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Wearable technology in stroke
rehabilitation: towards improved diagnosis
and treatment of upper-limb motor
impairment
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Abstract

Stroke is one of the main causes of long-term disability worldwide, placing a large burden on individuals and
society. Rehabilitation after stroke consists of an iterative process involving assessments and specialized training,
aspects often constrained by limited resources of healthcare centers. Wearable technology has the potential to
objectively assess and monitor patients inside and outside clinical environments, enabling a more detailed
evaluation of the impairment and allowing the individualization of rehabilitation therapies. The present review aims
to provide an overview of wearable sensors used in stroke rehabilitation research, with a particular focus on the
upper extremity. We summarize results obtained by current research using a variety of wearable sensors and use
them to critically discuss challenges and opportunities in the ongoing effort towards reliable and accessible tools
for stroke rehabilitation. Finally, suggestions concerning data acquisition and processing to guide future studies
performed by clinicians and engineers alike are provided.
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Introduction
Stroke is one of the leading causes of disability world-
wide [1], with a global prevalence estimated at 42.4 mil-
lion in 2015 [2]. Stroke results in permanent motor
disabilities in 80% of cases [3]. During the acute and
subacute stages (< 6 months after stroke [4]), patients re-
ceive rehabilitation therapies at specialized healthcare
centers, consisting of an iterative process involving im-
pairment assessments, goal definition, intervention, and
progress evaluation [5]. After being discharged from the
rehabilitation center (i.e. after entering the chronic stage,
e.g., 6 months after stroke), 65% of patients are unable to
integrate affected limbs into everyday-life activities [6],
showing a need for further treatment. Phrased

differently, the rehabilitative process after stroke de-
pends on the effective assessment of motor deficit and
congruent allocation to treatment (diagnostics), accurate
appraisal of treatment effects (recovery/adaptation evalu-
ation), and prolonged treatment for continuous recovery
during the chronic stage (extended training).
Each of these three aspects present practical chal-

lenges. Assigned treatments depend on the assessed
early-stage disability [3]. A variety of assessment scales
exist to evaluate motor impairment after stroke, de-
signed to capture aspects such as joint range of motion
(ROM), synergistic execution of movements, reaching
and grasping capabilities, object manipulation, etc. [7].
These assessments are normally applied by specialized
medical personnel, which entails certain variability be-
tween assessments [8]. Besides consistency in repeated
measurements, some scales like the Fugl-Meyer assess-
ment (FMA) [9], are unable to capture the entire
spectrum of motor function in patients due to limited
sensitivity or ceiling effects [10].
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In addition to thorough standardized assessment
scales, progress in patients is observable during the exe-
cution of activities of daily living (e.g., during occupa-
tional therapy sessions). Nevertheless, task completion
not always reflects recovery, as patients often adopt dif-
ferent synergistic patterns to compensate for lost func-
tion [11], and such behavior is not always evident.
Main provision of rehabilitation therapies occurs at

hospitals and rehabilitation centers. Evidence of en-
hanced recovery related to more extensive training has
been found [12], but limited resources at these facilities
often obstruct extended care during the chronic stage.
This calls for new therapeutic options allowing patients
to train intensively and extensively after leaving the
treatment center, while ensuring the treatment’s quality,
effectiveness and safety.
Wearable sensors used during regular assessments can

reduce evaluation times and provide objective, quantifi-
able data on the patients’ capabilities, complementing
the expert yet subjective judgement of healthcare spe-
cialists. These recordings are more objective and replic-
able than regular observations. They have the potential
of reducing diagnostic errors affecting the choice for
therapies and their eventual readjustment. Additional in-
formation (e.g., muscle activity) extracted during the
execution of multiple tasks can be used to better
characterize motor function in patients, allowing for
finer stratification into more specific groups, which can
then lead to better targeted care (i.e. personalized ther-
apies). These devices also make it possible to acquire
data unobtrusively and continuously, which enables the
study of motor function while patients perform daily-life
activities. Further, the prospect of remotely acquiring
data shows promise in the implementation of independ-
ent rehabilitative training outside clinics, allowing pa-
tients to work more extensively towards recovery.
The objective of this review is to provide an overview

of wearable sensors used in stroke rehabilitation re-
search, with a particular focus on the upper extremity,
aiming to present a roadmap for translating these tech-
nologies from “bench to bedside”. We selected articles
based on their reports about tests conducted with actual
stroke patients, with the exception of conductive elasto-
mer sensors, on which extensive research exists without
tests in patients. In the section “Wearable devices used
in stroke patients”, we summarize results obtained by
current research using a variety of wearable sensors and
use them to critically discuss challenges and opportun-
ities in the ongoing effort towards reliable and accessible
tools for stroke rehabilitation. In the “Discussion” sec-
tion, we present suggestions concerning data acquisition
and processing, as well as opportunities arising in this
field, to guide future studies performed by clinicians and
engineers alike.

Wearable devices used in stroke patients
Recent availability of ever more compact, robust and
power-efficient wearable devices has presented research
and development groups in academia and industry with
the means of studying and monitoring activities per-
formed by users on a daily basis.
Over the past years, multiple research groups have

worked towards a reliable, objective and unobtrusive
way of studying human movement. From the array of
sensors and devices created, a few have gained popular-
ity in time due to their practicality. The next subsections
will focus on the wearable devices most frequently used
in the study of human motion, with special emphasis on
monitoring of upper limbs in stroke patients.

