues used skeletal tracking for determining
risk of musculoskeletal disorder during gameplay [54].
Conversely, hand tracking [84] is more suitable for exer-
cises involving fine finger control, as seen in VRheab [56].
Therefore, the intersection of the health context with the
interaction technology underpins the scope and technical
limitations within which HMD-VR health games must be
designed.

Intersection of health context with interaction technology
HMD-VR health games have relied on the successful
commercialization of economical VR headsets with suit-
able features for entertainment such as high-resolution
displays, accessible development tools, and comfort.
Moreover, the improved ability to track headsets with
six degrees of freedom (i.e. up/down, left/right position
and rotation about three perpendicular axes, pitch, roll
and yaw) allows for more natural and immersive inter-
action with virtual environments. Compared to tradi-
tional 2-dimensional (2D) displays, playing games within
the greater immersion of HMD-VR can lead to overall
greater satisfaction, with emphasis on engrossment and
creative freedom [85]. From the studies we reviewed, Xu
and colleagues showed greater immersion, effort, flow,
and affect in an HMD condition compared to a large 2D
display during an exergame [77]. Other studies have dem-
onstrated that HMD-VR heightens emotional responses
such as happiness, anxiety, or surprise compared to 2D
displays [47, 86]. Yet, the application of HMD-VR may
also depend on the population and type of intervention.
For example, Howes and colleagues [75] found their
older adult participants preferred a 2D display over HMD
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Table 3 Outcomes from evaluation of identified games

Page 13 of 21

Author Year None Therapeutic Game Acceptance (usability, Cybersickness Open
(system outcome experience usefulness, etc.) feedback/
overview) Interview

Gobron et al. [50] 2015 - - - v - -

Shaw et al. [55] 2015 - v v v v v

Gromala et al. [48] 2016 v - - - - -

ljaz et al. [63] 2016 - - v v - -

Lv etal. [65] 2016 v - - - - -

Thomas et al. [71] 2016 - v - - - -

Tuveri et al. [49] 2016 - - v v - -

Howes et al. [75] 2017 - - - v - v

v

Nielsen et al. [67] 2017 - - - v - -

Ambron et al. [58] 2018 - v - v - -

Avola et al. [56] 2018 v - - - -

Caggianese et al. [53] 2018 v - - - - -

Czub and Piskorz [59] 2018 - v v v - -

Eisapour et al. [78] 2018 - v v v - -

Huang et al. [61] 2018 - v - - - -

Lee and Kim [64] 2018 - v - - - -

Mihajlovic et al. [66] 2018 - v v - - -

Piskorz and Czub [68] 2018 - v - - - -

Proffitt et al. [69] 2018 - - - v - v

Sisto et al. [54] 2018 v - - - - -

Dias et al. [60] 2019 - v - v - -

ljaz et al [62] 2019 - v v v - -

Nehrujee et al. [76] 2019 - v - v 4 -

v

Rossi et al. [70] 2019 - - - v

Tong et al. [51] 2019 - v v v - v

Yao and Kim [72] 2019 - v v - - -

Yaramothu et al. [73] 2019 - v - - - -

Xu et al. [20] 2020 - v v v v -

*Barathi et al. [57]; Far- 2018; 2019 - v v v - v

row et al. [52]

*These two articles describe the same HMD-VR health game. The outcomes were combined

during a balance training game. In an upper extremity
focused game, post-stroke participants had mixed prefer-
ences [69].

Motion controls allow users to interact with virtual
environments using their natural body movements. In
combination with HMDs, motion control allows for
designing game mechanics that rely more on such natu-
ral movements, spatial awareness, and binocular vision
e.g. puzzles requiring viewing and manipulating objects
from multiple angles [87]. Of the HMD-VR health games
reviewed, nine relied on the headset alone. An equal
number used skeletal tracking technology to capture
movements of the player’s body and limbs to control the
game. For physical exercise, five games used stationary

