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Abstract

Background: Traditional clinical assessments are used extensively in neurology; however, they can be coarse, which can
also make them insensitive to change. Kinarm is a robotic assessment system that has been used for precise assessment
of individuals with neurological impairments. However, this precision also leads to the challenge of identifying whether a
given change in performance reflects a significant change in an individual’s ability or is simply natural variation. Our
objective here is to derive confidence intervals and thresholds of significant change for Kinarm Standard Tests™ (KST).

Methods: We assessed participants twice within 15 days on all tasks presently available in KST. We determined the 5–
95% confidence intervals for each task parameter, and derived thresholds for significant change. We tested for learning
effects and corrected for the false discovery rate (FDR) to identify task parameters with significant learning effects.
Finally, we calculated intraclass correlation of type ICC [1, 2] (ICC-C) to quantify consistency across assessments.

Results: We recruited an average of 56 participants per task. Confidence intervals for Z-Task Scores ranged between
0.61 and 1.55, and the threshold for significant change ranged between 0.87 and 2.19. We determined that 4/11 tasks
displayed learning effects that were significant after FDR correction; these 4 tasks primarily tested cognition or
cognitive-motor integration. ICC-C values for Z-Task Scores ranged from 0.26 to 0.76.

Conclusions: The present results provide statistical bounds on individual performance for KST as well as significant
changes across repeated testing. Most measures of performance had good inter-rater reliability. Tasks with a higher
cognitive burden seemed to be more susceptible to learning effects, which should be taken into account when
interpreting longitudinal assessments of these tasks.

Keywords: Robotics, Inter-rater reliability, Intraclass correlation, Confidence interval

Introduction
Clinical assessment tools provide a foundation for the
healthcare system, guiding patient care as well as demon-
strating the benefits of novel therapeutic interventions to
ameliorate the effects of disease or injury. Many advances
have been made to improve clinical assessment tools, such
as improved imaging techniques and novel blood-based
biomarkers [1, 3]. However, assessment of brain function

continues to rely largely on physical or visual inspection
of the patient by a clinician. Such approaches often use
coarse scales to ensure similar scores across clinicians,
and also commonly have floor and ceiling effects [2, 4].
Interactive robotic systems have been used for many

years for basic research to quantify upper limb sensori-
motor function and provide an objective approach for
quantifying neurological impairments [5–8]. These tools
typically have higher sensitivity than traditional clinical
instruments [9, 10]. One such tool is the Kinarm robotic
platform (Kinarm, Kingston, ON, Canada) and its
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associated Kinarm Standard Test (KST)™ battery that
quantifies upper limb sensory and motor functions, as
well as cognition [11–16]. Each task generates a large
number of parameters that describe spatial and temporal
features of behaviour.
These robotic technologies provide considerable

granularity in measuring performance, but this leads to
the question of whether a change in performance reflects
an actual change in an individual’s ability to perform a
given task or is simply because of natural variability. For
example, has performance improved significantly if an
individual’s reaction time gets faster by 5% on a follow-
up assessment? Additionally, does learning impact per-
formance such that participants tend to be better when
assessed a second time? The answers to these questions
require knowledge of the natural variability in perform-
ance and how repeat testing impacts performance.
The objective of the present study is to quantify inter-

test variability between assessments in KSTs. In the past
we have collected large cohorts of healthy control partic-
ipants that could be used to estimate performance vari-
ability directly, assuming that all individuals are equally
capable at a given task. However, there are obvious dif-
ferences in the ability of individuals to perform various
sensory, motor and cognitive tasks [17–20]. Thus, our
strategy is to compare performance across two repeated
tests for a cohort of healthy control participants and es-
timate the confidence intervals of expected change based
on the differences in performance between the two as-
sessments. This approach will also allow us to determine
if there are any learning effects between assessments. It
will additionally provide benchmarks to use for future
studies of significant change on objective robotic assess-
ment variables. This has a wide range of potential appli-
cations, from providing a framework to quantify
expected changes in novel robotic assessment tasks, to
potentially assisting with quantifying the effects caused
by therapeutic interventions for disease and comparing
different clinical populations over time.

Methods
Participants
Participant recruitment was community-based (Kingston,
ON, Canada), and we contacted individuals who had previ-
ously participated in Kinarm studies. Participants were ex-
cluded if they: 1) had any current, or previously diagnosed,
neurological impairment, 2) they were incapable of under-
standing or properly completing the assessment protocol,
or 3) had any upper limb impairments that negatively af-
fected their ability to perform the required motor actions.
This information was obtained from a brief interview detail-
ing each participant’s medical history, performed to ensure
eligibility. Prior to the robotic assessment, participants pro-
vided written consent. Participants in our database who

had been assessed twice in a behavioural task who met the
study’s inclusion criteria were also included in the cohort.
This study was reviewed and approved by the Queen’s Uni-
versity Research Ethics Board.

