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Abstract

Background: To assist people with disabilities, exoskeletons must be provided with human-robot interfaces and
smart algorithms capable to identify the user’s movement intentions. Surface electromyographic (sEMG) signals
could be suitable for this purpose, but their applicability in shared control schemes for real-time operation of
assistive devices in daily-life activities is limited due to high inter-subject variability, which requires custom
calibrations and training. Here, we developed a machine-learning-based algorithm for detecting the user’s motion
intention based on electromyographic signals, and discussed its applicability for controlling an upper-limb
exoskeleton for people with severe arm disabilities.

Methods: Ten healthy participants, sitting in front of a screen while wearing the exoskeleton, were asked to perform
several reaching movements toward three LEDs, presented in a random order. EMG signals from seven upper-limb
muscles were recorded. Data were analyzed offline and used to develop an algorithm that identifies the onset of the
movement across two different events: moving from a resting position toward the LED (Go-forward), and going back
to resting position (Go-backward). A set of subject-independent time-domain EMG features was selected according to
information theory and their probability distributions corresponding to rest and movement phases were modeled by
means of a two-component Gaussian Mixture Model (GMM). The detection of movement onset by two types of
detectors was tested: the first type based on features extracted from single muscles, whereas the second from multiple
muscles. Their performances in terms of sensitivity, specificity and latency were assessed for the two events with a
leave one-subject out test method.

Results: The onset of movement was detected with a maximum sensitivity of 89.3% for Go-forward and 60.9% for
Go-backward events. Best performances in terms of specificity were 96.2 and 94.3% respectively. For both events
the algorithm was able to detect the onset before the actual movement, while computational load was
compatible with real-time applications.

Conclusions: The detection performances and the low computational load make the proposed algorithm promising
for the control of upper-limb exoskeletons in real-time applications. Fast initial calibration makes it also suitable
for helping people with severe arm disabilities in performing assisted functional tasks.
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Background
Exoskeletons are wearable robots exhibiting a close
physical and cognitive interaction with the human users.
Over the last years, several exoskeletons have been
developed for different purposes, such as augmenting
human strength [1], rehabilitating neurologically impaired
individuals [2] or assisting people affected by many neuro-
musculoskeletal disorders in activities of daily life [3]. For
all these applications, the design of cognitive Human-
Robot Interfaces (cHRIs) is paramount [4]; indeed, under-
standing the users’ intention allows to control the device
with the final goal to facilitate the execution of the
intended movement. The flow of information from the
human user to the robot control unit is particularly crucial
when exoskeletons are used to assist people with compro-
mised movement capabilities (e.g. post-stroke or spinal-cor-
d-injured people), by amplifying their movements with the
goal to restore functions.
In recent years, different approaches have been pursued

to design cHRIs, based on invasive and non-invasive
approaches. Implantable electrodes, placed directly into
the brain or other electrically excitable tissues, record sig-
nals directly from the peripheral or central nervous system
or muscles, with high resolution and high precision [5].
Non-invasive approaches exploit different bio-signals:
some examples are electroencephalography (EEG) [6],
electrooculography (EOG) [7], and brain-machine in-
terfaces (BMI) combining the two of them [8–10]. In
addition, a well-consolidated non-invasive approach is
based on surface electromyography (sEMG) [11], which
has been successfully used for controlling robotic pros-
theses and exoskeletons due to their inherent intuitiveness
and effectiveness [12–14]. Compared to EEG signals,
sEMG signals are easy to be acquired and processed and
provide effective information on the movement that the
person is executing or about to start executing. Despite
the above-mentioned advantages, the use of surface EMG
signals still has several drawbacks, mainly related to their
time-varying nature and the high inter-subject variability,
due to differences in the activity level of the muscles and
in their activation patterns [11, 15], which requires custom
calibrations and specific training for each user [16]. For
these reasons, notwithstanding the intuitiveness of EMG
interfaces, it is still under discussion their efficacy and us-
ability in shared human-machine control schemes for
upper-limb exoskeletons. Furthermore, the need for sig-
nificant signal processing can limit the use of EMG signals
in on-line applications, for which fast detection is
paramount. In this scenario, machine learning methods
have been employed to recognize the EMG onset in real
time, using different classifiers such as Support Vector
Machines, Linear Discriminant Analysis, Hidden Markov
Models, Neural Networks, Fuzzy Logic and others [15–17].
In this process, a set of features is previously selected in

time, frequency, or time-frequency domains [18]. Time-do-
main features extract information associated to signal amp-
litude in non-fatiguing contractions; when fatigue effects
are predominant, frequency-domain features are more
representative; finally, time-frequency domain features
better elicit transient effects of muscular contractions.
Before feeding the features into the classifier,
dimensionality reduction is usually performed, to increase
classification performances while reducing complexity
[19]. The most common strategies for reduction are: i)
feature projection, to map the set of features into a new
set with reduced dimensionality (e.g., linear mapping
through Principal Component Analysis); ii) feature
selection, in which a subset of features is selected
according to specific criteria, aimed at optimizing a
chosen objective function. All the above-mentioned clas-
sification approaches ensure good performance under
controlled laboratory conditions. Nevertheless, in order to
be used effectively in real-life scenarios, smart algorithms
must be developed, which are able to adapt to changes in
the environmental conditions and intra-subject variability
(e.g. changes of background noise level of the EMG
signals), as well as to the inter-subject variability [20].
In this paper, we exploited a cHRI combining sEMG

and an upper-limb robotic exoskeleton, to fast detect the
users’ motion intention. We implemented offline an
unsupervised machine-learning algorithm, using a set of
subject-independent time-domain EMG features, se-
lected according to information theory. The probability
distributions of rest and movement phases of the set of
features were modelled by means of a two-component
Gaussian Mixture Model (GMM). The algorithm simu-
lates an online application and implements a sequential
method to adapt GMM parameters during the testing
phase, in order to deal with changes of background
noise levels during the experiment, or fluctuations in
EMG peak amplitudes due to muscle adaptation or
fatigue. Features were extracted from two different signal
sources, namely onset detectors, which were tested offline
and their performance in terms of sensitivity (or true
positive rate), specificity (or true negative rate) and latency
(delay on onset detection) were assessed for two different
events, i.e. two transitions from rest to movement phases
at different initial conditions. The two events were
selected in order to replicate a possible application
scenario of the proposed system. Based on the results we
obtained, we discussed the applicability of the algorithm
to the control of an upper-limb exoskeleton used as an
assistive device for people with severe arm disabilities.