cycles. A few games used hand motion controllers or
optical hand tracking while two others involved robots
for upper limb rehabilitation. These types of motion con-
trols allow for more intuitive interactions with virtual
game environments, compared to traditional gamepads
or mouse and keyboard combinations [88]. However,
of the games we reviewed, game design focused less on
unique mechanics afforded by HMD-VR and more on
its presence and immersion advantage. However, there
remains a tension between designing interactions that
are intuitive (e.g. using hand movements to manipulate
levers on a machine) and simple and reliable (e.g. per-
forming complex actions by pressing a controller button)
[89]. Moreover, players’ familiarity with traditional game
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controls may impact their expectations and perceptions
of the game [90]. Ultimately, these diverse features allow
for VR applications that target a variety of health con-
texts. Moreover, they enable therapeutic methods that
would otherwise require substantial physical resources
(e.g. varied, dynamic, and highly controlled training sce-
narios) [91] or would not be possible (e.g. virtually exag-
gerated or reduced body movement) [92].

Cybersickness remains a persistent challenge in HMD-
VR design considerations [14]. Indeed, individuals with
a history of motion sickness or cybersickness were nec-
essarily excluded in some studies reviewed [57, 74, 76].
Moreover, the consideration for cybersickness limits
game design from certain ways of implementing game
mechanics, especially with respect to moving through the
virtual world [93]. Porcino and colleagues have proposed
some design guidelines on how to reduce cybersickness,
including minimizing field of view changes not in the
player’s control and reducing the acceleration of move-
ment [94]. In our review, Barathi and colleagues designed
their cycling game to keep the player’s view fixed for-
ward to minimize cybersickness. Participants who played
Lumapath said static and clear geometric shapes with
high contrast helped them feel grounded, however the
HMD’s weight became uncomfortable. Yet, videogame
players have also demonstrated a willingness to toler-
ate such usability disadvantages in exchange for a more
immersive experience [89]. However, it remains unclear
whether such attitudes persist in populations less famil-
iar with videogames, or in clinical populations, where it
may be exacerbated by other issues that make them more
susceptible.

Game design in HMD-VR health games

HMD-VR health games presented game design with a
range of detail (Table 2); 8 of 29 games lacked sufficient
detail to summarize in terms of mechanics, dynamics,
and aesthetics. Meaningful play, which has been previ-
ously discussed in games for health [31, 32], was not
mentioned at all, while only a handful of studies framed
game design in terms of designing gameplay or mechan-
ics [48, 51, 54, 55, 57, 60, 63]. In many studies, especially
those where multiple small-scale games were involved,
game design was typically described as a brief scenario
in terms of game controls, thematic setting, primary
activity, and game outcome, which was usually a score.
For example, the lower limb rehabilitation game BeThe-
Ball for post-stroke patients was described as a scenario
where players “perform at a faster path motivated by his
own high-score presented in the form of a ghost [by]
maximizing accuracy and velocity” and included “dif-
ferent types of races and environments” Such descrip-
tions provide a rudimentary overview of the mechanics
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and aesthetics of the game, i.e. the rules of the game and
how the designers want the player to feel while playing it.
However, greater detail in the reporting of game design
is required to understand how the game dynamics sup-
port moment-to-moment engagement of the player with
the game. Being able to discern the actual strategies and
approaches to game playing that are designed for players
to enact will help us to better understand how particular
game design choices work to support behavior change.
In studies that did provide greater detail, few explicitly
addressed game design on a theoretical level [48, 60].
Notably, one game was designed in consideration of the
MDA framework [57].

