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Abstract

Background: Physical and functional losses due to aging and diseases decrease human mobility, independence,
and quality of life. This study is aimed at summarizing and quantifying these losses in order to motivate solutions to
overcome them with a special focus on the possibilities by using lower limb exoskeletons.

Methods: A narrative literature review was performed to determine a broad range of mobility-related physical and
functional measures that are affected by aging and selected cardiovascular, respiratory, musculoskeletal, and
neurological diseases.

Results: The study identified that decreases in limb maximummuscle force and power (33% and 49%, respectively,
25–75 yrs) and in maximum oxygen consumption (40%, 20–80 yrs) occur for older adults compared to young adults.
Reaction times more than double (18–90 yrs) and losses in the visual, vestibular, and somatosensory systems were
reported. Additionally, we found decreases in steps per day (75%, 60–85 yrs), maximum walking speed (24%
25–75 yrs), and maximum six-minute and self-selected walking speed (38% and 21%, respectively, 20–85 yrs), while we
found increases in the number of falls relative to the number of steps per day (800%), injuries due to falls (472%,
30–90 yrs) and deaths caused by fall (4000%, 65–90 yrs). Measures were identified to be worse for individuals with
impaired mobility. Additional detrimental effects identified for them were the loss of upright standing and
locomotion, freezing in movement, joint stress, pain, and changes in gait patterns.

Discussion: This review shows that aging and chronic conditions result in wide-ranging losses in physical and
sensory capabilities. While the impact of these losses are relatively modest for level walking, they become limiting
during more demanding tasks such as walking on inclined ground, climbing stairs, or walking over longer periods,
and especially when coupled with a debilitating disease. As the physical and functional parameters are closely related,
we believe that lost functional capabilities can be indirectly improved by training of the physical capabilities. However,
assistive devices can supplement the lost functional capabilities directly by compensating for losses with propulsion,
weight support, and balance support.

Conclusions: Exoskeletons are a new generation of assistive devices that have the potential to provide both, training
capabilities and functional compensation, to enhance human mobility.
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Introduction
Improving quality of life is a goal of modern society.
Quality of life studies assess the physical condition, as
poor physical condition can limit daily mobility and the
ability to move and work. One of the main causes of
limitations in daily mobility might be the physical losses
that occur with increasing age, which results in reduced
muscle force or muscle power. These losses reduce the
functional capacity, including both ability and intensity,
for movement tasks such as level walking or climbing
stairs.
Many secondary problems are related to the physical

and functional capacity. A greater number of steps per day
is associated with metrics that are indicative of positive
health, such as blood pressure [1], diabetes related glucose
tolerance [2], body mass index [3], risk of cardiovascu-
lar disease [4], risk of coronary heart disease [4], lipid
profiles [4] and mortality [5]. Changing posture can also
help to reduce secondary medical symptoms like bladder
infections, stomach problems, pressure sores, respiratory
problems, fatigue, bowel problems, and osteoporosis [6].
Maintaining or improving the physical condition is of

critical importance as our population ages. The World
Health Organisation (WHO) estimated an increase in the
number of older adults above the age of 65 years from 524
million in 2010 to 1.5 billion in 2050, which is an increase
from 8% to 16% of the world’s population [7]. In addition
to age-related degenerations, a larger proportion of the
population is expected to be affected by mobility-related
impairments due to chronic diseases. Worldwide more
than 500 million people suffer from a permanent reduc-
tion of the physical and functional capacity due to diseases
affecting the respiratory, cardiovascular, musculoskeletal
or neurological systems (Table 1). Concerning the cardio-
vascular system specifically, it is predicted that there will
be a large increase of cases until 2040 [8].
For individuals with impaired mobility, the reduced

mobility is more prevalent than other aspects of life such
as employment or education [9]. In a study on determi-
nants that increase health-related quality of life for people
with Chronic obstructive pulmonary disease (COPD), an
improvement in physical performance was identified as a
primary contributor [10]. Walking and standing were the
mobility functions that were most desired for people with
spinal cord injury (SCI) [11].
The increasing population of elderly individuals and

individuals with disease-related impaired mobility suggest
that there is a need for mobility solutions to secure an
independent daily life.

Wearable robotics for locomotion assistance
To date, mostly passive systems are used to support mobil-
ity and independence. To assist with walking, crutches
or walkers are used, as they are able to unload joints

to avoid pain caused by musculoskeletal diseases such
as osteoarthritis. Braces are used to stabilize joints. In
addition, these devices can help to improve balance, which
is limited due to muscle strength, endurance, or neuro-
logical reasons. However, the functional user benefits are
limited for passive devices such as ankle-foot orthoses
[12]. In order to provide increased capabilities, powered
devices such as electrical wheelchairs replace their passive
counterparts for those with limited or no walking ability.
Exoskeletons are a new generation of powered tech-

nical aids to address physical and functional deficits.
Furthermore, an augmentation (e.g. walking with less
effort) of the physical and functional capacity is pos-
sible (Fig. 1). Upper and lower limb exoskeletons have
been designed for assisting with lifting heavy objects
(HAL, [13]), sustained and fatigue-free load carrying
(HULC [14], BLEEX [15], Harvard Exosuit [16]), andman-
ufacturing (Honda Assist [17]) or medical applications
(Nursing assist suit, [18]). In the medical field, station-
ary and autonomous rehabilitation systems have been
developed to assist patients in regaining walking abil-
ity after injury. Examples for stationary devices are the
Lokomat [19], Lopez [20] or G-EO [21]. Examples for
autonomous systems to assist the hip and the knee are the
HAL [22], the Ekso [23], the REX [24], the ReWalk [25] or
the Indego [26] exoskeleton.
In addition to these developments, minimalistic

exoskeletons have been developed that assist single joints
or that use single actuators to assist multiple joints.
Tethered minimalistic systems to assist the ankle are the
motor-based exoskeleton emulator from Carnegie Mellon
University [27] and the pneumatic ankle exoskeleton from
the University of Michigan [28]. Multiarticular actuation
has been used for tethered [29] and autonomous [16]
versions of the Harvard exosuit, and for the autonomous
Myosuit [30]. Autonomous examples of minimalistic
systems that address single joints are the ankle exosuit
from Harvard [31], the ankle exoskeleton from MIT [32],
or the hip exoskeletons from Samsung [33], Honda [34],
Georgia Tech [35], and Sant’Anna [36]. While tethered
systems have been used for rehabilitation and research,
autonomous systems allow for the assistance with walking
or to provide walking capability (exchange of wheelchair)
in daily life.