Inertial measurement units (IMUs)
Inertial measurement units (IMUs) are devices combin-
ing the acceleration readings from accelerometers and
the angular turning rate detection of gyroscopes [13].
Recent versions of such devices are equipped with a
magnetometer as well, adding an estimation of the
orientation of the device with respect to the Earth’s mag-
netic field [14]. A general description of how inertial
data are used to extract useful information from these
devices is offered by Yang and Hsu [15]. High-end IMUs
used for human motion tracking, such as the “MTw
Awinda” sensor (Xsens®, Enscheda, Overijssel, The
Netherlands) [16], acquire data at sampling rates as high
as 1 kHz (sensitivities of ±2000 deg/s, ±160 m/s2, ±1.9
G). More affordable sensors (e.g. “MMR” (mbientlab
Inc.®, San Francisco, California, USA) [17]) stream data
at 100 Hz (max sensitivities of ±2000 deg/s, ±16 g, 13 G).
The necessary sampling rate depends on the application,
and must be defined such that aliasing is avoided (i.e.
Nyquist rate, 2 times the frequency of the studied
phenomenon). Figure 1 shows an example of motion
tracking using these devices.

Diagnostics
Multiple scales exist for assessing motor function in
stroke patients [7]. However, limitations exist in terms
of objectivity and test responsiveness to subtle changes
[18], as well as on the amount of time needed to apply
these tests. Therefore, several research groups have fo-
cused on the use of IMUs to assess motor function more
objectively. Hester et al. [19] were able to predict hand
and arm stages of the Chedoke-McMaster clinical score,
while Yu et al. [20] built Brunnstrom stage [21] classi-
fiers, assigning each patient to one of six classes of syn-
ergistic movements in affected limbs. The Wolf Motor
test [22–24], the FMA [25, 26] and the Action Research
Arm Test (ARAT) [27], frequently used to assess motor
function in clinical settings, have also been automated.
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Recovery/adaptation evaluation
IMUs are practical options to assess motor function dur-
ing the execution of activities of daily life. Lee and col-
leagues [28] focused on limb neglect and task execution
quality assessment. Limb neglect can be seen by looking
at the symmetry (or lack thereof) in sensor readings
from the affected and unaffected sides [29–31]. Zhou
et al. [32] used a single, triple-axis accelerometer to track
movements of the forearm in a simple manner, but
tracking of more complex motion requires either more
sensors or alternative data analysis techniques. Harder-
to-detect compensatory movements (e.g., of the torso)
can also be identified [19]. Besides using IMU modules
designed specifically for human movement tracking,

interesting possibilities have been explored in every-day-
use devices, such as smartphones [33].
Tracking of the whole body has also been achieved

using sensor networks in an attempt to objectively evalu-
ate movement quality in daily-life situations [34], as well
as tracking of complex upper-limb movements [35].

Extended training
IMUs allow providing immediate feedback to patients
about their performance and posture [36, 37], as well as
the adequate use of equipment (e.g., orthoses) [38],
which presents an opportunity for extended training
(e.g., at home). Wittman and colleagues [39] used an off-
the shelf system to train patients at home, seeing signifi-
cant improvements as assessed by both the FMA and
metrics native to the used IMU system.

Implementation (requirements and challenges)
The complexity of tracking and assessing motion
depends on how constrained the circumstances for the
recordings are. Tracking motion during the execution of
daily-life activities is particularly difficult in stroke pa-
tients, as their movements are often slower, more seg-
mented and more variable than those of healthy
individuals [11]. Prolonged recordings are constrained
by multiple factors, such as battery life of the wearable
devices [40] and orientation drift resulting from the
double integration of angular acceleration [41]. Better-
performing batteries, better communication protocols
(e.g., Bluetooth Low-Energy (BLE) [42]) and algorithms
allowing to sample data at lower rates without losing
much information (e.g., data compression [20]) help
mitigate the former problem, while orientation drift can
be corrected using, for example, the on-board magnet-
ometer [41].
Recording over shorter periods, like those during stan-

dardized motor function assessment scales, is less vul-
nerable to these limiting factors, but still susceptible to
other issues. Quantifying movements taking place in a
single plane (e.g., shoulder flexion, with the arm moving
parallel to the sagittal plane) is straightforward, as re-
cordings from either the accelerometer or the gyroscope
can be sufficient. In contrast, characterizing complex
movements (e.g. flexor synergic movement from the
FMA) is more challenging and often requires combining
data from both the accelerometer and the gyroscope.
Assigning clinically relevant scores (e.g. FMA scores) to
performed movements requires characterizing the re-
corded signals using a variety of features. These features
are normally extracted using a sliding-window approach
along the acquired signals, and the choice of which fea-
tures to use depends on the type of movements involved.
Common features used in characterization of IMU data
are movement intensity, signal amplitude (mean and

Fig. 1 IMU sensors (orange) used to track arm movements. Sensors
placed on the back of the hands, forearms and upper arms capture
acceleration (linear and angular) and orientation of each segment,
allowing kinematic reconstruction or movement characterization
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standard deviation), signal energy and dominant fre-
quency [43]. After extracting these features, statistical
methods commonly used in machine learning allow clas-
sifying and assigning grades to the movements that orig-
inated them; the initial choice of models to test depends
on the extracted features [44].
Problems can arise when studying stroke patients, as the

acquired inertial signals may not hold enough information
due to the very low variation of signals during slow move-
ments. An alternative to selecting features would be to
compare waveforms directly by defining a set of signals as
templates for unimpaired movements with signals ac-
quired from patients [45]. Techniques such as Coherent
Point Drift (CPD) [46] or Dynamic Time Warping (DTW)
[47] may be used. DTW has been used in stroke research
by a number of groups (e.g. [48, 49]), as it allows to com-
pare time series that are different in length, which is useful
when comparing slower movements in stroke patients to
conventional movements. CPD is a different technique for
registering one set of points to another, which estimates
the maximum likelihood between pairs of corresponding
points and finds the best fit between them.
Sensor noise can cause huge detriment to the outcome

of movement classification or assessment. The main
source of noise for short-duration recordings is
quantization noise (i.e., noise resulting from precision
loss during analog-digital conversion), while the afore-
mentioned drift rate plagues longer recordings [50].
Wearable sensor misplacement or misalignment can also
affect classifier performance to a large extent, but some
approaches have reportedly maintained precision and re-
call at high levels (e.g. orientation transformation, Pr.
97% and Rc. 98% [51]) during the classification of certain
movements.
Table 1 provides an overview of studies using wearable

sensors to study stroke patients. This table focuses on
studies that included stroke patients in their cohorts.