As the majority of HMD-VR health games targeted
physical exercise and motor rehabilitation, game design
trends tended to follow the mechanics and aesthetics typ-
ical of exergames [95]. A common approach to designing
the rules and structure of the VR game involved directly
recreating the therapeutic task and applying points and
scoring mechanics to the performance of this task. For
example, cycling games for physical exercise typically tied
to the power generated or distance travelled by the player
to their score as they navigate obstacles [49, 55]. Indeed,
points, scoring, or prize mechanics were specified in 17
games, with many emphasizing these mechanics as key
sources of motivation. Rewards-based mechanics gener-
ally give rise to game dynamics involving time pressure
and striving for the highest score, with an overall game
aesthetic of improvement and accumulation by over-
coming challenge. For example, both Cycling Obstacle
Course [55] and Rift-a-bike [49] attribute player moti-
vation to such reward mechanics. Some games recreate
scenarios involving activities of daily living with con-
trolled parameters, allowing for graded difficulty [53, 61].
Overall, these approaches to supporting motivation lean
more towards “gamification” [96, 97] of therapeutic tasks,
whereby game mechanics are implemented to serve pri-
marily as feedback and reward, similar to that provided
by a coach or therapist, and less to build interesting game
dynamics and aesthetics. They have the advantage of
being familiar, providing direct feedback for the task, and
being clear in therapeutic relevance. However, as a games
that rely heavily on extrinsic rewards (points and badges),
they may be limited in sustainable engagement without
attention given to crafting intrinsically rewarding game
experiences [98]. Barathi and colleagues [57] discussed
intrinsic motivation in their exercise game, though it was
still in context of scoring and overcoming challenge. In
games by Ijaz and colleagues, self-determination theory
was cited as underpinning motivation for playing games
[63]. However, they did not discuss how it was incorpo-
rated into game design.
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Only three games involved narrative as a means of
engaging end-users. For example, the upper-limb stroke
rehabilitation game, “A Priest in the Air’, sets the player
traveling through different countries in an air balloon
to reach a king, using arm movements to guide the bal-
loon into point-scoring objects [60]. Other games sim-
ply involved aesthetics in terms of thematic setting and
goals [62, 70, 76]. One game used pedaling mechanics to
navigate a city and capture unique creatures [62] while
another used the mechanics of capturing a flying butter-
fly to elicit head movements for neck rehabilitation [66].
However, these games still relied primarily on “do more
to score more” dynamics.

Conversely, a few game designs involved mechanics
and dynamics that focused on aesthetics of sense-pleas-
ure, discovery, and narrative. Gobron and colleagues
used the mechanics of a robotic-pedal interface as pilot-
ing controls for a spacecraft [50]; in this way the mechan-
ics directly supported embodiment of the game aesthetic.
In Mobius Floe, high levels of interactivity and multisen-
sory elements aimed to immerse the end-user in a win-
try environment. Hostile objects and combat mechanics
served metaphorical roles to involve the end-user in
a symbolic narrative of overcoming pain [48]. In a user
study of “LumaPath’} a movement-based exploratory
game set in a fantastical world for individuals with arthri-
tis, end-users emphasized that exploration was what
kept them engaged as well as comfortable with learning
the game [51]. The immersive advantages of HMD-VR
directly support the design goal of creating these types
of aesthetic experiences that focus on being present in
a particular environment. In comparison, aesthetics
focused on the achievement of high scores are less reliant
on HMD-VR to be successful, as the experience of get-
ting points and a high score can be equally effective when
presented on a 2-dimensional display. As such, exer-
games focused on point-scoring may benefit from game
design that employs mechanics and dynamics that better
leverages the advantages of HMD-VR. The cycling game
by Barathi and colleagues follows this route by creating
dynamic moods of calm and urgency as the player fulfills
the role of a bicycle delivery person weaving in and out
of traffic [57]. At a smaller scale, multisensory design ele-
ments such as visual effects and audio cues were often
pointed to specifically for providing feedback and lending
sense-pleasure aesthetics: for example, particles emitting
from a butterfly [66] or sounds accompanying reward
collection and other events [60, 70].

Overall, the HMD-VR game design discourse for
health application echoes that of game design related to
non-immersive VR health applications, where the focus
remains on using numerical feedback and reward systems
to drive motivation and engagement [80]. For example,
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Burke and colleagues link meaningful play in games for
stroke rehabilitation to performance feedback of the
therapeutic task in the form of scoring or progress bars.
Indeed, the majority of HMD-VR health games reviewed
highlighted scoring points as a core mechanic.

Within the HMD-VR health games literature, there
lacks a more thorough discussion of designing the game
as a compelling game in-of-itself. From the games indus-
try, one common way of discussing a game is in terms
of its core loop: the primary repetitive series of actions
that a player takes while interacting with the game [99].
This is the “heart” of the game and is made up of the most
essential mechanics and dynamics of a game. For exam-
ple, the core loop of soccer involves a cycle of position-
ing, dribbling, and shooting. Having a core loop that is
in-of-itself compelling for players to engage with, is key
to making games effective at supporting motivation and
engagement with therapeutic tasks. It is what underpins
the behavior change aspect of the intervention. Without
creating a good core loop, one is left with an interactive
virtual environment, but a potentially boring game.