Study focus
This narrative review aimed to summarize and quantify
losses in mobility-related physical and functional param-
eters over the course of the human adult lifespan that
could potentially be addressed with wearable robotics.
Additionally, selected diseases involving the cardiovascu-
lar, respiratory, musculoskeletal, and neurological systems
were analyzed to determine if affected people suffer
from greater mobility-related losses compared to the
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Table 1 Diseases analyzed in this work with an influence on the mobility related physical and functional capacity and their worldwide
prevalence

System Disease Prevalence worldwide in million Source

Respiratory Chronic obstructive pulmonary disease (COPD) 64-330 [172, 173]

Cystic fibrosis (CF) 0.1 Estimated based on [174]

Cardiovascular Coronary artery disease (CAD) 93 [173]

Peripheral vascular disease (PVD) 202 [175]

Musculoskeletal Osteoarthritis (OA) 151 [172]

Facioscapulohumeral muscular dystrophy (FSHD) 0.87 Estimated based on [176]

Neurological Parkinsons disease (PD) 5.2 [172]

Cerebral palsy (CP) 16 Estimated based on [177]

(incomplete) Spinal cord injury ((i)SCI) 3.5 Estimated based on [178]

Short descriptions and information on the prevalence estimations are provided in the Appendix

effects due to aging. Finally, we summarized the physical
requirements to perform the daily life tasks of level
walking, inclined walking, and climbing stairs.
In the discussion we confronted both, losses and daily

movement requirements, to provide an understanding
for mobility limitations of the analyzed populations.
Further it was discussed how the functional capacity can
be improved with a special focus on possibilities with
the help of exoskeletons. Although our aim was not
to summarize different exoskeleton solutions or control
approaches to overcome the identified functional losses,
we provided a short perspective based on previously pub-
lished work.

Methods
Selection of physical and functional parameters
The selection of the physical parameters was based on
representative values for humans to perform work over
short durations (muscle force, muscle power) and pro-
longed durations (VO2max). Functional parameters were
selected to quantify effects on daily performance. As 20%
of all daily trips for adults are performed by walking [37],

we selected steps per day and walking speed as indica-
tors for changes in this most basic mobility function. As
balance is a key function for sustained upright standing
and locomotion, balance quality was assessed using surro-
gate measures of falls, including the number of fall injuries
and the number of deaths caused by falls. Injuries and
deaths were added to have a measure for the relevance of
fall prevention and treatment. Upper and lower limb reac-
tion times were included to identify a possible source for
changing amount of falls with increasing age. As physical
deficits are not the only source for falls, additional changes
in the sensory systems of humans were summarized.

Selection of mobility related diseases
The selection of mobility-related diseases (Table 1) was
made based on different classes of diseases used in previ-
ous work to predict changes for hospital admissions and
costs [8]. From this study, four classes of diseases were
selected: respiratory, cardiovascular, musculoskeletal, and
neurological. From each class, representative diseases
were selected. Some diseases were selected based on a
list of diseases mentioned as factors with a detrimental
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influence in the six-minute walk test [38]. Additionally,
diseases were selected for which exoskeletons are cur-
rently used, or where the authors see a potential for
exoskeleton assistance. The intention of the selection
was to show the broad range of mobility-related diseases
rather than to provide a complete overview that includes
all possible diseases.
The selected diseases, including their abbreviations and

their worldwide prevalence, can be found in Table 1.
The selected respiratory diseases were Chronic obstruc-
tive pulmonary disease (COPD) and Cystic fibrosis (CF).
Cardiovascular diseases include Coronary artery disease
(CAD) and Peripheral vascular disease (PVD). Selected
musculoskeletal diseases were Osteoarthritis (OA) and
Facioscapulohumeral muscular dystrophy (FSHD). Repre-
sentatives for neurological diseases included Parkinsons
disease (PD), Cerebral palsy (CP), and (incomplete) Spinal
cord injury ((i)SCI) were selected. Worldwide prevalence
numbers were cited from the literature, although some
were estimated based on literature. Further descriptions
on the diseases and the prevalence estimations can be
found in the Appendix.

Literature search
The literature search was performed using Google
Scholar. Search terms included the names of the physical
and functional parameters as well as the names or abbrevi-
ations of themobility-related diseases. These search terms
were combined with the terms: walking, muscle, torque,
human, oxygen, VO2max, age, aging, elderly, adult, speed,
velocity, balance, test, reason, cause, or gait. To find or
estimate the worldwide statistics of cases for each selected
disease the search terms prevalence, incidence, and world-
wide were included. Partially, the worldwide statistics of
cases was identified using sources of the World Health
Organization (WHO) identified using the search term

World Health Organization in combination with the pre-
viously mentioned terms in Google. In addition to the
direct literature search, the electronic searches were sup-
plemented by reviewing the retrieved articles for relevant
content and references regarding this content.

Results
The “Results” section consists of two major subsections.
In the first subsection, aging- and disease-related losses
in physical and functional parameters, and the reasons for
the losses, are summarized. The second subsection sum-
marizes differences in physical parameter requirements
regarding daily locomotion tasks such as level walking or
stair climbing.
The parameter changes with increasing age (in percent)

and the mean age values for the compared groups are
provided (e.g. 25 to 75 yrs).

Losses in physical and functional parameters
Maximummuscle force and power
Maximum lower limb torques and forces decrease with
increasing age for the hip, knee, and ankle extensors and
flexors ([39–41], Fig. 2). Mean values for all lower limb
muscle groups (flexors and extensors of the hip, knee, and
ankle) show a decrease from the age of 25 to the age of 75
of 31% and 34% for males and females, respectively, which
is a decrease of eight percent per decade (Fig. 3b).
Further decreases compared to healthy subjects were

reported for the lower extremity of people with respira-
tory (COPD), cardiovascular (PVD [42]), musculoskeletal
(FSHD [43], OA [44]), and neurological (CP [45]) diseases.
Lower limb extensor power reductions (25 to 75 yrs)

were almost equal for males and females (50% and 47%,
respectively) with a decrease by approximately 13% each
decade as evaluated using a jumping test (Fig. 3a, [46]).
When comparing lower limb muscle force, maximum
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(one minimum in the last two years) for three age groups in percent. Age means were 35.3 (20–45, n=292), 55.3 (46–65, n=616), and 76.2 (>65,
n=589) years. The relative amount of male fallers is 16.8, 15.7, and 29.5 percent and of female fallers is 20, 25.3, and 43 percent with increasing age
[118]. e Increases of injuries due to falls (survey, 30–90 yrs) for the Canadian (dashed, [123]) and the US (solid, [124]) population with 100% set for 30
years old of [124]. Absolute values are about 20 to 100 falls with injury per 1000 population for the 30 and 90 years old respectively. f Relative
change with age (100% at 18 yrs) of single (dotted) and choice (solid) reaction time of 7130 subjects (18-90 yrs, [103]). Absolute values range from
287 ms to 872 ms for the single and 567 ms to 1129 ms for the choice reaction. Data was acquired using a single button that had to be pressed
when showing a number in a display. Choice reaction time included pressing one out of four different buttons

oxygen consumption, and lower limb muscle power, mus-
cle power had the strongest correlation to self-reported
functional status in older adults [47].
As studies have demonstrated further reductions in

maximum muscle forces for respiratory, cardiovascular,
muscoloskeletal, and neurological diseases [42, 43, 45, 48],
it is expected that maximum muscle power is decreasing
for these diseases as well. Studies that have evaluatedmax-
imummuscle power found reductions for individuals with
COPD [49], CP [50], and OA [51] compared to the healthy
reference groups.
Studies have shown that reasons for the losses in mus-

cle force and power are due to changes in muscle function,
architecture, and mass, however, changing tendon prop-
erties and body composition may also contribute [46].
One of the most important causes for the decline in
muscle mass and function is physical inactivity [52]. Next
to inactivity, many other muscle-related and non-muscle-
related factors, such as hormones, probably cause the
decline [53].