Sample size ascertainment
We performed a Monte Carlo simulation to obtain an
estimated required minimum sample size of 50. Briefly,
we sampled between N = 5 and N = 100 random values
from a standard Normal distribution (mean = 0, standard
deviation = 1) and calculated the variance of the mean
and standard deviation estimated from each sample
across 10,000 iterations. We observed stabilization of
both the estimated mean and standard deviation at a
sample size of approximately 50. The variance of the es-
timated value of the mean was within ±0.02 at a sample
size of 50, and for comparison was within ±0.01 at a
sample size of 100. The variance of the estimate of the
standard deviation was within ±0.01 at a sample size of
50 and for comparison was within ±0.005 at a sample
size of 100. Thus, we selected 50 as our minimum sam-
ple size to obtain a reasonably stable result in the
present study that was also feasible from a data collec-
tion perspective.

Robotic assessment
Robotic assessment for the study was conducted on the
Kinarm exoskeleton robotic platform (Kinarm, Kingston,
ON, Canada). Participants were seated and their arms
were placed in troughs attached to each arm that sup-
ported both the upper- and lower segments of the arms,
providing full anti-gravity support. The arm troughs and
seat height were adjustable to ensure that participants
were comfortable and able to move their arms throughout
the horizontal workspace (Fig. 1). Vision of the partici-
pant’s hands was obscured by a physical barrier; visual
feedback of the hand(s) and objects was provided by a vir-
tual reality system that was aligned with the workspace.
Participants performed each of the 8 tasks presently

available in the KST battery. Detailed task descriptions
are presented in Table 1. For this study, participants
were evaluated on each task twice, each time by a differ-
ent experienced Kinarm operator. Examinations were
completed within 15 days of each other, and commonly
on the same day.

Data normalization and task scores
Values for parameters were converted into Z-scores prior
to analysis, to provide measures comparable across pa-
rameters (as opposed to varying units, e.g. seconds, me-
tres/second). These Z-scores were additionally condensed
down to Z-Task Scores and Z-M-Scores that aggregated
all parameter Z-scores into convenient summaries of over-
all performance on a task. Z-score transforms for each
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task were developed from a large cohort of healthy control
participants and consider the influence of age, sex, hand-
edness, and robotic platform on performance [15, 26].
Box-Cox equations were used to normalize the distribu-
tions. Before calculation of the Z-Task Score, parameter
scores were first Normalized and converted to Z-scores by
an iterative process of de-skewing and outlier removal
(observations |Z| > 3.29 were considered as outliers). We
then used a transform [15] to convert the two-sided Z-
Task Scores to “true” one-sided Task Scores. Z-Scores
that had a one-sided impairment (e.g. numbers of objects
hit in OH, where more was always better) were further
standardized such that impairment was always considered
to be a higher value. Mathematically, this was achieved by
transforming the Z-scores with one-sided impairment into
“Zeta-scores”. This was necessary to ensure that values

with impairments in opposing directions were represented
equally. For example, hitting more objects in OH (higher
Z-score) is always better, whereas a lower initial move-
ment direction angle (lower Z-score) in reaching tasks is
always better. This was mathematically achieved as
follows:

Zeta ¼
ffiffiffi
2

p
∙erfcinv 0:5∙ erfc

Zffiffiffi
2

p
� �� �

ð1Þ

Here, erfc refers to the complementary error function
and erfcinv refers to its inverse (implemented in Matlab
R2018a as erfc and erfcinv functions, respectively). Equa-
tion (1) ensured that “good performance” was always
represented by smaller values and “poor performance”
was always represented by higher values. Z-scores with

Fig. 1 The Kinarm exoskeleton robot, tasks performed in this study, and characteristics of the Task Score distribution. a) Participants were seated
and moved their arms in the horizontal workspace underneath a semi-transparent glass sheet. Tasks were projected onto the glass from above.
Vision of the hands was obscured, however visual feedback was provided in most tasks. b) Participants completed 8 behavioural tasks testing
motor, cognition-motor, cognitive, and sensory behavioural domains. VGR, RVGR, and APM were performed in each arm individually, yielding 2
datasets for each of these tasks. c) The Task Score cumulative density function (CDF) approximates that of the standard Normal distribution. A
Task Score of 0 is the best, and increasing values reflect poorer performance. The distribution of Mahalanobis distance scores (M-Scores) is
the same
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two-sided impairments were left alone (e.g. those per-
taining to laterality in OH or OHA, where too much
lateralization either to the left or to the right could rep-
resent impairment). Next, the root-sum square (RSS)-
distance was derived:

rssDistance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

Zi
2 þ

X
j

Zeta j
2

s
ð2Þ

This is effectively the Euclidean distance of all param-
eter Z-scores. The rssDistance was then converted to a
Z-score using the Normalization procedures employed
during parameter Z-score calculation, above. This value
was referred to as the Z-Task Score. For the Z-M-Score,
the distance function is not rssDistance, but Mahalano-
bis distance [27].
Finally, the one-sided Task Score was calculated:

Task Score ¼
ffiffiffi
2

p
∙erfcinv 0:5∙ erfc

ZTaskScoreffiffiffi
2

p
� �� �

ð3Þ

Intraclass correlation
We used intraclass correlation (ICC) correlation to sta-
tistically evaluate the relationship between first and sec-
ond Kinarm assessment performances. ICC conveys the
degree of self-similarity of elements within the same
group [28–30] and is theoretically bounded between 0
and 1 (negative values can occur in practice). For the
purpose of this study, the consistency ICC metric (ICC

(1, 3)) was used, which we refer to as ICC-C throughout.
ICC-C is calculated as follows:

ICC Cð Þ ¼ Participant variability
Participant variabilityþMeasurement error

ð4Þ

ICC Cð Þ ¼ MSS
MSS þMSE

ð5Þ

Where MSS is the mean square (MS) between subjects
and MSE is the MS of remaining error. We additionally
removed outliers prior to the calculation of the ICC-C,
as per the following discussion in the next section. We
used ICC-C as opposed to the ICC (2, 1) “absolute
agreement” ICC, because ICC (2, 1) additionally ac-
counts for systematic biases across assessments. We ex-
plicitly calculated learning effects, which are effectively
systematic biases, in the present study, and so we chose
not to additionally model them in the ICC calculation.

Significant change across assessments and assessment
confidence interval
Significant change thresholds (SC) and confidence inter-
vals (CI) were estimated by first computing the difference
in performance between the first and second assessments
and determining the variability of these difference scores.
A parameter Z-score difference (i.e. the difference be-
tween first and second assessments) exceeding ±3.2 was
considered an outlier, reflecting the fact that such a large
difference should only be observed 1 in 1000 data samples.
These outliers were not included in any further calcula-
tions; however, we quantified the number of difference

Table 1 Task descriptions

Task Description

Visually guided reaching (VGR) VGR tests the ability to make smooth and accurate reaches. Participants were required to make quick and
accurate reaches from a central target to 4 peripheral targets in sequence [11, 21].

Object hit (OH) OH required participants to hit as many virtual balls away from them as possible. The task got harder as it went
on, with balls falling faster. The task lasted for a fixed amount of time [12]. This task tests bimanual motor skill.

Ball on bar (BOB) BOB tests bimanual coordination. Participants were required to move a ball balanced on a bar to a sequence of 4
targets, matching as many as possible in the 1 min allotted per level. In level 1 the ball was fixed to the bar but in
subsequent levels the ball was able to move and fall off of the bar [14].

Reverse visually guided
reaching (RVGR)

RVGR tests the ability to inhibit an automatic motor response. It is similar to VGR except the cursor indicating the
participant’s hand position moved in the opposite direction of the hand [22] after attaining the central target.

Object hit and avoid (OHA) OHA tests rapid decision-making processes. Participants had to hit two specific shapes (e.g. a vertical ellipse and a
small square) and avoid 6 other distractors [13]. It is similar to OH otherwise.

Spatial span (SPS) SPS tests working memory. A random sequence of square targets was displayed on a grid which participants had
to recall in the same order as they were presented. Sequence length was increased 1 after a successful trial and
reduced by 1 after an unsuccessful trial [23].

Trail making (TMT) TMT required participants to navigate between targets labelled with numbers (1..2..etc.; variant A) or numbers and
letters (1..2..etc.; variant B) in the correct sequence as quickly as possible. There were 25 targets in both variants
[16, 24]. This task tests processing speed (A) and set-switching (B).

Arm position matching (PM) In PM, the robot moved one of the participant’s hands and the goal was to mirror-match the position as accur-
ately as possible using the other hand. The participant could not see where their hand was, requiring the task to
be completed ‘by feel’. The task was not timed [25].
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scores removed in this way. We then computed the stand-
ard deviation (SD) of the remaining difference scores, re-
ferred to as SDdiff.
Determination of the SDdiff allowed the determination

of both the CI and the SC. CIs were simply represented as
CI = ±1.64 * SDdiff. The choice of 1.64 as the width of the
CI signifies that only 5% of healthy subjects should display
such a large increase or a large decrease in performance
across repeat testing. This can also be considered as ap-
proximately the 90% one-tailed confidence interval, to re-
flect that the most common question under consideration
will be whether or not a participant had improved or dete-
riorated specifically (i.e., not the generalized question of
whether someone had changed, in which case a two-tailed
interval with a width of 1.96 would be more appropriate).
The CI then led to the threshold for significant change
(SC) in the following ways [31–35]:

SC ¼
ffiffiffi
2

p
∙CI ð6Þ

SC ¼
ffiffiffi
2

p
∙ �1:64ð Þ∙SDdiff ð7Þ

Note that in situations in which only the pre- or post-
test SD is known, and the SD of difference scores is not,
the SDdiff may be replaced with SDpre*sqrt (1-ICC) =
SDpost*sqrt (1-ICC) [34, 35].