Materials and methods
Experimental setup
The experimental setup includes: (i) an upper-limb powered
exoskeleton (NESM), (ii) a visual interface, and (iii) a
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commercial EMG recording system (TeleMyo 2400R,
Noraxon Inc., AZ, US).

NESM upper-limb exoskeleton
NESM (Fig. 1a) is a shoulder-elbow powered exoskeleton
designed for the mobilization of the right upper limb
[21, 22], developed at The BioRobotics Institute of
Scuola Superiore Sant’Anna (Italy). The exoskeleton
mechanical structure hangs from a standing structure
and comprises four active and eight passive degrees of
freedom (DOFs), along with different mechanisms for
size regulations to improve comfort and wearability of
the device.
The four active DOFs are all rotational joints and are

mounted in a serial kinematic chain. Four actuation
units, corresponding to the four active DOFs, allow the
shoulder adduction/abduction (sAA), flexion/extension
(sFE) and internal/external rotation (sIE), and the elbow
flexion/extension (eFE). Each actuation unit is realized
with a Series Elastic Actuation (SEA) architecture [23],
employing a custom torsional spring [24] and two abso-
lute encoders, to measure the joint angle and the joint
torque as explained in [21]. SEAs allow reducing the

mechanical stiffness of the actuator and easy implemen-
tation of position and torque controls.
The NESM control system runs on a real-time con-

troller, namely a sbRIO-9632 (National Instruments,
Austin, TX, US), endowed with a 400MHz processor
running a NI real-time operating system and a field
programmable gate array (FPGA) processor Xilinx
Spartan-3. The high-level layer runs at 100 Hz, whereas
the low-level layer runs at 1 KHz.

NESM control modes
Low-level control
The low-level layer allows the exoskeleton to be operated
in two control modalities, namely joint position and joint
torque control modes. In the position control mode, each
actuator drives the joint position to follow a reference
angle trajectory: this control mode is used if the arm of
the user has no residual movement capabilities and needs
to be passively guided by the exoskeleton. If the user has
residual movement capabilities but is not able to entirely
perform a certain motor task, the exoskeleton can be
controlled in torque mode: each actuation unit can
supply an assistive torque to help the user accomplish

Fig. 1 a Experimental setup, comprising NESM, EMG electrodes and the visual interface; b Location of the electrodes for EMG acquisition; c
Timing and sequence of action performed by the user during a single trial
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the movement; we refer to transparent mode when null
torque is commanded as reference. Both control modes
are implemented by means of closed-loop controllers,
independent for each actuation unit. Controllers are
proportional-integrative-derivative (PID) regulators,
operating on the error between the desired control
variable (angle or torque) and the measured control
variable (joint angle or joint torque). Safety checks are
implemented when switching from one control mode
to the other, in order to avoid undesired movements of
the exoskeleton.

High-level control
The high-level layer implements the control strategies to
provide the movement assistance. A graphical user inter-
face (GUI) has been implemented in LabVIEW environ-
ment. The GUI allowed to (i) set the desired control
mode and control parameters, (ii) visualize joint angles,
torques and EMG signals, (iii) launch the visual inter-
face, and (iv) save data. NESM high-level controller also
implements a gravity compensation algorithm to counter-
act the gravity torque due to the exoskeleton weight. A
more detailed description of the control modes and their
performances can be found in [21, 22].

Visual interface
A visual interface (Fig. 1a) displayed three LEDs (west -
W, center - C, and east - E) for the reaching movements,
placed on different positions on a computer screen (15 cm
apart, at left, center, and right, respectively). The visual
interface was implemented in LabVIEW and launched by
the NESM GUI.

EMG recording and acquisition system
EMG signals from seven muscles of the right shoulder
(Trapezius, Anterior and Posterior Deltoid), arm (Biceps
and Triceps Brachii) and forearm (Flexor and Extensor
Carpi Ulnaris) were amplified (1000x) and band pass-fil-
tered (10–500 Hz) through a TeleMyo 2400R system
(Noraxon Inc., AZ, US). The location of the electrodes is
shown in Fig. 1b. The sbRIO-9632 interfaced the
TeleMyo analog output channels: EMG signals were
sampled by the FPGA layer at 1 kHz and sent to the
real-time layer for visualization and data storage.

Subjects
A total of 10 healthy subjects (8 male, 2 female, age
26 ± 5 years) participated in the experiment, and they
all provided written informed consent. The procedures
were approved by the Institutional Review Board at
The BioRobotics Institute, Scuola Superiore Sant’Anna
and complied with the principles of the declaration of
Helsinki.