Maximumoxygen consumption
Maximum oxygen consumption (VO2max) was seen to be
reduced by approximately 58% when comparing 20 years
old with 80 years old subjects (45 to 26 ml·kg−1 · min−1,
respectively) with a decrease of 10% each decade [54]. An

analysis based on other datasets found similar magnitudes
[55]. While the absolute values for males were higher than
for females (Fig. 4), the relative decrease with age was
similar (Fig. 3c).
Additional reductions in VO2max were found for the

respiratory (COPD [56], CF [57]) and cardiovascular
(CAD [58, 59], PVD [60]) diseases (Fig. 5). For young
adults with FSHD, VO2max was found to be slightly
lower than the healthy average [61]. No differences in
VO2max were found between a healthy reference group
and individuals with Parkinson’s disease [62].
The decrease in VO2max are primarily related to

reductions in maximum heart rate and lean body mass
[55]. While physical training is not able to influence the
maximum heart rate, it can reduce the decrease in lean
body mass [55].

Walking speed
A summary of 27 studies (Fig. 5) identified a self-selected
level walking speed of approximately 1.35 m/s for young
adults (20 yrs). Up to the age of 85, a decrease to 1.07
m/s was identified (21%) with most of the loss occurring
between 60 and 85 (18% decrease starting at 1.3 m/s).
Bohannon [63] identified similar trends and also showed
that the maximum walking speed of adults decreases for
males and females from 2.5 m/s to 1.9 m/s, a reduction of
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Fig. 4 Oxygen consumption in relation to age and for different activities and diseases. VO2max decreases for healthy males (black line) and healthy
females (gray line) with age. Example requirements of continuous level and incline walking (W, [149, 150]), running (R, [151]), and climbing stairs
[152] are indicated by a black circle. VO2max values for people with peripheral vascular disease (PVD, [60]), coronary artery disease (CAD, [58]),
chronic obstructive pulmonary disease (COPD, [56]), and cystic fibrosis (CF, [57]) and hemiparesis (HP, [50]) are indicated by a gray circle. Age related
trends for both genders are from linear fits of 619 males and 497 females with an age between 18 to 95 years [14]

24%. Based on [64], six-minute maximum walking speed
was found to decrease from 2.1 m/s to 1.3 m/s between
the age of 20 and 85 years (38% reduction).
In [65] it was found that, similar to level walking, uphill

and downhill walking speed decrease with age. Uphill
walking resulted in greater reductions in walking speed
for the older adults (55–75 yrs) than for younger subjects
(10–55 yrs). Similar to uphill walking, stair climbing speed
(cadence) decreases in the older adults [66, 67].
Further reductions in walking speed were identified for

almost all analyzed diseases. Six-minute walking speed
decrease for people with COPD [68], PVD [69], and
CAD [58, 59] (Fig. 5). People with mild to moderate CF
were able to walk as fast as healthy subjects in the six-
minute walking test but experienced a significant decrease
in oxygen saturation and increased breathlessness per-
ception during exercise [70]. A reduced walking speed,
compared to the healthy reference group, was also iden-
tified for people with FSHD (Fig. 5, [71]) and OA [72].
In a group of young adults with CP, six-minute walking
velocity was reduced compared to healthy (range: 0.25 to
1.7 m/s, Fig. 5, [73]). Reduced walking speeds were also
found for people with PD [74] and iSCI [75]. The distance

that individuals with iSCI walked in six minutes varied
between 23 and 475 m.
Muscle strength and pain were identified as some of

the reasons for reduced walking speed with increasing age
[76, 77]. In treadmill walking (0.8 m/s), increased energy
expenditure (29%) with age was identified when compar-
ing women with a mean age of 42±1 years to a group of
woman with a mean age of 72±4 years [78]. Only a por-
tion of this effect was due to an increase in body weight
(approximately 3 kg difference). The other portion of the
increase in walking energy expenditure may be due to
decreased walking efficiency [79] or balance-related issues
[78]. Additional possible reasons for reductions in walking
speed were sensory losses, balance-related issues [80, 81],
and fear of falling [82].

Steps per day
In total, adults walk between 6000 and 13,000 steps
per day [83]. Physical and functional limitations result
in decreased walking distance for older adults [84, 85].
Tudor-Locke and Basset [83, 86] classified steps per day
into groups ranging from less than 2500 to above 12,500
steps per day (Fig. 6). Almost 50% of older adults above
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Fig. 6Walking speed, age and diseases. Self-selected (gray line) and six-minute maximum walking speed (black line) in relation to age for healthy
subjects and examples of populations with diseases. Age-related self-selected speed data (small gray circles) was extracted from 27 studies including
100 data points of speed and age (see Appendix Table 2 for details). A trend was illustrated using polynomial curve fitting. The six-minute walking
speed was measured with the six-minute walking test where subjects were encouraged to achieve the maximum distance by walking as fast as
possible. The curve is based on the equation derived by [64] (40-80 yrs, n = 155) in combination with input values that represent mixed gender
groups (1.72m, 72kg). Patient data represents self-selected walking speed (dark gray circle) for patients with FSHD [71] and very serve COPD [166].
Due to limited availability of self-selected speed data, for CP [73], CAD [58], PVD [69], and stroke [167] walking speed (self-selected) for the six-minute
walking test is shown. The healthy self-selected speed has a polynomial of order 3: y = −0.00000176 · x3 + 0.00017 · x2 − 0.00576 · x + 1.408

the age of 65 years belong to the classification “limited
and basal activity” taking fewer than 5000 steps per day
[87]. From the age of 60 years to the age of 85 years, the
mean number of steps per day decreases by 71% to 80%
(50th percentile of males and females). Active older adults
have a 55% reduction in the number of steps per day over
the same time period (Fig. 6). The number of steps taken
per day are highly related to the neighborhood walkabil-
ity rating and the number of reachable destinations (by
maximum 20 min walking). The number of steps per day
for a group of 74±4 (mean) year old females ranged from
less than 3000 to more than 6000 for poor to excellent
neighborhood conditions [88].
Respiratory, cardiovascular, muscoloskeletal, and neu-