Learning effects
Learning effects were calculated by taking the difference
between first and second assessment Z-scores. We used
a paired-sample t-test with α = 0.05 for the test signifi-
cance level. We performed comparisons with a large
number of Kinarm variables and therefore we deemed it
appropriate to correct learning effect p-values for mul-
tiple comparisons. The relatively high number of com-
parisons (> 150) means that a typical Bonferroni
correction for family-wise error rate will be too conser-
vative and falsely reject some of our findings as non-
significant. Therefore, we report significance after cor-
recting for false discovery rate (FDR) using the proced-
ure developed by Benjamini and Hochberg [36]. We
indicate values that are less than 0.05 as well as those
that remain significant after FDR correction.

Simulations: CI, SC, and effect of task score transform on
CI
We performed three simulations of 1) the probability
that a participant is “truly impaired”, 2) that their score
had “significantly changed” using the example of the Re-
action Time (RT) parameter of VGR, and 3) of the ef-
fects on the CI of the conversion of the Task Score from
a two-sided metric (the “Z-Task Score”) to a one-sided
metric (the “Task Score”).

For 1) and 2), we fit a Gaussian curve to 7500 uni-
formly sampled x values (from − 3.75 to + 3.75, for plot-
ting convenience) to simulate possible observations of
the RT parameter, scaled either to the width of the CI or
the SC. Finally, for 3), we wished to demonstrate the
asymmetry induced in the CI of the one-sided Task
Score by the inclusion of a CI in the two-sided Z-Task
Score. Although we do not quantify these effects further
in this study, and instead focus on the Z-Task Score for
ease of interpretation, we believe that the consideration
of the one-sided Task Score CI in the present works lays
the groundwork for future studies to expand upon these
ideas. We simulated n = 10,000 Normal random num-
bers with a mean of 0 and standard deviation of 1, to
simulate potential Z-Task Score values. See Data
Normalization and Task Scores, above, for further detail
on Task Score calculation. We additionally incorporated
the CI into the Task Score calculation:

Task Score� CI ¼
ffiffiffi
2

p
∙erfcinv 0:5þ 0:5∙ erfc

ZTaskScore� CIffiffiffi
2

p
� �� �

ð8Þ

Our simulation employed a CI of ±1 for simplicity of
plotting and interpretation.

Accounting for intra-individual variability
Finally, 3 tasks (PM, RVGR, and VGR) in the current
KST battery rely on participants performing multiple tri-
als at each assessment, which are then averaged to ob-
tain each parameter Z-score. The difference between the
true unobserved mean and the mean estimated across
repeated trials adds to the variability in our calculations
of SC. We can estimate the influence of this intra-
subject variability, and we refer to this as the intra-
subject error (IS error). First, we calculated the standard
error of the mean (SEM) for each assessment separately
and pooled these values across all individuals. The SEM
is in the same units as SDdiff, so we calculated the final
IS error by multiplying SEM by √2*1.64 so that it would
be comparable to the SC (recall that SC = SDdiff * √2 *
1.64). Of the 3 tasks mentioned, we could extract trial-
level information for RVGR, VGR, and PM. Twenty- and
twenty-four, and twenty-five trials were performed for
VGR, RVGR, and PM, respectively.

Results
Participant demographics
Demographics of all participants are summarized in
Table 2. Data were collected from an average of 56 (range:
51–63) participants for each behavioural task. Fifty partici-
pants were specifically recruited for this study, whereas
any additional numbers were from participants already
existing in the database. All participants included in the
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present study completed their repeat assessments within
15 days. In total, 6 individuals had been previously
assessed on a subset of the tasks presented in this work;
thus, the present results for these individuals represent
their second and third assessments. The intervals between
previous assessments and those pertaining to the present
work were [937, 482, 456, 426, 363, 233] days. We allowed
their inclusions because we expected that they did not re-
tain enough information regarding the tasks being
assessed to influence their results. Additionally, a total of
10 individuals had been previously assessed in the Kinarm
but on different tasks, i.e. they used the device but did not
do the same tests. The intervals between these previous
assessments and those of the present study were [937,
426, 233, 34, 28, 19, 13, 13, 8, 7] days. Note that these indi-
viduals completed tasks that were not considered in the
present study. We only include reference to these individ-
uals because they had a previous experience with the
Kinarm interface.