Experimental protocol
Upon arrival, subjects were prepared for the experiment.
Participants wore a t-shirt and were prepared for the ap-
plication of the EMG electrodes over the skin according
to the recommendations provided by SENIAM [25].
Then, subjects wore the exoskeleton with the help of the
experimenter, and the size regulations were adjusted to
fit the user’s anthropometry. The subjects sat in front of
a screen showing the visual interface, having the center
of the right shoulder aligned with the central LED, in
order to allow symmetric movements toward left and
right LEDs.
Seven sessions per subject were performed, each con-

sisting of 24 reaching movements, with 5 min of rest
between sessions to avoid muscular fatigue. The targets
(i.e. the LEDs) were presented in random order. For each
reaching trial, the subjects were instructed to:

– keep a resting position as long as all the LEDs were
turned off,

– as soon as one LED turned on, move the arm
towards it and touch the screen,

– keep the position (touching the screen) as long as
the LED was turned on,

– as soon as the LED turned off, move back to the
resting position.

Each trial was set to a duration of T = 12 s; within this
duration, the LED was turned on for TON = 6 s (Fig. 1c).
When the LED turned ON, the exoskeleton control
mode was automatically set to transparent mode, to
allow the subject to start the movement and reach the
target. After TR1 = 2.5 s the control mode was automati-
cally set to position control for a duration of TR2 = 3.5 s;
notably TR1 was set long enough to ensure subjects
could reach the target. When the LED turned OFF,
subjects were asked to flex the elbow until the eFE
measured torque exceeded the threshold τthr = 2 N ∙m;
this value was used to discriminate a voluntary action of
the user, to switch again the exoskeleton control mode
to transparent mode and let the subject move the arm back
to the resting position. The LED was off for TOFF = 6 s and
then a new trial was started.

EMG data processing and features extraction
The EMG signals were hardware-filtered on the
Noraxon TeleMyo device with high-pass and anti-aliasing
low-pass filters for all channels, to achieve a pass band
between 10 and 500 Hz. Digital signals were then con-
verted to analog by the Noraxon TeleMyo and sent to
the analog-digital converter of the NESM FPGA layer,
operating at a sampling frequency of 1 kHz. Although
the cut-off frequency of the anti-aliasing filter was close
to the theoretical Nyquist frequency, it was the best
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filtering options available with our hardware setup. For
offline analysis, an additional high-pass filter (Butterworth,
4th order) with a cut-off frequency of 10Hz was necessary
to remove low-frequency components from data collected
from the FPGA. Notch filter at 50Hz was then used to
eliminate residual powerline interference. We considered
14 time-domain features to extract information from the
EMG signals [26]. Features were computed within a
sliding window of 300ms (10ms update interval). A
description of the features and their mathematical formu-
lation can be found in the Appendix.

Motion intention detection
For each trial, within each reaching movement, the
EMG signals were segmented into two phases: rest,
corresponding to the phase in which the upper limb was
kept still in the initial resting position, and movement,
corresponding to the phase in which the upper limb was
moving towards or was voluntarily touching the target.
This transition from rest to movement was defined as
the Go-forward event.
A similar approach was adopted for retracting move-

ments. The EMG signals were segmented into two
phases: rest, corresponding to the phase in which the
upper limb was held fixed near the target by the exoskel-
eton (in position control) and movement, corresponding
to the phase in which the upper limb was moving (or
trying to move, when the exoskeleton was in position
control) to return to the initial resting position. The
transition from rest to movement was defined as the
Go-backward event. Figure 2a shows, for a represen-
tative subjects, kinematic and kinetic data used for the
discrimination of the two events, together with the raw
EMG signals for two representative muscles.
To detect both events, the probability distribution of

each feature corresponding to rest and movement phases
was modeled by a Gaussian Mixture Model (GMM), in
which the density function of each feature is a linear
mixture of two Gaussian curves, each representing the
distribution of that feature within a given phase.

GMM training phase
The parameters of the two-components GMM were esti-
mated using an unsupervised approach based on the
Expectation Maximization (EM) algorithm [27]. The
GMM probability density function is given by:

p x; λMð Þ ¼ wrest ∙
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2
rest

p e
−

x−μrestð Þ2
2σ2

rest

þ wmov∙
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2mov

p e
−

x−μmovð Þ2
2σ2mov ð1Þ

or, equivalently:

p x; λMð Þ ¼ wrest ∙p xjrest; λMð Þ
þ wmov∙p xjmov; λMð Þ ð2Þ

where μrest and μmov are the means, and σ2rest and σ2mov
are the variances of the Gaussian distribution for the
given phase rest and movement, respectively. The param-
eters wrest and wmov represent the a priori distribution of
task in rest/movement phases. The modeling problem
involves estimating the parameter set λM ¼ fwrest ;wmov;

μrest ; μmov; σ
2
rest ; σ

2
movg from a training window of M ≤ L

samples of the observed signal.
Given the training sequence x1, x2,… , xM, a Maximum

Likelihood Estimation (MLE) of parameter set λM can be
obtained by solving the problem:

λM ¼ arg max
λ

p x; λð Þ½ � ð3Þ

which was tackled by iteratively applying the steps of the
EM algorithm (1), until the difference between two con-
secutive estimations was lower than 10−6 for all parame-
ters. The two estimated Gaussian distributions were
then used to identify an optimal threshold, θ, that mini-
mized the classification error:

wrest ∙p x ¼ θjrest; λMð Þ ¼ wmov∙p x ¼ θjmov; λMð Þ ð4Þ
The samples with feature value less than θ are classi-

fied as rest, while greater than θ as movement. At the
end of the training, the parameters λM for each consi-
dered feature were obtained. These were employed as
initial guesses for the parameters of the distributions
sequentially estimated during the GMM testing.
For each subject, data of each session were used alter-

natively for the training phase and tested on data of the
remaining 6 sessions. The outcome measures over all
the testing sessions were then averaged.