rological diseases showed further reductions in steps per
day. For people with COPD, walking time decreased to
almost half, standing time decreased to 66%, whereas sit-
ting time and lying time were increased compared to an
unaffected reference group [89]. Individuals with COPD
were found [90] to take between 2140 (mean 66±10 yrs,
[91]) and 3716 (mean 70±8 yrs, [92]) steps per day.
For people with PVD, a significant decline in walking
endurance was identified [93]. 4156 steps per day (mean
70±2 yrs,) were identified as a mean by Crowther et al.
[94]. Steps per day were also reduced for individuals with
OA [72]. For people with PD, a range from 7636 (mean
67±8 yrs) to 8756 (mean 71±11 yrs) was identified [90],
which is above the mean of this age group (Fig. 6). On the
other hand, people with spinal cord injury may not have
locomotion capabilities at all. The impairment scale of the
American Spinal Injury Association classifies SCI to four
grades, ranging from no sensory and motor function in
the sacral segments (grade A, 45%) to full range of motion

and the ability to move against gravity with at least half of
the key muscles (grade D, 30%, [95]). Depending on grade,
people with incomplete SCI are able to stand up and walk.
Abilities are clearly limited for most of them [96] and
effort (cost of transport determined by metabolic cost of
walking) was shown to be greater than double compared
to unaffected reference subjects [97]. For mobility, most
people with SCI require the use of a powered or manual
wheelchair [98, 99]. For those with walking capabilities,
steps per day ranged from 68 to 4468 (mean 42±13 yrs)
with a mean of 1640 [99].
Multiple sources may contribute to the reduction in

steps per day. In addition to retirement, which removes
the necessity to travel to work, the reduction may be a
result of physical reasons. Reasons for mobility impaired
include reduced activity ([100], COPD), breathlessness
([70], CF), fatigue ([93], PVD), deoxygenation with calf
pain ([101], PVD), pain ([102], OA), or increased effort
([96], incomplete SCI). As walking speed decreases,
the number of reachable destinations (in 20 min, [88])
decreases. Thus alternatives modes of transportation,
such as public transport, might be used and which might
further decrease the steps per day.

Reaction time
Reaction time might be a key element in avoiding falls.
It was shown that reaction time for the upper [103] and
the lower extremities [104, 105] increased with age. For
the upper extremity, it was demonstrated that this process
seems to accelerate for people older than 65 years (Fig. 3f,
[103]). If the fall recovery includes voluntary movements,
choice reaction time (more than one option) might be
more important than single reaction time. For both upper
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and lower extremities choice reaction time was shown to
be greater than single reaction time [103, 105]. While sin-
gle reaction time can more than double, choice reaction
time can almost triple with increasing age (25 to 90 yrs,
Fig. 3f, [103]).
Studies on further reductions in reaction time due

to diseases were found for all respiratory, cardiovascu-
lar, musculoskeletal, and neurological diseases. Increases
were found for COPD [106], OA [107], PD [108], CP [109],
and incomplete SCI [110]. Choice reaction time was found
to be an important risk factor for deaths from cardiovas-
cular disease [111]. Subjects with evidence of cardiac or
PVD have a significant reduction in cognitive function
(including choice reaction time), which is equivalent to
five years of aging [112].
Researchers hypothesized that the loss in reaction times

is related to the maximum response execution speed
rather than the sensory or motor programming processes
involved in response initiation [104]. Other explanations
include loss of maximum processing speed, processing
robustness, and fluid intelligence with age [113]. Fur-
thermore, it is assumed that older adults select a safer
movement strategy with slower weight transference [105].

Balance and falls
Three major sensory systems are involved in enabling
humans to maintain balance [114]. The visual system is
required for path planning. The vestibular system senses
linear and angular accelerations. The somatosensory sys-
tem senses the velocity and the position of body segments,
provides object contact information, and orientation of
gravity. For all of them functional losses were identified
with increasing age. Age-related decreases in vision were
identified for visual processing speed, light sensitivity,
dynamic vision, near vision and visual search [115]. With
age, the number of inner ear hair cells of the vestibular
system decreases [116]. Losses in proprioception, motion
and position sense clearly influence sensorimotor tasks
such as balance in the older adults [117].
In combination with losses in muscle force, velocity,

and power, sensory degeneration will negatively influence
human balance and posture. As a consequence, the num-
ber of falls almost doubles (195% between 35 and 76 yrs)
with increasing age ([118], Fig. 3d). Females fall more
often than males (215% vs. 175%), and the amount of peo-
ple who report multiple falls per year increases with age
[118]. The incidence for community-dwelling older adults
is 0.7 falls per year [119]. As the number of falls almost
doubles, and as the steps per day decrease by 75% (60 to
85 yrs, [87]), the falls per number of steps taken per day is
approximately 800% higher for older adults compared to
young adults.
The occurrence of fall injuries increases by 336%

between the ages of 31 and 80, and larger increases were

found up to the age of 90 years (up to 472%). Between 30%
and 50% of older adult fallers become injured in a way that
requires a doctor or to be limited in daily life activity for
at least one day [120, 121]. Between the ages of 65 and
90 years, mortality rate increases from one to 40 deaths
per 10,000 falls (4000%) [122]. Seventy-three percent of
fall injuries occur during walking; 16% while walking on
snow or ice, 45% while walking on other surfaces, and 12%
while going up or down stairs [123]. Most falls (57%) were
caused by slipping, tripping, or stumbling [124]. Other
reasons for fall-related injuries are health problems (7%),
from furniture or while rising from furniture (6%), sport
(5%), and from elevated position (4%) [123]. Fall-related
injuries have also been associated with a loss of balance,
dizziness, fainting, or seizures (27%) [124].
An increased fall rate was reported for people with the

respiratory disease COPD [125]. Further, an impact on
balance was reported for people with CF [126], which may
have been mainly due to reduced quadriceps strength.
Increased rates of falling were also found for people with
cardiovascular diseases such as PVD [127]). For peo-
ple with the musculoskeletal disease FSHD, the yearly
number of falls was four times higher compared to the
unaffected control group [128]. For people with OA, the
likelihood of falls was increased compared to controls,
and was further increased with the number of affected
lower limb joints [129]. Increased rates of falling were
also reported for neurological diseases. Postural instabil-
ity [130] and an increased rate of falling [131, 132] were
reported for people with PD. Additionally, adults with CP
experience reductions in mobility in early to middle adult-
hood in conjunction with reduced balance and increased
risk of falling [133].
A combination of extrinsic (e.g. ground surface) and

intrinsic reasons might be responsible for the increas-
ing fall rates. Intrinsic reasons include identified losses in
maximum muscle strength, power, reaction time, fatigue,
or sensory losses.
Muscle strength was recommended to be assessed and

treated in older adults to prevent falls [134]. Fall interven-
tion studies showed a reduction of falls by 18% and 60%
using muscle strength and balance training [132]. Ankle
dorsiflexion weakness in particular seems to indicate risk
of falling [135, 136]. Next to muscle weakness, fallers
showed greater asymmetry in muscle force and muscle
power between the lower limbs [135].
For rapid step testing it was demonstrated that younger