Surface electromyography (sEMG)
Surface Electromyography (sEMG) is a technique in
which the electrical potential generated whenever mus-
cles contract is measured using electrode pairs placed on
the skin over the muscles. The electrodes need to be
asymmetrically placed with respect to the neuromuscu-
lar plaques in order to capture the electrical potential
difference as the depolarization wave travels along the
muscle cells’ membranes. Figure 2 shows a typical place-
ment configuration for EMG devices, intended to record
activity from contracting muscles involved in elbow and
wrist flexion. Effectively capturing all significant fre-
quency components of the EMG signal (according to the
Nyquist rate) requires a sampling rate of 1000 Hz, as its
highest frequency components are reportedly around
400–500 Hz [64]. Still, frequencies needed depend on

the circumstances of the recording and its correspond-
ing analysis. For instance, Ives and Wigglesworth [64]
showed significant decreases in amplitude (11.4%) and
timing (39 ms signal lengthening) when comparing a
sampling rate of 6 kHz to 250 Hz. These differences
would likely not affect the performance of a classifier if
all data were recorded with the same sampling rate, but
might impede classification if sampling rates were too
different because of different amplitudes and timing
shifts. High-end acquisition systems, such as “Ultium”
wearable EMG sensors (Noraxon Inc.®, Scottsdale, Ari-
zona, USA) [65], have sampling rates as high as 4 kHz
(sensitivity of 0.3 μV in a range of 0–5 V), while more
accessible alternatives like the “FreeEMG” (BTS Bio-
engineering®, Garbagnate Milanese, Milan, Italy) [66]
have a sampling rate of 1 kHz.

Diagnostics
Wearable EMG sensors have high potential in the study of
stroke patients. Investigation of neural activity as mea-
sured through motor-evoked potentials (MEPs) triggered
by Transcranial Magnetic Stimulation (TMS) [67] is sim-
pler with wireless EMG. EMG sensors can complement
inertial data from IMUs during standardized motor func-
tion assessments. For example, Li and colleagues [62] im-
proved the correlation in 0.5% between their condensed
measure of motor function and the FM score assigned by
a clinician. Albeit the modest increase, assessment of dex-
terous movements, grasping exercises and applied force is
not practical with IMUs, but can be characterized with se-
lected EMG features (e.g. area under the curve correlating
with applied force), which argues in favor of including this
sensor type during motor assessments. Repnik and col-
leagues [27] complemented IMU data with EMG during
the assessment of the ARAT test to capture dexterous
movements involved in the manipulation of small objects,
finding significant differences in muscle activation of
healthy subjects according to the size of grasped objects,
and similar (maximal) muscle activation in more impaired
patients (ARAT score 2) when grasping the largest object.

Recovery/adaptation evaluation
After stroke, patients tend to adopt compensatory strat-
egies to accomplish motor tasks, especially in case of
moderate to severe impairment [11]. These compensa-
tory behavior might go unnoticed during a regular as-
sessment, but can be captured and quantified using
recordings from EMG sensors [68].

Extended training
Wearable EMG sensors allow providing online feedback
during home-based training in a similar way as with
IMUs. Instead of tracking gross arm movements, applied
force calculated from recordings of muscle activity can
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serve as a parameter to provide feedback during training.
EMG-based biofeedback has been reported to lead to en-
hanced motor improvements [69], and Donoso Brown
and colleagues [57] used it to test a gamified form of
home-based training, although they did not find any im-
proved functionality derived from their intervention.

Implementation (requirements and challenges)
After amplification and preprocessing (e.g. signal filtering
for de-noising), these signals can be used to identify pat-
terns of activation related to specific movements or pos-
tures. The type of processing applied to recorded signals
depends on the application. For example, continuous re-
cordings of muscle activity during the execution of activ-
ities of daily living requires epoching the signals, keeping
only relevant segments capturing discrete events of inter-
est. It is possible to do this segmentation manually, but
automated methods of threshold detection are a much
more practical option [70]. After removing signal seg-
ments deemed irrelevant, an adequate processing pipeline
must be implemented depending on the information
sought. Extracting information about motor-unit activity
while performing e.g. activities of daily living is possible
through wavelet analysis or a variety of time-frequency ap-
proaches [70]. In contrast, identification of gross arm
movements and hand gestures, as well as their assessment

during motor assessments, is often approached by extract-
ing meaningful features out of a sliding window. Some
groups tried correlating their own measures to scale scores
without a formal validation of their measure, which makes
interpretation difficult and supports an approach of direct
label/score prediction in the context of standardized tests.
As described for IMUs, a sliding-window approach al-

lows extracting significant features for later classification.
Classification is generally performed using signal fea-
tures (i.e. root mean-square, amplitude, etc.) [71] chosen
based on the type of movements in question. Alterna-
tively, extracting many features and applying feature se-
lection criteria afterwards [72] is also possible.
Classification accuracy tends to be high when only a

few (five or six) classes (each corresponding to a gesture
to be identified) are involved, but accuracy frequently
decreases as more gestures are added. Further detriment
to classification performance occurs when dealing with
highly impaired stroke patients, as their muscle signals
tend to be less pronounced [55]. Electrode number and
distribution plays a role as well; high density EMG, with
over 80 electrodes placed as a grid on the upper arm,
forearm and hand, has yielded high classification accur-
acies when dealing with many hand postures, but the
use of only a few well-placed electrodes yields compar-
able results [56]. Arrays of electrodes placed on the fore-
arm offer a good tradeoff between relatively simple
setups and useful data acquisition leading to acceptable
classification accuracies. Pizzolato et al. [73] compared
an inexpensive device, consisting of eight single differen-
tial electrodes worn as a bracelet, to more complex and
much more expensive systems. They reported a reason-
ably high classification accuracy (69.04% +/− 7.77%) with
a setup of two adjacent bracelets (16 electrodes).
There are several factors affecting the EMG signal. Re-