GMM testing phase
Reiteration of the EM algorithm for each new sample
acquired in the testing phase is disadvantageous in term
of both computational load and consumption of me-
mory; on the other hand, maintaining a fixed threshold
during the testing phase could lead to inaccurate results
due to changing background noise levels during the
experiment, or varying EMG peak amplitudes as a result
of muscle adaptation or fatigue.
Liu et al. [20] proposed a sequential method to adapt

GMM parameters during the testing phase promoting
computation efficiency. Here, the model is sequentially
updated at each new observation xl + 1 every 10 ms, as
follows:

wi;lþ1 ¼ αwi;l þ 1−αð Þp ijxlþ1; λlð Þ ð5Þ
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μi;lþ1 ¼
αwi;lμi;l þ 1−αð Þp ijxlþ1; λlð Þxlþ1

wi;lþ1
ð6Þ

σ2i;lþ1 ¼
αwi;lσ2i;l þ 1−αð Þp ijxlþ1; λlð Þ xlþ1−μi;lþ1

� �2
wi;lþ1

ð7Þ

where i ∈ {rest,mov}, λl is the previous estimate of GMM

parameters, and α indicates the forgetting factor (α ¼ L−1
L ;

0 < α≤1). The conditional probability p(i| xl + 1, λl) at the
generic time instant t is given by:

p ijxt ; λlð Þ ¼ wi;lp xt ji; λlð Þ
wrest;lp xt jrest; λlð Þ þ wmov;lp xt jmov; λlð Þ

ð8Þ

The new estimates of the GMM parameters, λl + 1, can
be derived from λl and xl + 1 using the above sequential
scheme. Then, the time-varying threshold θl + 1 can be

Fig. 2 a Sample data acquired from one subject participating the experiments: joint angles from two representative joints of the upper-limb
exoskeleton (for Go-forward discrimination); torque on the eFE joint for Go-backward discrimination; raw EMG data from two representative
muscles. b Schematic representation of the detectors that were tested
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determined from Equation (4) which decides whether xl + 1

is classified as rest or movement.

Subject-independent feature set
The selection of a subject-independent set of EMG
features was performed by means of information theory
tools. First, the information carried by each single feature
about the rest and movement phases of movement was
quantified for each recorded muscle. Then, the contri-
butions to the computed information due to Redundancy
and Synergy effects were assessed according to the infor-
mation breakdown proposed by [28]. The Redundancy
term takes into account the similarities in the distribution
across phases of phase-conditional response probabilities
of individual features, whereas the Synergy term quantifies
the amount of information available from the feature-fea-
ture or movement phase-feature correlations.
In our study, two features are synergic if the infor-

mation about the events carried when they are considered
together is higher than the information conveyed by each
feature alone. Similarly, features are redundant if they
carry similar information about the events.
According to [28], the mutual information of the

variables F (feature) and R (phase) can be written as
the sum of four terms:

I R; Fð Þ ¼ Ilin þ Isig−sim þ Icor−ind þ Icor−dep ð9Þ

where the linear term, Ilin, quantifies the information ob-
tained if each feature were to convey independent infor-
mation on the movement phase; the signal-similarity
term, Isig − sim, quantifies the Redundancy effects; and the
correlation components, Icor − ind + Icor − dep, quantify the
Synergy effects.
Each contribution of the information breakdown was

computed via the C- and Matlab-based Information
Breakdown Toolbox (ibTB) developed by Magri et al. [29].
The selection of subject-independent features was carried
on by assessing the Redundancy and Synergy terms of the
information breakdown. The criteria for feature selection
were: 1) to choose the features that minimize redundancy
effects and 2) to maximize synergistic effects.
Information theory was also exploited to select the

best window length for feature extraction, by comparing
the information content of the features using 100, 300
and 500 ms. For Go-forward, information content of the
features slightly decreased for increased window length.
The differences were not significant when testing
window length effect on the three samples (Friedman
test; p > 0.05). However, when the samples were tested
in pairs, information content at 500 ms was lower than
both 300 and 100 ms (p < 0.05; Wilcoxon sign rank test).
Instead, for Go-backward, information content did not
change as the window length increased (both Friedman

test and Wilcoxon sign rank test; p > 0.05). Based on
these results, we selected 300 ms as the best choice for
window length, in accordance to data found in literature
about the optimal window length for the feature calcula-
tion. Indeed, several studies report a window length of
300 ms as the maximum limit allowed for feature extrac-
tion in online applications [18, 30]. Similar approaches
exploiting information theory suggest an optimal
window size between 200 and 300 ms [31].

Onset detector type

At each update of the observation window new EMG
features were calculated, thus an equivalent number of
classification outputs were available. We compared three
types of detectors making decisions on whether the
new output is rest or movement in different ways, and
requiring different amounts of computational load
and memory consumption (Fig. 2b):

1. Type 1 detector: it takes as input a number M of
features computed on a single EMG signal; GMM
algorithms work in parallel on each feature and the
final decision is made by a majority voting procedure
on their outputs: it is rest if the corresponding number
of outputs are at least M

2 þ 1, movement otherwise.
2. Type 2 detector: it takes as input the features

computed on multiple EMG signals; each EMG
signal is the input of a type 1 sub-detector, and the
final decision is made by a majority voting on their
outputs. A number S = 7 of EMG signals are used
as input for type 2 detectors in this study. Addition-
ally, a type 2 info-based detector has been tested,
which takes as input the features computed on a
subset of P < S EMG signals, i.e. the ones carrying
the highest information. P = 3 has been chosen in
order to have the minimum number of signal
sources to make a majority voting

Performance metrics
Three parameters were used to evaluate the performances
of the three types of detectors:

1. Sensitivity (or true positive rate): it measures the
proportion of onset events that are correctly
identified as such

Sensitivity ¼ TP
TP þ FN

ð11Þ
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2. Specificity (or true negative rate): it measures the
proportion of correctly detected time samples not
being classified as onset