Significant change and confidence intervals
Table 3 displays the significant change and confidence inter-
vals for Z-Task Score. Note that two Z-Task Score values
were removed as outliers (one in each of PM-D and VGR-
D). Significant change values ranged from 0.87 to 2.19, and
the average significant change value was 1.51. Confidence
intervals ranged from 0.61 to 1.55 for Z-Task Scores, and
the average confidence interval magnitude was 1.07.
Significant change and confidence intervals for all task

parameters are presented in Fig. 2a with detailed tables
located in the Supplemental Material (Supplementary
Tables 1–11). The mean confidence interval was 1.12
with a range from 0.60 to 2.24. Only 6 values for confi-
dence intervals were greater than 1.64, the value if there
is no difference in skill or performance between individ-
uals. Note that significant change values are simply con-
fidence intervals multiplied by √2, and therefore they are
implicitly shifted towards higher values.

We additionally calculated IS error to understand the
contribution of the variability across trials within the same
assessment to the overall SC. We identified that IS values
were typically on the order of 5–10% of the SC value
(range of IS error to SC ratios: 0.06/1.73, i.e. 3.4%, to 0.23/
1.23, i.e. 18.7%), with the VGR-ND reaction time parame-
ters being the highest and VGR-ND path length ratio be-
ing the lowest. We report all of these values in the
Supplemental file as an additional column for each of the
tables for RVGR-D and RVGR-ND (Tables ST6 and ST7),
and for VGR-D and VGR-ND (Tables ST10 and ST11).

Learning effects
Learning effects ranged from 0.27 to − 0.78 for Z-Task
Scores and the average learning effect was − 0.23 (Table
3). Only OHA had a positive learning effect, i.e. Z-Task
Scores got slightly higher (indicating poorer perform-
ance) in this task. Six Z-Task Scores had learning effects
with p-values < 0.05 prior to FDR correction: BOB,
OHA, RVGR-D, RVGR-ND, SPS, and TMT. However,
only 4 of them remained significant after correction for
FDR: RVGR-D, RVGR-ND, SPS, and TMT.
The cumulative sum of the learning effects for all task

parameters are presented in Fig. 2b and in the detailed
tables located in the Supplement Material (Supplement
Tables 1–11). The average learning effect was − 0.06
with a range from − 0.99 to 0.70. Overall, 43/167 vari-
ables met the threshold for statistical significance after
correction for FDR. The task with the highest proportion
of significant effects was RVGR in either arm, with 10
parameters being significant in each of the dominant
and non-dominant arms, respectively. The task with the
lowest number of significant learning effects was PM in
either arm, with no parameters meeting the threshold
for significance after FDR correction.

ICC
We quantified ICC, using the consistency formulation
(ICC (3, 1); ICC-C); see Table 3 for reference. Z-Task
Score ICC-C values ranged from 0.29 to 0.75, and of
these 6/11 were greater than 0.50. The task with the
highest ICC-C was TMT (0.75) and the task with the
lowest ICC-C was PM-D (0.29).
The cumulative sum plots of ICC-C for all parameters

are presented in Fig. 2c. The parameter with the highest
ICC-C values was RVGR-ND (Z-Max speed), that with
the lowest ICC-C was and BOB (Z- level 3 mean bar
angle). Out of all parameter ICC-C values, 12/167 (7%)
were greater than 0.75 and 96/167 (57%) were greater
than 0.50.

Probabilistic interpretation of impairment and change
We performed simulations of VGR Reaction Time (RT)
values to depict the probabilistic interpretation of our CI

Table 2 Demographics

Task % Female % Right-handed Age (median [min-max])

BOB 63 85 25.0 [18–83]

OH 60 86 25.0 [18–83]

OHA 62 85 25.0 [18–83]

PM-D 65 86 24.0 [18–83]

PM-ND 65 86 24.0 [18–83]

RVGR-D 65 86 24.5 [18–83]

RVGR-ND 65 86 24.5 [18–83]

SPS 65 85 24.0 [18–83]

TMT 65 86 25.0 [18–83]

VGR-D 65 87 24.5 [18–83]

VGR-ND 65 87 24.5 [18–83]
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and SC results in terms of identifying impairments and
quantifying significant change (see Fig. 3). There is a confi-
dence interval (CI) of performance associated with every
potential score, and so it is equally probable that an individ-
ual with an RT score of 1.64 at a single assessment is actu-
ally below (not impaired) or above (impaired) the threshold
of 1.64. In RT, we found that the CI was 0.95, and thus the
SC was 1.34. One can identify 3 key regions of interest in

Fig. 3a: 1) statistically not impaired, when the probability is
less than 5% that the true score is greater than 1.64, 2) pos-
sibly impaired, when the chance of impairment is between
5 and 95%, and 3) statistically impaired, when the probabil-
ity of impairment is greater than 95%. Similarly, Fig. 3b de-
picts the way that this same statistical approach can be
used to identify whether an individual has improved/de-
graded between two assessments using SC criteria.