peated recordings performed on the same test subjects
during several days has been reported to decrease hand-
gesture classification in close to 30%, compared to re-
sults obtained from repeated measurements taking place
during the same day [74]. This might result from sensors
being placed in slightly different locations, as altering
the position of an electrode by just one centimeter can
result in amplitude variations of 200% [75]. Hermens
and colleagues offer a series of recommendations on
sensor placement and orientation to decrease this vari-
ability [76].
Other sources of EMG noise affecting the performance

of used classifiers include cable motion artifacts, power-
line noise, thermal noise from the sensor’s electronic
components, electrochemical noise from the interface
between the electrodes and the skin and mechanical dis-
turbances [70]. Currently-available wearable EMG sen-
sors are mostly affected by mechanical disturbances,
which can be filtered out by applying a high pass filter

Fig. 2 EMG sensors (green) placed over biceps and flexor digitorum
superficialis muscles, involved in elbow and wrist flexion,
respectively. Electrodes placed asymmetrically with respect to the
neuromuscular plaques allow capturing the electrical potential
difference as the depolarization wave travels along the muscle cells’
membranes. Resulting signal (top left) is filtered and amplified for
further processing
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with cutoff frequency at 20 Hz [77]. The choice for ap-
plied filtering also depends on the application. For ex-
ample, low frequencies (i.e. 1–5 Hz) contain important
information for hand gesture classification [78], which
would be filtered out with the 20 Hz high-pass filter.

Potentiometers and encoders
An accurate way of measuring the angular displacement
around joints is by means of potentiometers and en-
coders. Potentiometers are devices containing a conduct-
ive disc with a certain resistance and two contact points
on top. The distance between these contact points can
vary, which results in more or less resistive material be-
tween the contact points. As resistance varies in an ap-
proximately linear way with changes in arc length, it is
possible to map a direct relationship between resistance
and angular displacement. This means that aligning the
knob to the rotation axis of a joint allows a good estima-
tion of its angular position. Encoders are optical sensors
containing a slitted disc. A LED (light-emitting diode)
shines against the disc, which allows light to pass
through the slits but blocks it otherwise. Presence and
absence of light, detected by a photosensitive compo-
nent, is encoded into ones and zeroes and is used to de-
termine angular displacement. Potentiometers are
analog sensors with “infinite” resolution, whereas en-
coders can have resolutions as high as 1 million counts
per revolution [79]. Figure 3 shows an encoder mounted
on a hand orthosis to track the fingers’ angular position.

Diagnostics
Encoders and potentiometers can be used in clinical en-
vironments to measure ROM in patients. Researchers at
Peter S. Lum’s lab [80, 81] built an orthosis consisting of
four bars coordinating the movement of the metacarpo-
phalangeal finger joints and the thumb metacarpopha-
langeal joint for home-based training in stroke patients,
using encoders to calculate the joint angles.

Recovery/adaptation evaluation
Chen and Lum [82] focused on an “assists as needed”
approach, using a combination of potentiometers and

encoders to calculate the joint angles of an arm exoskel-
eton and using this parameter to adjust therapeutic
training. Lim et al. [83] combined accelerometers with a
different encoder using a slitted strip instead of a slitted
disc. This sensor detects the linear displacement of the
strip, which means that laying the strips along the links
of interest (i.e. fingers) allows the measurement of joint
angles without aligning the rotation axes, facilitating its
use during the execution of daily life activities.

Extended training
Chen and colleagues [59] studied the effects of training
with an encoder-equipped hand orthosis at home, finding
significant improvements in FMA score (4.9 ± 4.1 points).

Implementation (requirements and challenges)
The advantage of not needing to apply machine learning
algorithms notwithstanding, the need of a parallel struc-
ture (e.g., exoskeleton) or embedding them in a glove re-
stricts the range of applications these sensors may have
for stroke patients. Donning and doffing equipment
might be challenging for patients with low dexterity or
high spasticity [60].

Conductive elastomer (CE) and other flexible sensors
Conductive Elastomer (CE) sensors are flexible compo-
nents with varying piezo-resistivity. Piezo-resistivity
changes due to deformations suffered by a textile substrate
deposited with conductive particles (e.g. silver nanoparti-
cles). When placed along a moving body part, such as fin-
gers, it is possible to map the sensor readout related to a
particular deformation of joint angles. Figure 4 shows an

Fig. 3 Encoder (blue) mounted on a hand orthosis, aligned with the
rotation axis of the index finger. This configuration allows tracking
angular displacement of fingers supported by the orthosis

Fig. 4 Flexible sensors (red) laid along the fingers. Their flexion
results in piezo-resistive changes in the conducting material (e.g.
silver nanoparticles), which map directly to different finger positions.
Prototype IMU sensor glove by Noitom [84]
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example of flexible sensors tracking the position of indi-
vidual finger movements.

Diagnostics
Yu and colleagues used flexible sensors in combination
with IMUs to assess motor function [61], and obtained
results bearing a high correlation (0.92) with clinical
scores given by a therapist. Flex sensors are frequently
used as “gold standard” when attempting measurements
with others setups (e.g. [85]).

Recovery/adaptation evaluation
Movement tracking using deformable sensors embedded
into clothes would allow monitoring patients as they
perform activities of daily living. For example, Tognetti
et al. [86] embedded CE sensors into clothing with the
objective of classifying body postures and hand gestures
(with a reported sensitivity of 11,950Ω/mm), a work fur-
ther developed by Giorgino et al. [87, 88] and De Rossi
[89]. A more complex system, combining this technol-
ogy with EMG and IMU data was presented by Lorussi
et al. [90]. The use of piezo-resistive fabric [91] and
fabric-based microelectromechanical systems (MEMS)
[92] offer alternatives to CE sensors. All these studies
show promise in the use of flexible sensors embedded in
clothing to monitor stroke patients, but testing with
stroke patients is still lacking.