Specificity ¼ TN
TN þ FP

ð12Þ

3. Latency: it measures the average delay of onset
detection, with respect to the time instant of actual
movement initiation, or reference onset time t0

Latency ¼ td−t0h itrials ð13Þ

where TP, TN, FN and FP are the number of true posi-
tives, true negatives, false negatives and false positives,
respectively; td is the onset time detected by the algo-
rithm and t0 is the reference onset time, i.e. the time
instant on which the kinematic variables assumed a
value corresponding to the 10% of their peak values
during the movement (Go-forward) or the time instant
on which the eFE measured torque overcomes the
threshold value (Go-backward). The kinematic variables
are the angular positions of the four active joints (sAA,
sFE, sIE, eFE).
In addition, in order to assess the computational load,

the algorithm has been implemented on a dual-core 667
MHz real-time processor (sbRIO-9651, National Instru-
ment, US) and runs at 100 Hz sampling frequency. This
processor has better performances with respect to the
one used in the NESM, and will be employed in future
versions of the exoskeleton. Raw sEMG are acquired at
the FPGA level, running at 1 kHz, and sent by means of
a direct memory access (DMA) method to the high-level
control layer, for signal processing and feature ex-
traction. With this FIFO-based method, during each
iteration of the high-level control (i.e. 10 ms) ten sEMG
samples (i.e. 1 ms data) are collected from the FPGA.
Data recorded during the experimental session, together

with the initial GMM parameters obtained after the trai-
ning phase, were used to run a simulation of the algorithm
for 90 s (corresponding to 6 full cycles), and the maximum
iteration duration of a single iteration was extracted.

Results
Movement onset analysis
Subject-independent set of EMG features
Figure 3a and b show, for Go-forward and Go-backward
onset detection respectively, the information about the
rest/movement states carried by each of the 14 features

(mean ± SD across subjects and muscles) and by white
noise, the latter used as reference. Eight out of fourteen
features (IAV, MAV, MMAV1, SSI, VAR, RMS, WL and
LOG) carried significantly more information than white
noise for both Go-forward and Go-backward (KW test;
p < 0.001; Tuckey’s post hoc), and were selected for
further in-depth analysis. Fig. 3c and d show, for each of
the fourteen features in the two events, the similarity
term (Isig − sim) of the information breakdown, thus the
redundancy effect between pairs of features: the eight
selected features all showed to be redundant to some
degree, e.g. there were similarities in the distribution
across rest/movement states of state-conditional response
probabilities of individual features (2). Analogously, in
Figure 3e and f, the correlation term (Icor − ind + Icor − dep)
is reported. Synergistic effects between features are
expressed by positive correlation: IAV, MAV and MMAV1
features showed to be non synergistic (negative corre-
lation) and similarly, RMS and SSI and VAR. For this
reason we discarded MAV, MMAV1, RMS and VAR
from the set of the eight most informative features, and
considered the set {IAV, SSI, WL, LOG} as the most
informative, most synergistic and less redundant subject-
independent set of features to be used for EMG-based
movement onset detection.

Information content of the extracted features
After the optimal set of features had been selected, the
information content of the 7 muscles has been calcu-
lated according to Eq. 9, in order to identify which mus-
cles are more suitable as Type 1 detector for the two
events. The results are reported in Figure 4a and b, for
the two event respectively. Although for Go-forward all
Type 1 detectors except Flexor and Extensor Carpi
Ulnaris carry an information content higher than 0.5 bit
(Anterior Deltoid being the most informative one with
0.87 bit of information), the same detectors result less
informative for Go-backward, with the exception of
Extensor Carpi Ulnaris (0.68 bit of information).
Figure 4c and d inspect the correlation between the

performance of the detectors in terms of both sensitivity
and specificity (i.e. their product), and the information
content of the four selected features, calculated for each
of the Type 1 detectors and for each subject. As reported
in Table 1, all the features show statistically significant
correlation for both events (Pearson correlation coeffi-
cient between 0.66 and 0.88, p-value< 0.001).

Performance of different EMG-based detectors
Figure 5a and b show, for each of the two events, the
performance of the three types of detector that were
tested, in terms of sensitivity, specificity and latency.
Regarding Go-forward onset detection, Type 1 detectors
receiving as input single EMG signals from Anterior
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Deltoid and Biceps show higher sensitivity with respect
to the other muscles. The median sensitivity (and inter-
quartile range) is equal to 81.1% (76.6–86.24%) and
89.3% (90.5–76.5%) respectively. Nevertheless, whereas
Anterior Deltoid detector has the highest specificity
among Type 1 detectors (96.2% (93.0–98.3%)), Biceps
detector exhibit the lowest specificity, equal to 80.8%
(51.8–91.0%). Median latency values range from − 0.202 s
(Biceps) to − 0.029 s (Flexor Carpi Ulnaris). The Type 2
detector (Majority Voting) exhibits the highest specificity
(median value of 97.9% (98.4–96.3%); however, it performs
worse than other Type 1 detectors in terms of sensitivity

(74.7% (69.7–78.2%)). Median latency is equal to − 0.088 s
(− 0.101 – − 0.057 s). By choosing only the most infor-
mative muscles as input to the Type 2 detector, the sensi-
tivity increases to 81.7% (74.0–84.9%), while specificity
and latency slightly decrease to 96.3% (91.3–98.6%) and
− 0.133 s (− 0.168 – − 0.087 s) respectively.
With reference to Go-backward, Extensor Carpi