Beyond a well-designed core loop, the duration of the
whole health game experience should also be explicitly
addressed, whether as a course of treatment spanning
several sessions or something lasting years. Commer-
cially, some games are designed to be played through
once or twice, e.g. puzzle or story-driven games, while
most games are designed to be played repeatedly with-
out limit. Given the latter is an implicit objective of most
health games as behavior change tools, replayability is a
crucial consideration. While the concept of replayability
has been touched on [32], it has not been featured as a
fundamental design goal for successful health games.
Nevertheless, the HMD-VR health games reviewed have
used mechanics such as varied challenges, goals, and
environments to support replayability [57, 74]. Cycling
Obstacle Course [55] and A Priest in the Air [60] also
involve decision-making through branching paths that
can also support replayability. Other approaches in games
industry include varied player abilities, player roles, or
mechanics using randomization [100]. Oppositional
games such as chess or soccer succeed in replayability
by having game with large possibility spaces where play-
ers must choose amongst many approaches to playing
the game and respond to their opponents’ choices. Ulti-
mately, replayability relies on game dynamics that remain
interesting for players to engage with over repeated play
sessions. Some academic literature has aimed to provide
guidance on designing for replayability [101].

Renowned game designer Sid Meier once defined
games as a series of interesting decisions [102]. Cer-
tainly, the success of a game’s core loop or its replayabil-
ity may be judged by how well it continuously provides
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players with such “interesting decisions”” Future develop-
ment of HMD-VR health games may benefit from greater
attention to these design considerations. Finally, a more
detailed account of game design in future reporting may
facilitate more holistic evaluation and adoption of these
games in clinical practice.

Evaluation and adoption of HMD-VR health games

Of the studies reviewed, 24 involved evaluation of HMD-
VR health games while five studies were purely descrip-
tive of the technology (Table 3). Moreover, six studies
captured qualitative user feedback using open-ended
questionnaire items or semi-structured interviews. For
quantitative measures, therapeutic outcomes such as
energy output for exergames or visual analog scale for
pain reduction were evaluated for 17 games. While these
outcomes primarily serve to measure clinical status and
therapeutic efficacy, they also underpin how a given
therapeutic approach is translated into the game for-
mat. In terms of game design, therapeutic outcomes are
often incorporated into game mechanics such as scor-
ing or adaptive game difficulty. For example, exercise
games by Barathi and colleagues as well as Shaw and col-
leagues reported power output of and calories burned by
the player [55, 57]. The benefit in this case is that play-
ers receive feedback that is obviously relevant to their
progress in addressing their health goals. However, this
approach should be used with caution, as therapeutic
progress is sometimes discouragingly slow [103]. More-
over, the incorporation of therapeutic outcomes into
game design should be consistent with and support game
dynamics and meaningful play.

While therapeutic outcomes remain the principle indi-
cator of a health technology’s overall usefulness, adoption
by users is also crucial in determining the long-term via-
bility of a technology [104]. Adoption captures the users’
inclination towards accepting and using an HMD-VR
health game. Taking into account constructs contributing
to adoption by users during the design and development
process can support maximizing the adoption potential
of health games. For example, qualitative feedback from
older adults who played Lumapath highlighted a need
for more guidance through the game experience to aid
usability [51]. Indeed, while some of the reviewed studies
relied on researchers and clinicians to provide guidance,
others included instructions, videos, and in-game tutori-
als or practice scenes to support usability [48, 59, 60, 63,
71, 74].