Extended training
Prange-Lasonder and colleagues [60] implemented a
gamified form of a rehabilitative training using a glove
equipped with flexible sensors, and studied the effects of
such training at home [93]. Their results proved the
feasibility of this approach as a home-based therapy,
even though they did not find significant differences in
comparison to their control intervention.

Implementation (requirements and challenges)
Flexible sensors embedded into clothing constitute an
attractive option for unobtrusively tracking movements
in stroke patients during motor assessments, execution
of daily living activities, and rehabilitative training. At
present, their use in clinical environments and in-home
settings is difficult due to practical issues related to don-
ning, doffing and washing the garments. Furthermore,
some sensors require a large amount of wiring [91],
which reduces the degree of unobtrusiveness. Addition-
ally, mechanical deformations resulting from, for ex-
ample, wrinkles in the fabric [88] introduce noise to the
system, complicating posture and movement tracking.

Discussion
Stroke is a frequent disorder that often results in long-
lasting loss of motor functions. After stroke, the

rehabilitative process relies on three main elements: 1.
Diagnosis, in which clinicians use standardized scales to
estimate maximum recovery for every patient [94] and
assign them to rehabilitation therapies accordingly [95].
2. Evaluation of recovery or adaptation, during which cli-
nicians assess the extent up to which patients can per-
form activities of daily living. 3. Extended training,
necessary for patients with persistent motor impairment
after entering the chronic stage.
Conventional motor assessment is vulnerable to

biases derived from measurement errors [96] and ceil-
ing effects [97], whereas compensatory strategies fre-
quently adopted by patients while performing different
tasks [11] can complicate the appraisal of recovery.
Therapy and training provision at healthcare centers is
limited to available resources and restricted by its cor-
responding costs, which obstructs prolonged rehabilita-
tive training for patients who do not recover fully
within the first months after stroke.
A promising option to assess stroke patients objectively

resides in the use of wearable technology. As high-end
sensors become more accessible, more reliable and less
obtrusive, the chance of acquiring relevant data during pa-
tients’ training or daily routines gets easier. A variety of
wearable sensors (e.g. [29, 49, 59, 60, 62, 98]) have been
used to assess several aspects of motor performance in
stroke patients, going from motor impairment to more
subtle forms of behavior, such as limb neglect.
In the present paper, we seek to compare different setups

with the intention of finding the most promising candidates
for different applications. There are four main wearable sen-
sors used in the study of stroke: IMUs, EMG, potentiome-
ters/encoders and flexible sensors. IMUs allow measuring
changes in acceleration, inclination and orientation unobtru-
sively. Wireless, energy-efficient [42] transmission of data
characterizing these sensors enables whole-body recordings
through sensor networks [34], supporting this sensors’ can-
didacy for movement tracking [28, 35, 49]. Several groups
have used IMUs with diagnostic purposes [19–27] and to
assess the execution of daily-life activities [19, 28–33]. High
portability and accessible costs further support these sensors
as an option for prolonged training during the chronic stage
(e.g. at home) [39]. There are general complications
inherent to the use of these devices, such as estima-
tion errors derived from accumulated error in the cal-
culation of orientation from angular acceleration (i.e.
orientation drift [41]) and quantization noise [50]. In
addition, high movement variability in stroke patients,
resulting from adopted compensatory muscle syner-
gies and slower, segmented movements [11], compli-
cate data characterization and comparison.
EMG wearable sensors have also been used for diagno-

sis [27, 62] and first attempts at extended training
outside clinical environments [57]. Monitoring the
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execution of activities of daily living can benefit from
EMG recordings, as these sensors allow capturing
differences in muscle pattern activations resulting from
compensatory movements [68]. These sensors can com-
plement the information obtained with IMUs. Aspects
neglected by some assessment scales (e.g. FMA), such as
applied force [10], can be derived from muscle activation
as recorded with EMG. EMG sensors are susceptible to
different sources of noise, which must be removed be-
fore signals can be used [70]. Furthermore, variable
placement of electrodes can also mislead estimations
and affect the performance of the models used to classify
measured activity.
Potentiometers and encoders are robust to noise and

require little processing of signals, as the output from
these sensors can be mapped directly to angular dis-
placement (or linear, in the case of linear encoders). The
range of applications in stroke for these sensors is lim-
ited to measuring ROM of limbs, and requires mounting
them on a parallel structure, such as an orthosis, limiting
the degrees of freedom of measured movements. Still,
their potential in extensive home-based training is clear
[59]. The need for an orthosis disappears with the use of
linear encoders [83] due to integration of the sensors
into gloves. Nevertheless, the use of both orthoses and
gloves can be difficult for patients suffering from hand
spasticity, which would complicate their use at home.
This problem persists whenever using flexible sensors
embedded in gloves. Flexible sensors embedded in cloth-
ing could be a viable option for tracking everyday life ac-
tivities, but practical issues related to washing the
garments and to the large amount of wiring required still
impede their regular use.
As IMU and EMG data cannot be mapped directly

into the movements and actions that generated them,
acquired signals must be processed differently. Depend-
ing on the objective (e.g. assign grades to movements,
compare patients to healthy controls, etc.) data can ei-
ther be classified using different forms of statistical pro-
cessing, such as common methods applied in machine
learning [99], or compared using algorithms like DTW
[48, 49]. Built models often fail to generalize to data from
highly impaired patients due to lower signal-to-noise ratio
(SNR) [55]. Further, results are hard to compare due to a
lack of a unified data acquisition protocol [73].