Table 3 Summary of data for Z-Task Scores only

Task Outliers Removed Significant Change Assessment
Confidence

Learning Effect LE p-value ICC Consistency

BOB 0 1.33 0.94 −0.26 0.017 0.55

OH 0 1.65 1.17 −0.18 0.15 0.49

OHA 0 1.42 1.01 0.27 0.018 0.64

PM-D 1 1.82 1.28 −0.01 0.95 0.29

PM-ND 0 1.72 1.21 −0.01 0.94 0.36

RVGR-D 0 1.34 0.95 −0.78* < 10−4 0.70

RVGR-ND 0 1.79 1.27 −0.67* < 10−4 0.67

SPS 0 1.48 1.04 −0.39* 0.0024 0.56

TMT 0 0.87 0.61 −0.23* 0.0021 0.75

VGR-D 1 1.05 0.74 −0.07 0.44 0.30

VGR-ND 0 2.19 1.55 −0.17 0.31 0.33

Learning effects are italicized if p < 0.05 and with a * if significant after false discovery rate correction

Fig. 2 Cumulative sums of parameter metrics. a) Confidence intervals sorted in ascending order. Reference line is at 1.65, which is the threshold
for intervals larger than expected by chance. Thus, most confidence intervals are within a reasonable range. b) Learning effects sorted in
ascending order. Approximately 60% of learning effects were negative, indicating a lower parameter Z-score at the second assessment than the
first. c) ICC-C values plotted in ascending order. Approximately 5% of each distribution were considered ‘good’ (> 0.75) and approximately 50%
were > 0.50 (fair)
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Effects of one-sided transforms on Z-task score CI
Finally, we considered the effects of performing a the trans-
formation between the two-sided Z-Task Score and the one-
sided Task Score that has been reported on previously [15];
see Fig. 4. Here, we calculated a CI for the Z-Task Score (and
Z-M-Score, although the implications are identical given the
similarity of the transformations for these two metrics). Fig-
ure 4a depicts the symmetry of a CI of ±1 about simulated Z-
Task Scores with a mean of 0 and standard deviation of 1.
Figure 4b depicts the effect of performing the one-sided
transform from Z-Task Score to Task Score (Methods, eq. 3).
The confidence intervals grow non-uniformly and are in fact
a function of the Z-Task Score (and, by extension, Task
Score) itself. Thus in this situation, the CI is not a fixed value.
This is also demonstrated in Fig. 4c, which goes further and
identifies that the upper bound (UB) and lower bound (LB)
of the Task Score CI grow unequally, with the LB always
growing more quickly than the UB.

Discussion
In this work, we quantified confidence intervals, signifi-
cant change, learning effects, and ICC-C (consistency

type; referred to elsewhere as ICC (3, 1)) for repeated
Kinarm assessments performed within 15 days of each
other. Our primary objective was quantifying confidence
intervals and corresponding thresholds for significant
change across all Kinarm parameters. We determined
that the confidence intervals averaged approximately
1.12 across Z-Task Scores and 1.07 across all parame-
ters. These values are less than the 95% one-tailed range
predicted for the entire healthy cohort (1.64).
Other prior work has investigated the reliability of

various kinematic parameters post-stroke using different
tools [37–39]. These studies had participants complete
tasks that tested similar domains to those in the present
study. For example, Rinderknecht et al. [37] employed a
2-alternative/forced-choice task to test proprioception
(different from our approach but a similar underlying
construct was targeted). These studies generally reported
much higher ICCs than we did in the present study (on
the order of 0.80 to 0.98 typically). Across these other
studies, the constant factor was that individuals with
stroke were assessed. A previous Kinarm study also
identified high ICCs in stroke patients ranging between

Fig. 3 The probability of impairment given an observation, and true change given an initial score. a) The cumulative sum of simulated Z-reaction
time scores (solid black curve), and a confidence interval (CI) of ±0.95, as was determined experimentally for this parameter. The plot is divided
into 3 regions based on the likelihood that a score is actually impaired (i.e. is really ≥1.64) given an observed value of 1.64. A score X < 0.69 (1.64–
0.95) is statistically unimpaired, i.e. the score is too low for there to be a reasonable probability that the true performance is impaired. A score
0.69 (1.64–0.95) ≤ X < 2.59 (1.64 + 0.95) is possibly impaired. A score X ≥ 2.59 encompasses likely impairment. b) The concept of a) can be
generalized to detect a change in a follow-up assessment score X2 given an initial assessment score X1, using significant change. The plot can be
divided again into 3 regions. A score X2 < (X1–1.34), i.e. the second score is less than the first score minus the significant change threshold for this
parameter, is statistically improved from the first assessment. A score (X1–1.34)≤ X2 < (X1 + 1.34) indicates possibly different performance at follow-
up. Finally, a score X2 > (X1 + 1.34) is statistically poorer
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0.75–0.99 [13]. We reported lower ICCs than these
other studies; however, this difference is quite likely be-
cause we tested a cohort of healthy individuals. Recall
that ICC models the ratio of (participant variance) /
(participant variance + error variance). With this defin-
ition in mind, it is clear that if the study population is
more variable relative to the amount of error, then the
ICC will increase. Stroke is a heterogeneous clinical
diagnosis, and so it is reasonable to expect that stroke
cohorts would be more variable than a healthy cohort,
leading to higher ICC values. A Kinarm study on an
adult athletic population found results that were some-
times similar to those reported in our study; for ex-
ample, results for the Total Hits parameter in OH were
similar in terms of ICC, learning effect, and confidence
interval. However, other parameters such as the Test
Time parameter in TMT differed substantially [40]. The
ICCs found in our current study were similar to a
Kinarm study of pediatric athletes [16]. It is possible that
simple differences in the study cohorts, such as age or
training to do specific motor tasks as in sports, may ac-
count for differences in test-retest findings.