Quantitatively, constructs of technology adoption were
evaluated in 16 studies primarily using ad-hoc question-
naires. These included constructs such as satisfaction,
motivation or willingness to use, or ease of use. Validated
measures such as the System Usability Questionnaire
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[105] appeared in three studies and the Intrinsic Moti-
vation Inventory [106] was used for only one game.
Similarly, 4 studies measured cybersickness either with
ad-hoc Likert items or using the simulator sickness ques-
tionnaire [107]. While ad-hoc questionnaires can be tai-
lored for the unique design goals of a HMD-VR health
game, using validated measures can aid in making com-
parisons between games. Moreover, technology adop-
tion theory appears largely absent from the literature
reviewed. For example, the Unified Theory of Acceptance
and Use of Technology (UTAUT) is a popular model for
comprehensively describing the antecedents of inten-
tion-to-use technology generally [108, 109]. Specifically,
Huygelier and colleagues used the UTAUT to explore
acceptance of HMD-VR by older adults [110]. Design-
ing HMD-VR health games with consideration for adop-
tion and usability theory may also serve to ensure any
weaknesses of these games are attributable to their game
design as opposed to limitations in usability.

Ultimately, the purpose of leveraging a game format
is to support sustainable engagement with a therapeutic
approach. As such, successful game design inherently
supports adoption and serves as a means of behav-
ior change for therapeutic adherence. In this respect,
HMD-VR health games have been evaluated by how
engaging an experience they are. For 12 games, game-
play experience was evaluated using ad-hoc Likert scale
questionnaires, with occasional usage of more formal
questionnaires such as the Game Experience Question-
naire [111] or Igroup Presence Questionnaire [112].
Overall, evaluation of gameplay experiences focused on
constructs such as fun or enjoyment, immersion and
presence, and game difficulty. Together, enjoyment and
presence speak to how effectively the game involves the
player in the aesthetic experience. Perceptions of game
difficulty can indicate how well game dynamics engage
or challenge players without frustrating them. How-
ever, measures of fun and enjoyment lack specificity in
the multiple ways a game may succeed as an aesthetic
experience. For example, participants who played Luma-
Path highlighted how exploration was what they liked
most and aspects of the game that limited exploration
detracted from their experience [51]. This is quite differ-
ent from how a high intensity cycling exergame achieves
an enjoyable aesthetic experience through challenge and
extrinsic rewards [57]. Moreover, evaluation of gameplay
experiences have typically involved impressions dur-
ing or shortly after first encountering the game and with
limited time to master game mechanics and dynamics.
Currently, the field exists in a state of perpetual novelty.
As the field of HMD-VR games for health continues to
grow, understanding the qualities that distinguish more
successful game design in the health context will require
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longer-term and aesthetic-oriented evaluations of game-
play experience.

Stakeholder engagement

In order to improve the adoption potential of health
technologies for patients, there have been increasing
calls to incorporate stakeholder engagement through-
out the technology development process, with particular
emphasis on involving end-users [39, 43, 113]. For HMD-
VR health games, key stakeholders not only include
end-users, but also informal caregivers and clinicians.
Stakeholder engagement in technology development
encompasses a range of activities from basic user testing
and feedback to more participatory or co-design oriented
approaches [42].

Of the 29 HMD-VR health games reviewed, 4 indicated
collaboration with clinicians for designing the game [60,
61, 65, 74]. However, details of the collaboration were
not typically discussed in-depth. As indicated by usabil-
ity and gameplay experience outcomes, the majority of
articles involved various forms of user testing, with some
providing opportunity for end-users to give feedback
through interview responses. These approaches generally
align with user-centered design, which emphasizes itera-
tive prototyping and testing in order to ensure products
are usable and useful for end-users [114]. However, user-
centered design (UCD) was not explicitly indicated as
an approach in all but one of the reviewed articles [74].
In non-HMD-VR health games, UCD has been a com-
mon development approach. For example, Brox and col-
leagues proposed a UCD protocol specific to designing
exergames for older adults. In a review of health games
(including non-HMD-VR) for anxiety and depression,
UCD informed the design in 7 out of 20 games [115].
Beyond UCD, which has traditionally positioned end-
users as purely informants, design in research settings
have seen a shift towards more collaborative and partici-
patory approaches such as co-design [116, 117].