Choosing an adequate setup
The choice for the best setup depends on the intended ap-
plication. The best candidate to study movement quality
while remaining unobtrusive and easy to deploy is likely
IMUs. Data from IMUs provide enough information to
characterize movement execution (e.g. [49]), detect limb
neglect and assess performance of activities of daily life
[28]. During motor assessments, overlooked functional

information (e.g. muscle activity) [10] can be acquired
using EMG [62]. The best candidate to identify hand ges-
tures (e.g. for orthotic control) amongst the sensors dis-
cussed here is likely EMG. EMG allows identifying hand
gestures effectively without altering too much the way in
which patients interact with the environment, as would be
the case with potentiometers and flexible sensors. A pos-
sible alternative would be the use of pressure sensors
[100]; Sadarangani and colleagues [98] tried this approach
with stroke patients and achieved classification accuracies
above 90% (3 classes only). We excluded this type of sen-
sor from the present review because there is, to the best of
our knowledge, no wearable version yet.

Data processing: recommendations
As mentioned earlier, the analyses pipeline depends
heavily on the object of study (e.g. movement quality,
limb neglect, etc.). There are multiple features to
characterize EMG and IMU signals for later classifica-
tion (e.g. into classes related to motor function), and the
choice depends on the property of interest. For example,
muscle force is well- represented using the RMS of the
EMG signal, whereas movement quality can be better
observed by calculating jerk (rate of change in acceler-
ation, capturing movement smoothness) from IMU data.
Alternatively, comparing waveforms directly requires ei-
ther normalizing the length of the time series or some-
how matching them to account for different signal
durations, such as with DTW.
For classification problems, it might be better to have

many features and then trim them down by means of
PCA or other relevance determination algorithms (e.g.
RRelief). This is a necessary step, as dataset sizes are
often quite small, and keeping too many features might
result in models not generalizing to new data (overfit-
ting). The choice for the model depends on the applica-
tion and on its final objective. Several studies discussed
in Table 1 used SVM in classification, and some of them
reported testing more than one model, but this choice is
not compulsory. For example, if the objective is to de-
ploy an automated tool for assessment of motor function
and the ultimate goal is for it to reliably assess function-
ality, many different models can be tested and optimized
to find the best performer. Alternatively, applications
such as allocating patients to different therapies based of
their specific needs (i.e. individualized care) might bene-
fit from transparent, easily explained models such as de-
cision trees, as the rationale behind a choice for therapy
is important.
The way in which models are fine-tuned and validated

is an important aspect too. Several studies shown in
Table 1 claim performing cross-validation, but its actual
implementation varies a lot between studies. A good ap-
proach is to separate a portion of the data as test data
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and leave it “untouched” until after fine-tuning the
model using the remaining data (i.e. training data). Once
more, a fraction of these data is set aside, this time as
validation data, while using the rest to fit the model. Re-
peating this process with the training data and averaging
(or “voting”, i.e. selecting most frequent labels) the re-
sults will yield a less-biased model. Subsampling of data
for every iteration can be done with replacement (bag-
ging) or without (pasting). After fine-tuning the model’s
parameters, plugging-in the test data gives a more realis-
tic impression of how well the model will generalize to
new data. In the end, results obtained will depend on
the quality of used features and on the amount of infor-
mation contained in them. The optimization of the
models is relatively trivial, in the sense that there are
many available tools to do so. Time and effort must be
invested in feature engineering, as models can only per-
form as well as the quality of the information used to
build them.
In general, the more data is available to train models,

the better. The most effective algorithms used across do-
mains, such as neural networks, are only useful if used
on large amounts of data. For this reason, initiatives like
the “NinaPro” database [101] should be supported and
contributed-to, such that data acquired on different sites
might be pooled together. Data acquisition and sharing
between different sites brings along its own challenges
and escapes the scope of this review, but standardized
protocols like the “NinaPro” and guidelines for sensor
placement (e.g. [76]) will be crucial towards this effort.

An empty niche
An EMG + IMU device that had been gaining momen-
tum in multiple scientific domains was the “Myo” arm-
band (Thalmic Labs®, Kitchener, Ontario, Canada) [102].
This device consists of an array of eight single differen-
tial electrodes and a 9-axis IMU, presented as a bracelet,
transmitting data through BLE. Its affordability and
user-friendliness made it an attractive alternative for
prolonged, possibly unsupervised recordings. Further-
more, a formal comparison between this armband and
several high-end EMG systems showed similar classifica-
tion accuracies when using two armbands at the same
time [73] to classify signals into 40 different movements,
further supporting the use of this device in research. Ap-
plications for motor assessments [27], orthotic [63] and
prosthetic [103] control, gesture recognition [104], etc.
have benefited from this device. CTRL-Labs® (New York
City, New York, USA) [105] is developing a new device
combining these sensors, but this important niche is, at
present, unattended. Some institutions in China have
started selling products significantly inspired by the
“Myo”, such as OYMotion® (Beijing, China) [106], but
their acquisition in Europe and America can be

problematic, prices are high, and there are no reports on
how well they perform.

Alternatives and possibilities
Easily deployed, inexpensive IMU devices are available off-
the-shelf. Mbientlab [17], for example, offers a wide array
of what seems to be modular and flexible IMU setups
allowing prolonged recordings with multiple sensors sim-
ultaneously. Beange and colleagues [107] compared one of
the IMU modules to a motion capture system and found
its performance acceptable. High- end systems such as the
Xsens [14] perform excellently, but their prohibitive cost
limits the range of possible applications; such a system
could only be used for measurements in high-end, special-
ized clinics, failing to solve the problem of limited re-
sources of common healthcare centers.
As for the acquisition of EMG data, we were not able