Knowledge of the confidence intervals of each param-
eter allows us to not only categorically identify if an indi-
vidual’s performance falls above or below some
impairment threshold, but also the probability of impair-
ment relative to that threshold. We have commonly
identified participants as impaired in the KSTs based on
whether they performed worse than 95% of healthy con-
trols [41, 42]. For example, we defined that an individual
would be impaired in reaction time for VGR if they had
a Z score greater than 1.64. However, as shown here,
there is some variability in how a given participant per-
forms a task. Thus, there is a confidence interval of per-
formance associated with every potential score. This
approach allows us to add a probabilistic component to
the assessment and the detection of change between as-
sessments. In some ways, the consideration of impair-
ment as a continuum as opposed to a hard threshold is
analogous to the approaches to statistical inference taken
by Fisher compared to those of Pearson and Neyman
[43, 44]. This probabilistic approach to detecting impair-
ment and change may facilitate future machine learning-
based approaches to detecting change and impairment,

Fig. 4 After conversion to a one-sided metric, the confidence intervals for the Task Score (and M-Score) become asymmetric. a) A simulated
distribution of n = 10,000 Z-scores drawn from the standard Normal distribution (μ = 0, σ = 1). The cumulative density function (CDF) is plotted as
a thick black line. Lower and upper bounds of the confidence interval (±1 for simplicity) are plotted in thin black lines. b) Conversion of the Z-
Task Score to the true Task Score causes the CDF of a) to compress to the right, such that all values below zero become positive (thick black
line). A Task Score of 1 has ~ 68.3% of the area of the curve underneath it, comparable to the area underneath ±1 of the standard Normal CDF.
Upper and lower bounds of the confidence interval are plotted as thin black lines. The confidence interval is now asymmetric. c) The distance
between the upper bound (UB) of the confidence interval to the Task Score grows more slowly than the distance between the lower bound (LB)
of the confidence interval and the Task Score (thin black lines). The distance from the Z-Task Score to both the UB and the LB asymptotes to ±1,
which corresponds to that of the original Z-Task Score in panel a
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by allowing a richer range of information to be used
than simple binary 1/0 values for “impaired or unim-
paired”. This may be especially fruitful in clinical popula-
tions that are expected to have minimal change in the
magnitude of performance on a given task, or sub-
impairment deviations from normal performance.
We considered the contribution that IS error made

compared to SC and found that IS error was typically
relatively small compared to SC, reflecting that intra-
assessment variation makes up a minority of variation
compared to the variation between-assessments. We ob-
served the highest IS errors relative to SC in VGR reac-
tion time at ~ 20%. Overall, these findings additionally
suggest that external factors – i.e. those relating to the
passage of time, the specific setup of the robot, perhaps
other variables like caffeine consumption or fatigue –
have a larger effect the variability in performance by an
individual within a single session. It is important to note
that the IS error that we calculated is influenced by the
number of sampled trials. Each parameter derived from
multiple trials is effectively an estimate of a true, unob-
servable, parameter mean. Increasing the number of tri-
als would serve to not only improve the estimate of the
true value, but reduce the variability of that estimate.
While attractive in theory, this would dramatically in-
crease data collection time. It would also be unnecessary
as, in practice, we were able to demonstrate that even
with a relatively small number of trials [20, 26–30] the
value can be estimated well enough that its associated
error is small (IS error) compared by the inter-
assessment change threshold (SC).
Importantly, we observed learning effects in some pa-