subjects could recover from a larger body lean angle com-
pared to older adults due to advantages in step velocity
[104]. This indicates that high joint power, including
torque and velocity, is required to minimize the time to
recover from perturbations, such as stumbling or tripping.
Increased reaction time, caused by sensory losses, may
also increase perturbation recovery time.
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Muscle fatigue may be an additional reason for
increased fall rates in the older adults. Helbostad
et al. [137] found no changes in self-selected gait speed
or step length in a group of subjects with a mean age
of 79±5 years after being fatigued by a sit-to-stand
task. In contrast, subjects showed significant increases
in step width and mediolateral trunk acceleration [137].
Increased step width was also identified when older adults
(mean 61±6 yrs) were forced to walk at same speed as
younger subjects (mean 25±3 yrs) [138]. When walk-
ing speed was not fixed, older adults preferred a similar
step width, but lower walking speed, compared to young
adults [80]. Researchers assume that walking speed might
decrease to maintain balance [81] or to manage fear of
falling [82].

Other identified conditions
In addition to the physical and functional changes ana-
lyzes in this review, we found other factors that may influ-
ence gait. One of the major issues addressed by multiple
studies is pain. Compared to healthy individuals, physical
disability (including walking) is five times higher for peo-
ple with pain caused by OA [102]. Exercise and dietary
weight loss can improve health related quality of life due to
reductions in pain and physical disability [139–141]. Pain
was also reported for people with the cardiovascular dis-
ease PVD where calf pain occurred due to deoxygenation
during physical activity [101].
Another reported issue were asymmetries in gait. For

example, increased asymmetries compared to the control
group were found for people with PD and older adult fall-
ers [142]. Additionally, next to asymmetries also groups
with different walking patterns could be identified for
people with CP [143].
For our analysis, most of the evaluated populations

(Fig. 1) with mobility-related losses did have standing
and walking capability. This included unimpaired older
adults but also mobility-impaired individuals with respi-
ratory, cardiovascular, neurological, and musculoskeletal
diseases. One population with limited capability or with-
out standing and walking capability were people with
SCI [95].
Furthermore, freezing was reported to be a mobility

limiting contributor for people with PD [144]. Following
the definition of [144], freezing is defined as an episodic
inability to generate effective stepping, mostly during
turning and step initiation, but also when faced with stress
or distraction. Focused attention and external stimuli can
overcome the episode.

Daily life requirements of physical parameters
Maximummuscle force and power
Compared to level walking, human peak power and torque
from the ankle, knee, and hip increase with increasing

slope [145–147]. The largest increases (compared to level
walking) were identified for hip extension and plantarflex-
ion torque and power (Fig. 7). Additionally, increased
joint requirements could be identified while climbing
stairs [148]. Compared to level walking, peak knee torque
and power increases for ascending and descending stairs
(Fig. 7).

Maximumoxygen consumption
Required oxygen consumption for 1.3 m/s level walking
is 12 ml·kg−1 · min−1. An increased oxygen consumption
has been found (18.4ml·kg−1 · min−1) when increasing
speed to 1.8 m/s (both values for unimpaired adults, mean
39±13 yrs, [149]). Compared to level walking, 1.3 m/s
walking at a slope of 9° requires 28ml·kg−1 · min−1 [150].
The human cost of transport, which quantifies the energy
efficiency of gait, has been found to be 1.6 for level walk-
ing; for a slope of 6°, this cost tripled, and for a slope of
24°, this cost increased ten-fold (17.3) compared to that of
level walking [151].
Similar to inclined walking, required oxygen consump-

tion increases approximately three times (34 ml ·kg−1 ·
min−1, 95 steps/min) for stair climbing compared to level
walking ([152], 44±13 yrs). Approximately 30 ml ·kg−1 ·
min−1 were required for a group of subjects with a mean
age of 20±0.3 years (88 steps/min, [153]).

Discussion
Limitations due to physiological parameters
This review identified that lower limb maximum mus-
cle torques and forces, as well as leg extensor power,
decreased with increasing age. For daily movements,
increased joint torque and power requirements were iden-
tified for walking inclines and climbing stairs compared
to level walking (Fig. 7). Thus, it is expected that both
movement tasks will most likely challenge older adults and
mobility-impaired individuals. In [66], reduced quadri-
ceps strength was identified as a reason for reduced
stair climbing cadence in older adults. Additionally, older
adults reached 75% of their maximum possible extensor
moment in stair climbing, while younger adults reached
53% [67]. Thus, the effort of older adults is greater and
muscle fatiguemay occur earlier.We expect similar effects
in user effort for level walking and walking inclines. Fur-
thermore, limited muscle power is linked to incident
disability, mortality, falls, hospitalization, and health care
resource consumption [46].
This review identified a loss of VO2max with increas-

ing age or due to diseases. As the oxygen consump-
tion at self-selected walking speed is below the VO2max
of most older adults (Fig. 4), these individuals should
be able to handle the effort for short periods of time.
With increasing locomotion time, sub-maximal values
of VO2max must be considered. For intervals of three
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Fig. 7 Joint biomechanics. Hip, knee, and ankle biomechanics (angle, torque, and power) for one gait cycle of level walking (solid, 1.3 m/s, [169]),
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minutes, walking or running in the Bruce GXT test, val-
ues above 70% of VO2max were categorized as hard [154].
A study on carrying loads on different terrain in men
and women showed that, for all different conditions,
the self-selected pace of the subjects required 45%
of the individual VO2max [155]. This value seems
to be the acceptable working limit for a duration of
one to two hours. For young soldiers carrying loads
over six hours for multiple days, the self-selected pace
was approximately at 30%-40% of the VO2max [156].
If these percentages of the VO2max are assumed as con-
tinuous limits for level walking, it might explain part of the
reductions in maximum, maximum six-minute, and self-
selected walking speed of older adults and those that are
mobility-impaired. In addition to some percentile of older
adults without observable limitations, in comparison to
young adults there will be some percentile with great
restrictions, similar to the distribution for the steps per
day (Fig. 6). In comparison to level walking, oxygen
requirements for stair climbing and walking inclines (with
a speed of young adults) are above the maximum for
most older adults (Fig. 4). To perform both tasks, older
adults need to reduce their speed, similar to the strategy
employed by mountain runners [151]. Studies of individu-
als with respiratory, cardiovascular, and neurological dis-
eases showed clear reductions for VO2max to levels of less
than the half of unimpaired subjects of the same age group

(Fig. 4). In addition, maximum (six-minutes) and self-
selected level walking speed of the impaired populations
analyzed were below the mean self-selected level walk-
ing speed of the unimpaired controls (Fig. 5). Thus, these
groups are likely to struggle to perform daily locomo-
tion tasks at self-selected speeds compared to unimpaired
individuals of the same age.
Older adults showed only small reductions in self-

selected walking speed compared to the reductions in
maximum muscle force, maximum power, and VO2max.
Thus, maximum physiological parameters seem to impact
maximum performance (e.g. maximum walking speed)
to a greater degree than movements that only require
medium level effort (e.g. preferred walking speed). Typ-
ically daily locomotion is done at speeds up to the self-
selected walking speed, which should require a medium
level effort. But the number of steps per day decreased
much more with increasing age than the physiological
values (e.g. force, VO2max). This suggests that not only
physiological, but other factors, such as not having a need
to work, might play an important role in the reduction in
steps per day.