Ulnaris and Biceps Type 1 detectors exhibit the highest
sensitivity (median values of 60.9% (49.7–69.9%) and
59.1% (50.7–64.5%) respectively) with respect to the
other type of detectors. Extensor Carpi Ulnaris Type 1
detector exhibits the highest specificity as well, with a

Fig. 3 Information (in bit) carried by the fourteen selected features and white noise for Go-forward (a) and Go-backward (b). Colormap of the
similarity term of the information breakdown for analysis of redundancy effects between features for Go-forward (c) and Go-backward (d).
Colormap of the correlation term of the information breakdown for analysis of synergistic effects between features for Go-forward (e) and
Go-backward (f)
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median value of 94.3% (79.5–95.7%), and median latency
equal to − 0.099 s (− 0.163–0.173 s). All other Type 1
have a sensitivity below 50%. Type 2 detector (Majority
Voting an all muscles) resulted to have poor sensitivity
for Go-backward (median value of 50.4% (31.7–54.2%))
and specificity equal to 91.6% (86.2–97.1%). Median
latency is equal to − 0.093 s (− 0.184–0.028 s). When only
the most informative muscles are selected for the Type 2
detector, sensitivity and specificity increase to 52.7%
(41.2–63.2%) and 94.3% (84.2–96.7%). Latency decreases
to − 0.115 s (− 0.217 – − 0.014 s). Table 2 summarizes

Fig. 4 Information (in bit) carried by the 7 selected muscles considered as Type 1 Detectors for Go-forward (a) and Go-backward (b). Correlation
between detector performances (sensitivity x specificity) and the information content of the four features selected for the testing phase
in Go-forward (c) and Go-backward (d): 70 points are reported for each plot (10 subjects, 7 testing session for each)

Table 1 Pearson correlation coefficients between sensitivity and
information content of the five selected features

Pearson correlation coefficient

Features Go-Forward Go-Backward

IAV 0.87 0.70

SSI 0.87 0.71

WL 0.77 0.66

LOG 0.88 0.68
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the best performances for each parameter and for
each detector.
Figure 5c and d show, for the two events respectively,

the true positive- vs false positive- rate calculated over
all the trials performed by each subject and for each
detector (mean values and standard deviations are
reported for both measures). Type 2 detector exhibits the

highest mean ratio for Go-forward, equal to 23.7 (0.71/
0.03), which slightly decreases to 19.7 (0.79/0.04) when only
the most informative muscles are selected. Among Type 1
detectors, Anterior Deltoid has the highest mean ratio,
equal to 13.5 (0.81/0.06). As of Go-backward, Extensor
Carpi Ulnaris and Biceps Brachii exhibit the highest
ratios among Type 1 detectors, equal to 5.3 (0.58/0.11)

Fig. 5 Performance metrics of the detectors for Go-forward (a) and Go-backward (b). Detection results in true positive- false positive rate
for Go-forward (c) and Go-backward (d): the mean value and standard deviation bars are reported for each detector
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and 3.1 (0.58/0.19) respectively. Type 2 Info-based
detector performs slightly better than the others, having
a ratio equal to 5.5 (0.55/0.10).

Computational load
Results from the simulation on the real-time controller
revealed that the maximum iteration duration for event
detection is lower than 2ms. The maximum value of
iteration duration allowed by the controller for real-time
operation is 10 ms.

Discussion
Classification methods based on GMM have been imple-
mented for the myoelectric control of assistive devices
such as prostheses or robotic arms [17, 32]. In our work,
a GMM-based algorithm has been implemented and
information theory was used to identify the best set of
features able to detect the onset of upper-limb muscular
activation, with the final goal of controlling a robotic
exoskeleton for assistive tasks. Among the 14 time-do-
main features selected, a first screening was conducted
based on their information content with respect to white
noise. The smallest number of features which maximize
synergistic effects and minimize redundancy effects is
selected, in order to: i) reduce the probability that two
different features will share the same information about
rest/movement states (redundancy); ii) reduce the prob-
ability that the information content of the features alone
is higher with respect to the information of the coupled
features (synergy). Clearly, selecting the smallest number
of features would be recommended for online applica-
tions, in order to reduce computational load and achieve
faster detection without degradation of the performances.
Among the ones we selected, IAV and WL have also been
exploited to extract useful information about muscles acti-
vation [19, 32–34]. Although some of the features ana-
lyzed in this study have a similar formulation (such as
IAV, MAV, MMAV1, MMAV2), we did not make a biased
selection of features based on a priori knowledge of their
definition or their similarities and used information theory
to rule out redundant and non synergistic features. In-
deed, previous works have shown that similar EMG fea-
tures or their combination can yield significantly
different results [35, 36]. We compared performance

metrics of both Go-forward and Go-backward using all 14
features with the results obtained by the optimal subset.
Only Go-backward sensitivity was slightly but significantly
higher when using all features (median difference 0.0086;
Wilcoxon sign rank test, p < 0.001). All the other perform-
ance indices were not significantly different (Wilcoxon
sign rank test, p > 0.05), showing that usage of information
theory to reduce the number of features did not affect
overall detection performance, allowing in parallel a re-
duction of the total computational load of the detection
algorithms (approx. 80% reduction).
The importance of the information content on the

accuracy of onset detection was confirmed by the in-depth
analysis on the four chosen features. In particular, the posi-
tive correlation between the detector performance (which
takes into account both sensitivity and specificity) of the
Type 1 detectors and the information content of the
extracted features suggests that higher information
content can be associated to better event recognition.
Thus, an a priori analysis based on the breakdown of
information can be useful to identify which features
would be more effective for accurate detection of the
movement onset. Indeed, among Type 1 detectors, features
extracted from Anterior and Posterior Deltoid carry the
highest information and have the highest combination of
sensitivity and specificity for Go-forward. Similarly, Biceps
and Extensor Carpi Ulnaris have the highest information
for Go-backward. A similar trend between information
content and performances can be observed by comparing
Figs. 4 and 5A-B (Sens. x Spec. panel). The information
content of the features for the Type 1 detectors of
Go-Backward reflects on the worse performance of its
detection with respect to Go-forward, for which sensitivity,
specificity and information content are overall higher.
Indeed, the true positive- vs false-positive rate ratio is
always higher than 1 for Go-forward for all detectors,
whereas for Go-backward the distributions are widely
spread, and some detectors exhibit a ratio lower than 1 or
close to it. The high information content for Go-forward
carried by most of the Type 1 detectors for Go-forward
suggests that a particular combination of them through a
majority voting could provide accurate detection as well.
Taking into account contributions from all muscles is
disadvantageous for both events detection, because of the