to find a low-cost solution providing quality data while
remaining simple to use. Systems built by companies like
Noraxon [65], Delsys® (Natick, Massachusetts, USA)
[108] or Cometa® (Bareggio, Milan, Italy) [109] provide
high quality data, but at a high cost. Less expensive sys-
tems like “FreeEMG” [66] or “Biometrics’ sEMG sensors”
(Biometrics Ltd.®, Newport, UK) [110] are more access-
ible, but are still suboptimal in the sense of requiring
careful placement of gel electrodes, which makes it im-
practical for unsupervised patient use at home.
Presenting a similar design to that of the “Myo” arm-

band, Yang and colleagues [111] built a bracelet equipped
with textile electrodes, reporting high classification accur-
acy (close to 100%) in hold-out cross-validation. The study
involved only three healthy participants, and training and
testing data used in cross-validation came from the same
subject (no inter-subject validation). Still, the design of
this device seems promising.
A different approach trying to enhance EMG systems

with near-infrared spectroscopy (NIRS) was taken ini-
tially by Herrmann and Buchenrieder [112] in an at-
tempt to reduce electrode crosstalk. This approach was
also pursued by a couple other groups [113, 114], but
challenges related to the time resolution of NIRS limit
the applications possible for these devices.
Interesting possibilities exist in the realm of printable

(i.e. epidermal electrodes [115]) and temporary tattoo
electrodes [116], but these are not yet readily avail-
able for deployment. For the time being, the choice
of a device to acquire inertial and EMG data simul-
taneously in an inexpensive, easy to deploy fashion
remains an open question.

From bench to bedside
Wearable sensors in clinical environments
The processing steps and the implementation challenges
described before may appear daunting when thinking
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about integrating these sensors into clinical practice.
The importance of discussing these challenges lies in the
joint effort towards democratizing these technologies
such that their advantages might be widespread, access-
ible to all, their performance and reliability ensured. To
achieve this goal further research is necessary, and re-
search can greatly benefit from knowledge acquired in
the clinic.
There is a variety of readily available systems dedicat-

ing wearable sensors to rehabilitation. For example, the
“ArmeoSenso” system (Hocoma®, Volketswil, Zürich,
Switzerland) [117] uses IMU’s alongside a gamified form
of training (this is the system used for home-based train-
ing, mentioned before [39]). For EMG, products like
Cometa’s “EMG Easy Report” [118] or Noraxon’s “myo-
Muscle” [119] allow simplified analyses, like pairing re-
cordings to video, to look at muscle activity related to
specific movements. The use of these systems in the
clinic provides further insights into practical aspects to
consider when developing new products, and allows
fitting these technologies to the patients’ needs. Their
functionality may be limited to certain aspects and
system errors might display these techniques as less effi-
cient than conventional approaches, but the develop-
ment of flexible and robust systems requires this sort of
iterative testing in real-life situations, enriched with the
knowledge of specialized medical personnel. Even if the
transition towards the integration of these devices into
clinical practice represents an extra effort on an already
strained environment, it has potential at reducing costs
once they become ubiquitous.
Hughes and colleagues [120] reported that one of the

main obstacles in the way of adopting these type of tech-
nologies in clinics is the lack of awareness about their
existence, which calls for better communication and col-
laboration between researchers and clinicians.

The international classification of functioning, disability and
health (ICF)
The ICF is an important and well-established tool in clin-
ical neuro-rehabilitation and seeks to provide a framework
based on two models of disability, one coming from indi-
vidual factors and another from social factors [121]. This
biopsychosocial model provides standardized grounds for
studying, understanding and addressing disability. Metcalf
and colleagues [122] assessed which of the most fre-
quently used scales of motor function in stroke patients
better fit the framework of the ICF in terms of repeatabil-
ity and reliability, rating as most reliable those test involv-
ing numerical assessments such as ROM and movement
time. Using wearable sensors during regular assessments
will then improve performance of standardized motor as-
sessments in the framework of the ICF.

Escorpizo and colleagues [123] proposed two main ac-
tions towards the integration of the ICF into clinical
practice, one of which was the use of the ICF’s Core sets
for specific conditions, which contains a list of categories
describing the most salient aspects of disability related
to these. In this case, some of the components belonging
to body functions (i.e. muscle power), and activities and
participation (e.g. walking, eating, dressing) of the Core
Set defined for stroke [124], could be assessed using
wearable sensors.
The ICF seeks to provide comparable/replicable statis-

tics of disability as a whole. The ICF’s performance and
capacity qualifiers describe activities of daily living in
natural environments and execution of specific tasks, re-
spectively, which correspond to the “Diagnostics” and
the “Evaluation of Recovery/Adaptation” dimensions de-
scribed before for each sensor type. The “Extended
Training” dimension addresses some social factors like
degree of independence and integration to society by
allowing patients to continue recovering after leaving the
rehabilitation facility.
Baets and colleagues [125] reviewed the literature on

shoulder assessment by means of IMUs, in the context
of the ICF. They found that even though some measured
aspects were repeatable and useful in this context, more
work is needed to generate clinically meaningful, repeat-
able information. Standardizing measurements to
characterize performance and capacity qualifiers, as de-
scribed by the ICF, will also allow leveraging these data-
sets for the application of more complex analyses
requiring larger amounts of data (e.g. neural networks).