Improving the functional capacity
Based on the physical and functional parameters analyzed
in this work, we identified several mobility-related losses,
due to aging and diseases, that have the potential to be
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improved. Functional improvements can include upright
standing and locomotion, increasing locomotion speed,
steps per day, reaction time, improving balance (risk of
falling), or improving gait patterns, which includes the
reduction of asymmetries.
We found that most functional tasks are affected by the

same physical deficits, including muscle strength, muscle
power, and VO2max. Consequently, with reduced levels,
other factors such as fatigue, effort, pain, or joint stress
have the potential to increase.
As physical and functional parameters are highly related

to each other, it is not surprising that losses due to aging
or disease in one area also reduce capabilities in other
areas. For example, individuals with cardiovascular dis-
eases (PVD) suffer from increased reaction times and fall
rates, or individuals with respiratory diseases (COPD) suf-
fer from reductions in maximum muscle power. Thus
we believe that improvements in the physical capabilities
have the potential to improve a wide range of functional
parameters.
The authors see two possible options to improve

mobility-related functional parameters (e.g. steps per
day), and consequently, secondary parameters as well (e.g.
pressure sores, body mass index).
The first potential solution is physical training, as phys-

ical inactivity was identified as a major cause for physical
losses. Training directly targets the improvement of a spe-
cific capacity and can partially prevent or help to recover
from physical losses.
The second potential solution would bypass the human

physical losses to directly improve themobility by improv-
ing the functional capacity. Next to the training approach,
this approach is required as this review identified that
there will be an inevitable loss of capabilities, especially
for older adults from the age of above 70 yrs and for
mobility-impaired individuals.
Until now, changes in the environment or the use of

assistive devices, such as crutches or walkers, have been
used and investigated to compensate for inevitable losses
in physical and functional capabilities. Alternatively, assis-
tive devices can also be used during rehabilitation as
training devices.
A novel assistive device concept that can address these

two options for functional improvements are exoskele-
tons. Similar to crutches, exoskeletons can be used for
daily assistance (compensation) and as a rehabilitation
device (recovery). In addition to the improvement of the
physical condition, improvements of secondary medical
symptoms as well as othermovement- and posture-related
health outcomes are expected. These improvements will
be beneficial for the users also when not wearing the
exoskeleton. Compared to devices like crutches, they
could also be used as a versatile training device to par-
tially prevent losses similar to other physical exercise

devices [157]. In addition to prevention, the functional
compensation, and rehabilitation from losses, exoskele-
tons provide the possibility to augment user capabilities
to levels above that of normal human performance. For
example, when using the Raytheon Sarcos’s XOS 2 robotic
suit, the user should be able to lift 200 lb of weight for long
periods of time without feeling the strain [158]. So far it
is unknown how different levels of assistance will influ-
ence the physical capabilities of the users. To prevent from
further physical losses, the trade-off between exoskeleton
assistance and physical user involvement has to be inves-
tigated. We can imagine that muscles might degenerate if
the user completely relies on the external force assistance
of an exoskeleton. On the other hand, toomuch effort may
overload and fatigue the user. Variable assistance levels,
controlled by parameters that indicate human effort (e.g.
heart rate) might be a possible way to set an appropriate
level of effort.
Thus far commercial exoskeletons have been primar-

ily used in rehabilitation [159]. A review on lower limb
rehabilitation exoskeletons concluded that exoskeletons
can be used to regain locomotion capability for impaired
with neurological diseases. They can increase mobil-
ity, improve functioning, and reduce the risk of sec-
ondary injury by reinstating a more normal gait pat-
tern [159]. For the devices investigated in this review
(most commonly ReWalk, HAL, Vanderbilt lower limb
exoskeleton), user’s mobility benefited from the exoskele-
tons body weight support and the propulsion during
walking.
Needs such as the compensation for lost locomo-

tion speed or endurance and the reduction of fatigue
and effort, may require exoskeletons, which are able
to reduce the metabolic cost of walking by providing
propulsion to the lower limbs. Examples for autonomous
designs that are able to reduce metabolic cost of walk-
ing by assisting the hip are from Samsung [33], Honda
[34], or Georgia Tech [35]. An autonomous systems
with ankle support was designed by MIT [32]. Ankle
and hip assistance was provided with the exosuit from
Harvard [16].
A reduction of gait asymmetries could potentially be

addressed with unilateral systems like the ankle exosuit
[160, 161], or with bilateral systems similar to the Ekso-
GT [162], which has demonstrated improved gait metrics
by providing propulsion at the deficient limb of people
with stroke.
The risk of falling may be reduced by reducing fatigue

and asymmetries, improving strength and power, or by
using control algorithms within exoskeletons or assistive
devices that improve balance or assist to recover from
perturbations, as demonstrated in [163]. As increased
reaction times have been associated with falls [164],
artificial sensors in combination with assistive forces
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could also help to compensate for the human sensory
losses.
To reduce joint stress and pain, exoskeletons have to

reduce the forces on the cartilage and the bones. Increas-
ing joint stability by antagonistic structures may further
decrease pain while moving.
While there are many of gait rehabilitation exoskeletons

for clinical environments, there are only a few exoskele-
tons available that are solutions for improving mobility in
daily life for many of the mobility impairments discussed
in this work. Necessary technological advances that will
allow for greater widespread daily use include improve-
ments to the actuators, sensors, batteries, and the human
machine interface. Furthermore, it must be investigated
how the control of such assistive devices can deal with dif-
ferent gait patterns, as found in individuals with diseases
such as CP [143]. Next to individual solutions, people
with CP, PD, and other diseases require solutions to deal
with symptoms like tremors, spasticity, and involuntary
movements.
While we see a huge potential to improve the mobility

of individuals with the help of lower limb exoskeletons, we
believe there is still a lot of development required to create
systems that fulfill the needs for the different populations
with reduced mobility. Hardware and control complexity
should be user-friendly and cover the needs of the desired
target population.