Engaging end-users through participatory approaches,
including the field of co-design, may be particularly ben-
eficial in the context of HMD-VR, as this context relies
on more dynamic human—computer interactions with
practical issues that can make implementation challeng-
ing. More participatory approaches aim to empower
stakeholders as equitable partners in designing tech-
nology and are characterized by mutual commitment,
learning, and alignment with stakeholder values [118].
Participatory projects may use methods such as recur-
rent workshops and focus groups or involve stakeholders
as full team members to meaningfully incorporate stake-
holder perspectives in design decisions [116]. For exam-
ple, future development of games such as Lumapath may
involve older adults throughout the design process to
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help address topics such as guidance, input simplicity, or
further capitalizing on exploration as the main motivat-
ing factor, rather than identifying such considerations in
later testing. As such, participatory approaches may sup-
port a more democratic method of identifying and valu-
ing person-centered considerations regarding usability,
playability, and therapeutic value early and throughout
the design process of HMD-VR health games.

Of the studies reviewed, only one described engage-
ment with end-users in the design process beyond a
purely informant capacity. Eisapour and colleagues fol-
lowed a participatory design approach involving both
clinician users and end-users with mild cognitive impair-
ment [74]. Their approach used focus groups and user
tests to collaboratively decide on thematic setting, thera-
peutic exercises to include, and implementation of inter-
actions. This process aided the authors in prototyping an
exergame that aligned with end-users’ preferences and
addressed hidden problems early on. This example is con-
sistent with other participatory studies in similar health
technology applications. In non-gaming HMD-VR health
applications, participatory methods have been used to
prototype exposure therapy scenarios [119] and stress
reduction treatment for teens [120]. Similarly, Webster
and colleagues developed a hand rehabilitation game
with people with multiple sclerosis [121]. Ultimately, par-
ticipatory approaches may facilitate better game design at
all levels, in fine-tuning mechanics, designing satisfying
dynamics, and identifying aesthetics that resonate most
strongly with a population.

Limitations

The search strategy included articles explicitly using
HMD and VR as specific terms. As such, we may not
have captured articles using only the general term “vir-
tual reality” However, we deemed this strategy to have
much greater specificity and identifies the most relevant
articles with substantive discussion of HMD-VR.

While a narrative approach is appropriate for the
range of game design descriptions present in the arti-
cles reviewed, this approach is more interpretive than
systematic or scoping reviews. For example, game
design summaries required more interpretation where
more design details were missing. As such, the find-
ings of this review should be received accordingly.
Nevertheless, the narrative approach allows for greater
flexibility in situating the particular characteristics of
HMD-VR health games within the nuanced context of
health technology and game design.



Tao et al. J NeuroEngineering Rehabil (2021) 18:31

Conclusions

HMD-VR health games is a relatively new and grow-
ing field of tools for engaging clients in highly immer-
sive games designed to address health contexts ranging
from rehabilitation exercise to pain management to
sensory disorders. Our review provides a holistic over-
view of the prevailing trends in designing HMD-VR
health games, including health context, game design,
technology implementation and adoption, and user
engagement in the development process. Overall,
HMD-VR health games typically involve obstacle-
based challenges, points, and extrinsic reward systems
to engage clients in interventions primarily focusing
on health contexts related to physical functioning and
pain. The technology used to implement these games
reflects this trend, with many using skeletal tracking
and stationary cycles. Less common were games with
emphasis on narrative experiences and use of hand
motion controllers, which may better align with non-
physical exercise interventions. However, the extent
to which game-based formats (versus non-game for-
mats) or HMD-VR technology is most appropriate for
less represented health contexts such as mental health
requires more research. Nevertheless, we anticipate
further growth in diverse and complementary HMD-
VR health games.

As HMD-VR technology continues to rapidly evolve,
the opportunities and ways in which such games can
address health contexts will continue to grow. However,
these applications will continue to rely on fundamental
principles of game design. Indeed, there is a reciprocal
relationship between HMD-VR technology creating new
design spaces for games and game design needs advanc-
ing HMD-VR technology. Given the complex intersec-
tion of this relationship with health needs, the associated
game design discourse is often lacking. More in-depth
and structured attention to how HMD-VR health games
are designed as game experiences is needed. This will
support greater understanding of what design strate-
gies are most effective for achieving therapeutic goals,
including adherence. Finally, future development HMD-
VR health games may benefit from more application of
participatory approaches such as co-design, that involve
end-users throughout the development process. Success-
ful alignment of these games with end-users’ needs and
values ultimately maximizes the impact of health games
by facilitating their adoption.
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