Economic impact of stroke and potential benefits from
wearable devices
The European Union spends €45 billion on treating
stroke patients every year, with 44% of these costs spent
on direct health care, 22% related to productivity losses
and 35% on informal care of patients [126]. Care after
stroke depends on how involved institutions (govern-
ments, healthcare centers, insurance companies, etc.)
manage their resources [127], which influences the
length of stay in the hospital and the extension of thera-
peutic care [128]. For instance in the United States,
“Medicare” [129] has strict rules for the provision of in-
tensive inpatient rehabilitation therapies (i.e. at least 3 h
per day, 5 to 6 days per week), with an average length of
stay of 15 days, at which point 70% of patients are sent
home [130]. This percentage goes up to 90% after 3
months, and if patients have not recovered enough to be
cared for at home by then, they will either receive more
restricted healthcare coverage from state-based payers
(e.g. “Medicaid”) or be sent to nursing homes where they
will receive limited rehabilitation [130].
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A study in Switzerland revealed that 37% of direct
health care costs after stroke correspond to rehabilita-
tion at the clinic [131]. Using systems like Hocoma’s
“ArmeoSenso” [117] could allow patients to train in
groups, which besides allowing therapists to tend to
more people simultaneously, could bring enhanced ef-
fects of rehabilitation (e.g., [132]), rendering it more
cost-effective. Motor assessments could be made more
agile through wearable sensors, and patients could do it
without a therapist being present (e.g. at home).
Results from meta-analyses have shown that early

planned and coordinated hospital discharge combined
with home-based rehabilitation yields better results, and
home-based rehabilitation was found to be superior to
center-based, as measured by the Bartel Index 6months
after stroke [133]. Healthcare coverage of home-based
services can limit the length of therapy provided, but the
use of wearable sensors for home-based therapy could
grant access to these enhanced benefits while keeping
costs low. Extended recovery resulting from home-based
rehabilitative training (discussed in the next sub-section)
could also increase the level of independence in patients,
which would decrease costs related to productivity losses
and informal care.

Home-based self-application of rehabilitative training
Evidence of enhanced recovery related to more extensive
training has been found in stroke patients [12], but high
costs inherent to provided care, such as patient trans-
portation or the therapy itself (i.e. therapists’ salary, re-
habilitation site, etc.), often limit the therapies’ duration
and frequency. On the other hand, training in more fa-
miliar environments, such as at home, improves the ef-
fects of training [134]. Training transfer to different
environments, in general, is highly reduced [135], which
is why training tasks should resemble activities of daily
life, and take place at locations where they would occur
on a daily basis.
Unsupervised, home-based rehabilitative training has

the potential to largely improve outcome of rehabilita-
tion in patients [136, 137]. Home-based training offers
many advantages, but reducing contact between trainers
and beneficiaries could impact motivation and engage-
ment, which play a major role in recovery [5]. Thera-
pists’ expertise would still be necessary to determine and
adjust therapies, as well as to follow-up on training and
rehabilitation progress, but contact between therapists
and those under their care could be less frequent. This
complicates the assessment of training quality and pro-
gress evaluation over shorter periods (daily, weekly),
which might impact on motivation, planning of the
intervention and personalized adaption of the treatment
strategy [134]. Careful consideration of these potential
threats is paramount to provide effective rehabilitation

at home. Burridge and colleagues [138] discuss the ef-
fectiveness of some home-based rehabilitation systems
and show that this approach is feasible and has the po-
tential to improve motor function by training daily at
home. They also present a new system (the “M-Mark”),
which will allow patients to train at home under
different circumstances of daily life (e.g. placing objects
on a kitchen shelf) while being tracked by IMUs and
mechanomyography.

Practical considerations
There are many aspects to look into for home-based re-
habilitative training and its corresponding assessments
and measurements. First, training must be thoroughly
and carefully explained to patients and, when applicable,
to their caregivers. An option is to provide center/lab-
based training for a short amount of time and then in-
struct patients to train at home [139]. Further, provided
equipment must be as simple to use as possible to re-
duce chance of making mistakes and ensure training ad-
hesion. An example of how possible mistakes can be
reduced in a home-based environment can be found in
the work of Durfee et al. [58], like blocking elements not
useful to users (e.g. parts of the keyboard).
Another important aspect to consider is data logging.

One option is to keep all data on the devices and extract
it once the participants give the devices back at the end
of their study contribution [31]. Nevertheless, this pre-
sents a risk with longer studies, as devices are lent for
longer periods, and any accident damaging the device
would result in loss of all previously gathered data. An
alternative would be to relay the data to a protected ser-
ver [61]. This could be challenging whenever partici-
pants’ homes are located in relatively isolated areas, with
poor internet connection. Mobile broadband modules
could solve this issue, although constraints from tele-
communications companies providing the service still
exist. Ultimately, it is most likely best to store data both
on the devices and on a server, in a redundant manner.
Even though home-based training offers beneficial

possibilities in terms of high-intensity training, other as-
pects, such as motivation derived from human inter-
action [5] might be lacking. For this reason, taking
advantage of virtual conference tools (e.g. “Skype” [140])
could allow therapists to provide feedback and motivate
patients, as well as to acquire feedback. A recent report
by Maceira-Elvira and colleagues [141] discusses some
of the challenges and important aspects to take into ac-
count in home-based training. The report highlights the
importance of remote assistance and proper instructions
provided to users, as well as technical assistance around
the clock. Another report by Van de Winckel and col-
leagues [142] provides valuable information about the
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(generally positive) opinion of six patients enrolled on
remotely-monitored home-based training.

Conclusion
Stroke rehabilitation is an iterative process involving im-
pairment assessment, recovery prognosis, therapy defin-
ition, rehabilitative training and monitoring of functional
changes. Conventional assessments of motor function
face limitations due to several factors, resulting in biased
predictions of recovery, which prevent an adequate as-
signment of treatment for patients. Furthermore, limited
resources at rehabilitation centers and clinics prevent
patients from receiving intensive treatment and exten-
sive attention, frequently reducing the degree up to
which they recover. Wearable sensors show promise re-
solving at least some of these problems. Regular assess-
ments complemented with this technology can reduce
bias in measurements and estimations, as well as reduce
assessment time for therapists. Short-term rehabilitative
training, offered during the first 6 months after stroke,
could be prolonged by offering home-based therapies,
designed and monitored remotely by therapists, allowing
patients to train in a familiar environment. Among the
wide array of sensors available, inertial measurement
units (IMUs) and electromyography (EMG) offer the
best balance between unobtrusiveness, robustness, ease
of use and data quality. An optimal solution comprising
both sensor types is still lacking in the market, but the
collection of studies presented in this review indicate
that this might be the most promising way to go.
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