Questioning the necessity of lower limb exoskeletons
It is hard to estimate, which level of fatigue, effort, pain,
or fall risk would make individuals to choose to use an
exoskeleton for daily life mobility assistance. Conven-
tional training, medication, passive walkers or crutches,
or even a reduction in movement speed may be pre-
ferred alternatives. For shorter distances in level envi-
ronments in particular, a high amount of older adults
without severe physical and functional deficits will not
require a lower limb exoskeleton for assistance. The
possible benefits of reduced effort or risk of falling
might be rated lower compared to the effort of don-
ning and doffing or charging of the exoskeleton. Further,
financial expenses for the device could be disincentive
for use.
To establish the usage, the advantages of exoskeletons

must be perceived to be higher by the users compared to
the disadvantages. We clearly see this for target popula-
tions with severe mobility impairments due to diseases.
On the other hand, we could imagine that also young and
healthy people might use such devices to augment their
capabilities at the workplace or for activities such as hiking
or running. User-friendly (e.g., robust, simple) exoskele-
ton solutions that work for these applications might also
improve the accessibility for populations with moderate
limitations in mobility.

Conclusions
Mobility is a key determinant for individual independence
and quality of life. This review summarized and quanti-
fied mobility related physical and functional losses with
increasing age and due to diseases.
We found decreases in maximum walking speed (24%,

25–75 yrs), maximum six-minute walking speed (38%, 20–
85 yrs), and self-selected walking speed (21%, 20–85 yrs).
Between the ages of 25 and 75 years, lower extremity
maximum muscle strength decreases by 33%, VO2max
decreased by 40% and muscle power decreased by 49%.
Single reaction time can more than double and complex
reaction time can almost triple (25 to 90 yrs). In addition,
the balance related visual system, the vestibular system,
and the somatosensory system degenerate with increas-
ing age. Steps per day decrease by 75% (60 to 85 yrs). The
falls per number of steps taken per day increase by 800%
and injuries due to falls are almost five times greater when
comparing young adults to older adults at the age of 90.
The mortality rate due to falls increases by 4000% when
comparing 65 year old to 90 year old subjects.
This review demonstrates that increasing age and dis-

eases reducemobility related capabilities for a broad range
of populations. For shorter walking distances in level envi-
ronments, most older adults will be able to remain mobile
with a reduced walking speed. In contrast, we found large
populations with severe mobility impairments who may
struggle, especially in demanding tasks such as walking
inclines, climbing stairs, or walking over longer periods of
time. As a result of these tasks being close to their phys-
iological limits, both fatigue as well as falls may increase.
Other identified contributing factors to losses in mobility
were the losses in the ability to stand and walk, phys-
ical and functional asymmetries, breathlessness, fear of
falling, deoxygenation with calf pain, joint stress and pain,
and freezing. Further, this study revealed much larger
populations with mobility impairments in walking capa-
bility compared to populations without. Thus, we see
an increased need for mobility enhancing solutions for
impaired populations that have partial, and not necessar-
ily total, mobility limitations.
As this review showed that physical and functional

parameters are closely related to each other, we believe
that improvements in the physical parameters can
improve a wide range of functional and secondary mea-
sures. Directly targeting the prevention of physical losses
and the improvement of physical capabilities by train-
ing is one attractive approach to improve mobility. On
the other hand, there are inevitable physical losses with
increasing age or due to mobility impairments. Solutions
are required to compensate for these losses, such as with
environmental changes or assistive devices.
We believe that exoskeletons are a promising assistive

device that can be used for training to prevent or recover
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physical losses. These devices allow for the compensa-
tion of lost physical capabilities by directly supporting the
functional tasks with propulsion, weight support, or bal-
ance support. Thus, they have the potential to increase a
user’s functional capacity to levels that equal unimpaired
young individuals or to augment functional capabilities to
levels beyond natural human capabilities.
Future studies are necessary to explore the potential

for exoskeletons to address the physical and functional
losses at various levels (prevention, recovery, compensa-
tion, augmentation). It will be of interest to understand
how exoskeletons will affect secondary medical symptoms
as well as other movement- and posture-related health
outcomes. We expect improvements in other health-
related measures, and therefore also improvements in
quality of life when not wearing the assistive device. To
establish the usage of exoskeletons, devices must be user-
friendly and the mobility advantages must be perceived
to be greater by the user compared to the associated
disadvantages.

Appendix
Methodological considerations
This narrative review used selected articles to provide an
overall view on the physical and functional losses due
to aging and diseases. The summarized losses that were
extracted from literature only represent the investigated
population of the original work. It is possible that popu-
lations with other characteristics (e.g., income, education,
ethnicity, sex, age) may have different losses. Studies used
as example for impaired populations were only single
study representatives. Groups with more severe or more
moderate disease symptoms may have greater or lower
losses.
Further, we can not exclude that subjects that were

characterized as healthy or controls without the inves-
tigated disease, might have suffered from diseases that
were not used as exclusion criteria in the study protocols.
Thus, group or study comparisons may have been influ-
enced due to other diseases causing similar physical or
functional changes.
Another point that might not have changed the general

outcome, but the relative relation, are the comparisons of
different age ranges. For example, for the maximum walk-
ing speed, a range of 25 to 75 years was used and for the
self-selected speed a range of 20 to 85 years was used.
We preferred to include the full range instead of truncat-
ing the age groups above 75 years, as the greatest changes
were expected within this group.
For some age-related parameters (e.g. VO2max, power,

see Fig. 3), functions were introduced by the referenced
authors, based on a linear fit. These linear trends might
hide non-linear effects that we would have expected with
increasing age.

Diseases information
Respiratory system
The WHO estimated 64 million cases worldwide of
chronic obstructive pulmonary disease (COPD) for the
year 2004 [172]. Due to chronically reduced airflow,
people with COPD show reduced activity during the day
compared to healthy older adults [100].
Cystic fibrosis (CF, mucoviscidosis) is a metabolic

disease caused by a genetic defect. The incidence is
increased within the Caucasian population. One in 2000
to 3000 new-borns are affected in Europe, and one out
of 3500 in the US [174]. The incidence is much lower
in Asia and Africa. 30,000 cases are registered in the
US [179]. Combining the values for the US with an esti-
mation of cases for Europe, more than 100,000 people
are affected.

Cardiovascular system
For coronary artery disease (CAD), plaque at the inner
site of the heart arteries causes a reduced blood
flow and therefore a reduced supply of the heart.
It is the leading cause of death worldwide (7.2 mil-
lion per year, WHO, [172]). Worldwide 93million are
affected [173].
Peripheral vascular disease (PVD) describes the reduc-

tion in blood flow in the extremities mostly caused by
arteriosclerosis. Worldwide, a number of 202million was
estimated to be affected in 2010 [175].

Musculoskeletal system
Osteoarthritis (OA) is a degenerative disease of the bones
and cartilage at the joints. 151million people are affected
worldwide [172].
Facioscapulohumeral muscular dystrophy (FSHD) is a

genetic disease that causes muscle atrophy and weak-
ness. Based on the prevalence of 1 in 8333 inhabitants in
the Netherlands [176], the FSH SOCIETY [180] estimates
870,000 affected worldwide.