Table 2 Performances of the three types of detector for the two events. For Type 1 detectors, performances of the source with the
best performances (Sens.*Spec.) are reported, which is Anterior Deltoid (AD) for Go-forward and Biceps Brachii (BB) for Go-backward

Go-forward Go-backward

Detector Type 1 (AD) Type 2 Type 2-info Type 1 (EXT) Type 2 Type 2-info

Sens. (%) 81.1 (76.5–90.5) 74.7 (69.7–78.2) 81.6 (76.2–84.0) 60.9 (49.7–69.9) 50.4 (31.7–54.2) 52.7 (41.2–63.2)

Spec. (%) 96.2 (93.0–98.3) 97.9 (96.3–98.4) 96.3 (91.3–98.0) 94.3 (79.5–95.7) 91.6 (86.2–97.1) 94.3 (84.2–96.7)

Latency
(s)

−0.130 (− 0.181 – −
0.096)

−0.088 (− 0.101–
0.057)

−0.134 (− 0.169 – −
0.088)

−0.099 (− 0.163–
0.173)

−0.093 (− 0.184–
0.028)

−0.115 (− 0.217 – −
0.014)
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scarce information associated to this event by some of the
single detectors. Conversely, given the positive correlation
between information and detector performance, the selec-
tion of the most informative muscles as input to the Type
2 detector gives acceptable performances in terms of sensi-
tivity and specificity, while reducing the computational
load in the training and testing phase with respect to
considering all muscles.
The two events have been chosen in order to simulate

different conditions of real-life scenario, which can vary
extensively according to the environment and the subjects’
residual motion capabilities [37]. As an example,
Go-forward is typical in situations where the user wants
to initiate a new task or activity and the robot can modu-
late the level of assistance, up to providing passive
mobilization, in the worst scenarios. On the contrary,
Go-backward reflects situations in which sequential move-
ments must be performed (e.g. a complete functional tasks
composed of different sub-actions) and significant changes
in the background noise level of EMG signals can be
encountered in relatively short time.
Although the highest sensitivity for Go-forward event is

higher than 80% when the proper detector is used, sensi-
tivity for Go-backward detection is around 60% in the best
case. The differences in the recognition of the two events
could be due to the particular conditions of the exper-
iments. Indeed, whereas Go-forward corresponds to a
transition from rest to movement state when the user
is completely relaxed (the exoskeleton is in transpar-
ent mode), the initial condition for Go-backward was
with the arm stretched toward the target and the exo-
skeleton controlled in position mode, restraining any
movement of the user. This condition did not allow
subjects to relax their muscles before activating the
Go-backward transition. In addition, the time interval
for which the phase signal is 1 (i.e. movement state) is
shorter for Go-backward than for Go-forward and it is
dependent on the torque threshold chosen for the
activation. This has two main implications: first, the se-
quential algorithm that adaptively modifies GMM param-
eters works on a shorter time window, reducing the
accuracy in the calculation of the time-varying threshold
to discriminate rest/movement states; furthermore, by
selecting a higher torque threshold for Go-Backward
initiation, a volitional muscular activity could have been
better discriminated during the training phase. A low
torque threshold has been selected for the experiments in
order to reduce fatigue effects on the subjects.
The low sensitivity of the Go-backward detection

represents the main limitation of the proposed method,
which would make it difficult for the user to retract from
the reaching position in real-time applications. Before
the Go-backward event, the arm was completely extended
toward the target, and held steady by the exoskeleton. In

such position, the arm muscles exhibited a residual activa-
tion, which was non-optimal for discriminating between
rest and movement states. In fact, although the subjects
were instructed to keep their muscles as relaxed as
possible, such activation increased the “background noise”
on the EMG signals, leading to poor detection perfor-
mance even with the best parameters and the optimal
window length. A possible solution to address this
problem would require a modification of the experi-
mental protocol with respect to the rest positions for
the Go-backward event. For example, a more comfortable
posture with the arm not completely extended toward the
target could help the subjects to keep their muscles
relaxed. As a result, the information content carried by
the EMG signals about the event would increase, thus
improving detection performance.
The results about latency are comparable to other

systems in the state of the art. For example, the multi-
modal control system in [9] is capable to predict move-
ment onset via EMG analysis with a prediction time of
0.061 s, which was reduced to a value of 0.057 s when
EMG and EEG signals were combined in a hybrid fash-
ion. The GMM method presented in this paper has the
advantage of using only EMG signals to predict the on-
set of the movement from 0.088 s up to 0.134 s (Table 2,
Go-forward), reducing the complexity of the system while
maintaining acceptable performances in terms of sensitiv-
ity and specificity, higher than 80 and 96% respectively for
Go-forward. Earlier predictions have also been recorded,
up to 0.202 s (median value) for Biceps Type 1 detector in
Go-forward, but with poor overall performances. It is
worth noticing that here latency is defined as the time
delay between muscular activation onset and kinematic
onset, rather than the delay between the algorithm detec-
tion and actual muscle activation. Thus, negative values of
latency are preferred in order to design a control strategy
able to react promptly to the user’s intention. In this case,
by taking into account the contribution of a specific
muscle or a sub-set of muscles to a certain movement, it
would be possible to trigger the robot assistance before
having a substantial modification of the kinematic metrics,
which would be strenuous for users with highly-reduced
mobility of their upper arm.
When used in conjunction with the upper-limb exo-