rameters and in some Z-Task Scores. In particular,
RVGR had a preponderance of significant learning ef-
fects, with 18 parameters out of 24 (across both arms)
demonstrating learning effects that were significant after
correction for FDR. It could be that, in this task, there is
a ‘learning curve’ that affects the first few trials [45–47].
Previous evidence suggests that there are contributions
of two complementary motor learning processes. These
come in the form of a fast explicit learning process that
adapts to task constraints, and a slower implicit compo-
nent [47–49]. RVGR, being a mirror reversal task, poten-
tially causes the greatest retention of offline motor plan
changes [45]. This means that in this task in particular,
many parameters may appear to be subject to a learning
effect between assessments, when really the observed ef-
fects are being primarily driven by learning within the first
assessment. One way to probe this may be to quantify the
extent of within-test learning and remove some number
of trials after which task performance stabilizes. This ap-
proach was outside the scope of the present work, and we
chose to present the results from the KSTs exactly as the
tasks are available to maximize the generalizability of our

results to existing tasks. Future work will address within-
test learning.
Another important consideration affecting the

generalization of our results concerns Task Scores and
M-Scores. In this work, we report results regarding the
Z-Task Score and Z-M-Score, which are the Task Score
and M-Score metrics prior to being converted to one-
sided values ranging from 0 to +infinity. We did this be-
cause the transformation to the one-sided scores effect-
ively compresses the distribution of two-sided Z-values
(Z-Task Score, Z-M-Score) to the right to generate the
one-sided Task Scores and M-Scores. Thus, within the
range of values experienced by control participants such
as those we tested here (~ 95% below 1.96), the confi-
dence interval is actually much smaller for the Task
Score than for the Z-Task Score. This is an important
consideration for future work; it effectively states that
the better the performance of an individual is on the
Task Score, the less their performance needs to change
for that change to be considered significant. Some clin-
ical measures also experience this phenomenon of score-
dependent variability, although not uniformly across all
assessments; examples include the Expanded Disability
Status Scale and the Multiple Sclerosis Impact Scale,
both used in multiple sclerosis research [50].
One of the objectives of this study was to determine if

standard tests of significance would be sufficient to quan-
tify significant change between repeated Kinarm assess-
ments or if individual skill influenced the ability to
quantify change. In the former case, each parameter Z-
score could be considered as a random Normally-
distributed observation pulled from a distribution of par-
ticipants’ parameter Z-scores at the first assessment. Any
observation sufficiently far from the mean of this distribu-
tion would represent a significant change, e,g,. a Z-
score > |3.2|, representing a probability of observing a
value at least as extreme as x given the underlying distri-
bution of X, i.e. P(x|X) ≤ 0.001 [for x ∈ X~N (0,1)] by ran-
dom draw. However, instead we found that all Kinarm
parameter confidence intervals were well below |3.2|, indi-
cating that there is a relationship between repeated assess-
ment performances. This is borne out as well by the fact
that almost all ICC values were not near zero.

Limitations
Our study has some limitations to address, the first of
which is that we only focused on healthy individuals in
this assessment. It is possible that there will be differ-
ences in patterns of learning in individuals who, for ex-
ample, have had stroke, as compared to healthy controls
[51, 52]. Additionally, we only focused on one platform,
the Kinarm exoskeleton. There are other Kinarm plat-
forms available that could have different inter-test vari-
ation, which should be investigated to determine if the
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results obtained here generalize. A small number of partici-
pants in the study had been invited back after having done
the tasks previously, which could have biased results to
some extent. However, we still had more participants than
we determined were necessary from our initial Monte Carlo
simulations (n = 50). Additionally, we tested participants
within 15 days; however, it is unclear how these results will
generalize to time points that are spread further apart. We
would like to point out that of the 6 individuals mentioned
that previously complete KSTs, only one completed RVGR
previously (data not shown), which is the task that had the
highest learning effects across several parameters. This indi-
vidual completed a prior assessment with RVGR over 900
days before and therefore we assumed that their results
would not be affected because the time interval was so long.
We used mostly young participants who were healthy in
this study. Therefore, the generalizability of our results to
older healthy individuals remains an open question. Future
studies should be performed on clinical populations or con-
trol participants spanning different age ranges to identify
whether or not there are substantial differences in the sig-
nificant change values for clinical participants compared to
healthy individuals. Finally, although we estimated that the
impact of the IS error on the SC, we found that it did not
substantively contribute to the overall significant change
threshold. The IS error was typically < 10% of the absolute
value of the SC, suggesting that the dominant source of
variability is change over repeated assessments, and not
change within a single session. Future work will have to
consider this approach in the context of clinical disorders
like multiple sclerosis or Parkinson’s disease, in which there
could be potentially much greater variation due to medica-
tion doses or changes in fatigue day-to-day.

Conclusions
The present study quantifies confidence intervals, measures
of significant change, as well as reliability (ICC-C) and
learning effects for the present set of behavioural tasks in
KST. This framework will help with the interpretability of
the performance of individual subjects by providing statis-
tical bounds for each metric of behaviour and the signifi-
cance of changes in performance across repeated testing.
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