Neurological system
Cerebral palsy (CP) describes functional disability of
movement and/or posture caused by an abnormally devel-
oped brain [181]. It affects 2 to 2.5 per 1000 live births
[177]. Assuming a similar life expectancy to non-affected
and a similar incidence for all countries, 16 million people
may be affected worldwide.
Parkinson’s disease (PD) is a degenerative nerve disease

caused by dying midbrain cells. It is estimated to affect 5.2
million people worldwide [172].
Spinal cord injury (SCI) has a prevalence of 223–755

per million inhabitants [178], which totals about 3.5 mil-
lion cases worldwide. It is primarily caused by traumatic
injuries, but it has also non-traumatic causes (arthritis,
reduced blood flow, infection, inflammation).
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Table 2 Comfortable walking speed (self-selected) at different ages for healthy males (M), females (F), and mixed populations (M & F)

Study Gender Age range Mean age Mean speed Setting Number of subjects

Murray [182] M 20 - 25 21.5 1.50 10m walkway 8

M 30 - 35 32.4 1.43 8

M 40 - 45 42.9 1.59 8

M 50 - 55 53.0 1.57 8

M 60 - 65 62.8 1.45 8

M 67 - 73 71.1 1.18 8

M 74 - 80 76.0 1.23 8

M 81 - 87 85.0 1.18 8

Hageman [183] F 20 - 33 23.9 1.60 10m walkway 13

F 60 - 84 66.6 1.32 13

Waters [149] F 20 - 59 40.1 1.29 60.5m walkway 34

F 60 - 80 68.9 1.20 47

M 20 - 59 38.5 1.36 39

M 60 - 80 67.1 1.28 26

M & F 20 - 59 39.2 1.33 73

M & F 60 - 80 68.2 1.23 73

Blanke [184] M 20 - 33 24.5 1.31 14m walkway 12

M 60 - 74 63.6 1.39 12

Elble [80] M & F 20 - 39 30.0 1.18 10m walkway 20

M & F 65 - 87 74.7 0.94 20

Öberg [185] M 20 - 29 24.5* 1.23 10m walkway 15

M 30 - 39 34.5* 1.32 15

M 40 - 49 44.5* 1.33 15

M 50 - 59 54.5* 1.25 15

M 60 - 69 64.5* 1.28 15

M 70 - 79 74.5* 1.18 14

F 20 - 29 24.5* 1.24 15

F 30 - 39 34.5* 1.29 15

F 40 - 49 44.5* 1.25 15

F 50 - 59 54.5* 1.11 15

F 60 - 69 64.5* 1.16 15

F 70 - 79 74.5* 1.11 15

Ostrosky [186] M & F 22 - 39 28.2 1.38 6m walkway 30

M & F 60 - 80 67.5 1.27 30

Bohannon [187] M 50 - 79 64.4 1.41 7.6m walkway 77

F 50 - 79 64.3 1.30 79

Bohannon [63] M 20 - 29 23.9 1.39 7.6m walkway 15

M 30 - 39 34.2 1.46 13

M 40 - 49 44.9 1.46 22

M 50 - 59 54.9 1.39 22

M 60 - 69 66.2 1.36 18

M 70 - 79 73.0 1.33 22

F 20 - 29 22.2 1.41 22
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Table 2 Comfortable walking speed (self-selected) at different ages for healthy males (M), females (F), and mixed populations (M & F)
(Continued)

Study Gender Age range Mean age Mean speed Setting Number of subjects

F 30 - 39 35.1 1.42 23

F 40 - 49 44.1 1.39 21

F 50 - 59 53.8 1.40 21

F 60 - 69 64.8 1.30 18

F 70 - 79 73.1 1.27 20

Auvinet [188] M 20 - 29 24.5* 1.59 40m walkway 24

M 30 - 39 34.5* 1.54 26

M 40 - 49 44.5* 1.63 22

M 50 - 59 54.5* 1.42 25

M 60 - 69 64.5* 1.47 28

M >70 74.5* 1.32 13

F 20 - 29 24.5* 1.54 25

F 30 - 39 34.5* 1.56 27

F 40 - 49 44.5* 1.50 29

F 50 - 59 54.5* 1.48 24

F 60 - 69 64.5* 1.35 25

F >70 74.5* 1.26 14

Malatesta [189] M & F 62 - 70 66.9 1.38 treadmill 10

M & F 79 - 87 82.8 1.16 10

Menz [190] M & F 22 - 40 28.5 1.43 8.6m walkway 30

M & F 76 - 87 80.8 1.16 31

Laufer [191] M & F 20 - 31 24.0 1.46 6.6m walkway 30

M & F 65 - 89 77.7 1.00 40

Kang [192] M & F 18 - 28 23.3 1.30 treadmill 18

M & F 65 - 85 72.1 1.29 18

Mazza [193] M & F 24.4 1.30 12m walkway 16

M & F 72.0 0.97 20

Kavanagh [194] M & F 23.0 1.32 30m walkway 13

Mazza [195] M 23.0 1.33 12m walkway 20

F 23.0 1.34 20

Chung [196] M <30 27.4 1.08 8m walkway 5

M 31 - 45 39.8 1.12 5

M >45 51.0 0.99 5

F <30 23.6 1.20 5

F 31 - 45 31.2 1.11 5

F <30 57.6 0.90 5

Iosa [71] M & F 31.0 1.21 10m walkway 13

Goutier [197] M 22.0 1.30 12.5m walkway 10

M 71.0 1.30 10

F 24.0 1.30 10

F 71.0 1.20 10

Peterson [198] M 20 - 30 24.7 1.28 12.5m walkway 6

M 65 - 80 72.7 1.31 8
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Table 2 Comfortable walking speed (self-selected) at different ages for healthy males (M), females (F), and mixed populations (M & F)
(Continued)

Study Gender Age range Mean age Mean speed Setting Number of subjects

F 20 - 30 26.4 1.38 6

F 65 - 80 69.9 1.32 8

Lamoth [199] M & F >70 79.4 0.95 40m walkway 13

Ijmker [200] M & F 55 - 70 64.3 1.19 10m walkway 12

M & F 75 - 85 76.9 1.14 14

Iosa [167] M & F 62.8 1.15 20m walkway 10

Senden [201] M & F 74.2 1.23 40m walkway 50

Arnold [202] M & F 23.2 1.34 10m walkway 20

M & F 73.2 1.14 20

Terrier [203] M & F 20 - 29 24.7 1.10 treadmill 20

M & F 30 - 39 34.6 1.13 20

M & F 40 - 49 43.9 1.11 20

M & F 50 - 59 54.8 1.04 20

M & F 60 - 69 63.3 1.06 20

Depending on the study, speed was determined at a walkway or a treadmill. For some studies the age range was not specified. If the mean age was not published, the mean
of the age range was used (*). Self-selected speed was determined in some studies using short walkways. It is unclear how representative such a measurement is for
self-selected level walking speeds over longer periods of time. Slower values are expected
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