skeleton, smart algorithms can be combined in order to
reduce the effect of false activations. As an example, a
robot-assisted full functional task can be implemented
by means of a finite-state machine to split the main
task in different sub-actions. Then, event detection can
be triggered only when the proper state is activated.
Similar approaches have been pursued, but using different
interfaces for detecting the user’s intention to move
[10, 38]. Another study on healthy subjects showed that
combining EMG data with kinematic data from the
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exoskeleton can improve the performance of classification
of the movement direction, with respect to using EMG
signals alone [39]. A hybrid approach exploiting kinetic
data from the exoskeleton could allow to deal with patho-
logical sEMG as well, as of post-stroke subjects exhibiting
arm spasticity. In this case, an involuntary muscle contrac-
tion due to a spasm could be detected by the onboard
torque sensors of the exoskeleton [40], and the event
detection would be neglected. Future studies need to
be conducted in order to evaluate the feasibility of
such approach for online applications.

Conclusions
In this paper, we presented an algorithm for the detec-
tion of the user’s intention to move based on the onset
of muscular activity. We found that information theory
represents a powerful tool to predict which features
could be more representative for an accurate and robust
detection of a desired event. For offline analysis, kine-
matic data of the upper-limb exoskeleton have been
exploited to discriminate two different events, repro-
ducing possible scenarios of daily-life activities for people
with reduced mobility of their upper arm. The perfor-
mances of different detectors have been analyzed, showing
that information from single muscles or a combination of
them can be equivalently effective depending on the kine-
matic event that is considered. Although the performance
of the algorithm has been tested offline, its applicability to
real scenario has been discussed. The capability to predict
the onset of muscular activity before the kinematic event
takes place, the accurate detection and the low computa-
tional load make the proposed algorithm promising for
the control of upper-limb exoskeletons in online appli-
cations. The final goal would be aiding people with severe
arm disabilities in performing assisted functional tasks.
Clearly, additional test will be required in order to assess
the performance of the algorithm when non-physiological
muscle activation patterns are used.

Appendix
Feature Definitions
According to [26], the features considered in this study
are defined as the following:
Integrated Absolute Value (IAV): It is calculated as the

summation of the absolute values of the signal ampli-
tude in the window frame,

IAV ¼
XN
n¼1

xnj j

where N is the number of samples of the sliding window
(N = 100).
Mean Absolute Value (MAV): It is evaluated by taking

the average of each signal,

MAV ¼ 1
N

XN
n¼1

xnj j

Modified Mean Absolute Value 1 (MMAV1): It is an
extension of MAV which uses a weighting window
function,

MMAV1 ¼ 1
N

XN
n¼1

wn xnj j

wn ¼ 1 if 0:25N ≤n≤0:75N
0:5 otherwise

�

Modified Mean Absolute Value 2 (MMAV2): It is similar
to MMAV1, with a different weighting function,

MMAV2 ¼ 1
N

XN
n¼1

ŵn xnj j

ŵn ¼
1 if 0:25N ≤n≤0:75N

4n=N if 0:25N > n
4 n−Nð Þ=N if 0:75N < n

8<
:

Simple Square Integral (SSI): It is the energy of the
signal,

SSI ¼
XN
n¼1

xn
2

Variance (VAR): It is the variance of the signal,

VAR ¼ 1
N−1

XN
n¼1

xn−μð Þ2

where μ is the average value of the signal.
Root Mean Square (RMS): It is the root of the mean

squared signal,

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
n¼1

xn
2

vuut
Waveform Length (WL): It is the cumulative length of

the waveform,

WL ¼
XN−1

n¼1

xnþ1−xnj j

Willison Amplitude (WAMP): It is the number of
times that the difference between two adjacent ampli-
tude values exceeds a predefined threshold,

WAMP ¼
XN−1

n¼1

f xnþ1−xnj jð Þ
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f xð Þ ¼ 1 if x≥ threshold
0 otherwise

�

Slope Sign Change (SSC): It is the number of changes
between positive and negative slope; it is calculated by
using a threshold function to minimize the influence of
noise in the signal,

SSC ¼
XN−1

n¼2

f xn−xn−1ð Þ xn−xnþ1ð Þ½ �

f xð Þ ¼ 1 if x≥ threshold
0 otherwise

�

Zero-Crossing (ZC): It is the number of times that the
amplitude of the signal crosses the zero value,

ZC ¼
XN−1

n¼1

sign xn � xnþ1ð Þ∩ xn−xnþ1j j≥ threshold½ �

sign xð Þ ¼ 1 if x≥ threshold
0 otherwise

�

Logarithm (LOG): It is the mean of the common loga-
rithm of the absolute value of the signal,

LOG ¼ 1
N

XN
n¼1

log10 xnj jð Þ

Skewness (SKEW): It is the third standardized moment,
defined as:

SKEW ¼

1
N

XN
n¼1

xn−μð Þ3

1
N−1

XN
n¼1

xn−μð Þ2
 !3=2

where μ is the average value of the signal.
Kurtosis (KURT): It is the fourth standardized mo-

ment, defined as:

KURT ¼

1
N

XN
n¼1

xn−μð Þ4

1
N−1

XN
n¼1

xn−μð Þ2
 !2
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